| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_LAYER_H |
| #define ANDROID_LAYER_H |
| |
| #include <sys/types.h> |
| |
| #include <gui/BufferQueue.h> |
| #include <gui/ISurfaceComposerClient.h> |
| #include <gui/LayerState.h> |
| #include <input/InputWindow.h> |
| #include <layerproto/LayerProtoHeader.h> |
| #include <math/vec4.h> |
| #include <renderengine/Mesh.h> |
| #include <renderengine/Texture.h> |
| #include <ui/FloatRect.h> |
| #include <ui/FrameStats.h> |
| #include <ui/GraphicBuffer.h> |
| #include <ui/PixelFormat.h> |
| #include <ui/Region.h> |
| #include <ui/Transform.h> |
| #include <utils/RefBase.h> |
| #include <utils/String8.h> |
| #include <utils/Timers.h> |
| |
| #include <cstdint> |
| #include <list> |
| #include <optional> |
| #include <vector> |
| |
| #include "Client.h" |
| #include "FrameTracker.h" |
| #include "LayerBE.h" |
| #include "LayerVector.h" |
| #include "MonitoredProducer.h" |
| #include "SurfaceFlinger.h" |
| #include "TransactionCompletedThread.h" |
| |
| #include "DisplayHardware/HWComposer.h" |
| #include "DisplayHardware/HWComposerBufferCache.h" |
| #include "RenderArea.h" |
| |
| using namespace android::surfaceflinger; |
| |
| namespace android { |
| |
| // --------------------------------------------------------------------------- |
| |
| class Client; |
| class Colorizer; |
| class DisplayDevice; |
| class GraphicBuffer; |
| class SurfaceFlinger; |
| class LayerDebugInfo; |
| class LayerBE; |
| |
| namespace impl { |
| class SurfaceInterceptor; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| struct LayerCreationArgs { |
| LayerCreationArgs(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, |
| uint32_t w, uint32_t h, uint32_t flags) |
| : flinger(flinger), client(client), name(name), w(w), h(h), flags(flags) {} |
| |
| SurfaceFlinger* flinger; |
| const sp<Client>& client; |
| const String8& name; |
| uint32_t w; |
| uint32_t h; |
| uint32_t flags; |
| }; |
| |
| class Layer : public virtual RefBase { |
| static std::atomic<int32_t> sSequence; |
| |
| public: |
| friend class LayerBE; |
| LayerBE& getBE() { return mBE; } |
| LayerBE& getBE() const { return mBE; } |
| mutable bool contentDirty{false}; |
| // regions below are in window-manager space |
| Region visibleRegion; |
| Region coveredRegion; |
| Region visibleNonTransparentRegion; |
| Region surfaceDamageRegion; |
| |
| // Layer serial number. This gives layers an explicit ordering, so we |
| // have a stable sort order when their layer stack and Z-order are |
| // the same. |
| int32_t sequence{sSequence++}; |
| |
| enum { // flags for doTransaction() |
| eDontUpdateGeometryState = 0x00000001, |
| eVisibleRegion = 0x00000002, |
| eInputInfoChanged = 0x00000004 |
| }; |
| |
| struct Geometry { |
| uint32_t w; |
| uint32_t h; |
| ui::Transform transform; |
| |
| inline bool operator==(const Geometry& rhs) const { |
| return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && |
| (transform.ty() == rhs.transform.ty()); |
| } |
| inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } |
| }; |
| |
| struct RoundedCornerState { |
| RoundedCornerState() = default; |
| RoundedCornerState(FloatRect cropRect, float radius) |
| : cropRect(cropRect), radius(radius) {} |
| |
| // Rounded rectangle in local layer coordinate space. |
| FloatRect cropRect = FloatRect(); |
| // Radius of the rounded rectangle. |
| float radius = 0.0f; |
| }; |
| |
| struct State { |
| Geometry active_legacy; |
| Geometry requested_legacy; |
| int32_t z; |
| |
| // The identifier of the layer stack this layer belongs to. A layer can |
| // only be associated to a single layer stack. A layer stack is a |
| // z-ordered group of layers which can be associated to one or more |
| // displays. Using the same layer stack on different displays is a way |
| // to achieve mirroring. |
| uint32_t layerStack; |
| |
| uint8_t flags; |
| uint8_t reserved[2]; |
| int32_t sequence; // changes when visible regions can change |
| bool modified; |
| |
| // Crop is expressed in layer space coordinate. |
| Rect crop_legacy; |
| Rect requestedCrop_legacy; |
| |
| // If set, defers this state update until the identified Layer |
| // receives a frame with the given frameNumber |
| wp<Layer> barrierLayer_legacy; |
| uint64_t frameNumber_legacy; |
| |
| // the transparentRegion hint is a bit special, it's latched only |
| // when we receive a buffer -- this is because it's "content" |
| // dependent. |
| Region activeTransparentRegion_legacy; |
| Region requestedTransparentRegion_legacy; |
| |
| int32_t appId; |
| int32_t type; |
| |
| // If non-null, a Surface this Surface's Z-order is interpreted relative to. |
| wp<Layer> zOrderRelativeOf; |
| |
| // A list of surfaces whose Z-order is interpreted relative to ours. |
| SortedVector<wp<Layer>> zOrderRelatives; |
| |
| half4 color; |
| float cornerRadius; |
| |
| bool inputInfoChanged; |
| InputWindowInfo inputInfo; |
| |
| // The fields below this point are only used by BufferStateLayer |
| Geometry active; |
| |
| uint32_t transform; |
| bool transformToDisplayInverse; |
| |
| Rect crop; |
| Region transparentRegionHint; |
| |
| sp<GraphicBuffer> buffer; |
| sp<Fence> acquireFence; |
| ui::Dataspace dataspace; |
| HdrMetadata hdrMetadata; |
| Region surfaceDamageRegion; |
| int32_t api; |
| |
| sp<NativeHandle> sidebandStream; |
| mat4 colorTransform; |
| bool hasColorTransform; |
| |
| // The deque of callback handles for this frame. The back of the deque contains the most |
| // recent callback handle. |
| std::deque<sp<CallbackHandle>> callbackHandles; |
| }; |
| |
| explicit Layer(const LayerCreationArgs& args); |
| virtual ~Layer(); |
| |
| void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; } |
| |
| // ------------------------------------------------------------------------ |
| // Geometry setting functions. |
| // |
| // The following group of functions are used to specify the layers |
| // bounds, and the mapping of the texture on to those bounds. According |
| // to various settings changes to them may apply immediately, or be delayed until |
| // a pending resize is completed by the producer submitting a buffer. For example |
| // if we were to change the buffer size, and update the matrix ahead of the |
| // new buffer arriving, then we would be stretching the buffer to a different |
| // aspect before and after the buffer arriving, which probably isn't what we wanted. |
| // |
| // The first set of geometry functions are controlled by the scaling mode, described |
| // in window.h. The scaling mode may be set by the client, as it submits buffers. |
| // This value may be overriden through SurfaceControl, with setOverrideScalingMode. |
| // |
| // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then |
| // matrix updates will not be applied while a resize is pending |
| // and the size and transform will remain in their previous state |
| // until a new buffer is submitted. If the scaling mode is another value |
| // then the old-buffer will immediately be scaled to the pending size |
| // and the new matrix will be immediately applied following this scaling |
| // transformation. |
| |
| // Set the default buffer size for the assosciated Producer, in pixels. This is |
| // also the rendered size of the layer prior to any transformations. Parent |
| // or local matrix transformations will not affect the size of the buffer, |
| // but may affect it's on-screen size or clipping. |
| virtual bool setSize(uint32_t w, uint32_t h); |
| // Set a 2x2 transformation matrix on the layer. This transform |
| // will be applied after parent transforms, but before any final |
| // producer specified transform. |
| virtual bool setMatrix(const layer_state_t::matrix22_t& matrix, |
| bool allowNonRectPreservingTransforms); |
| |
| // This second set of geometry attributes are controlled by |
| // setGeometryAppliesWithResize, and their default mode is to be |
| // immediate. If setGeometryAppliesWithResize is specified |
| // while a resize is pending, then update of these attributes will |
| // be delayed until the resize completes. |
| |
| // setPosition operates in parent buffer space (pre parent-transform) or display |
| // space for top-level layers. |
| virtual bool setPosition(float x, float y, bool immediate); |
| // Buffer space |
| virtual bool setCrop_legacy(const Rect& crop, bool immediate); |
| |
| // TODO(b/38182121): Could we eliminate the various latching modes by |
| // using the layer hierarchy? |
| // ----------------------------------------------------------------------- |
| virtual bool setLayer(int32_t z); |
| virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ); |
| |
| virtual bool setAlpha(float alpha); |
| virtual bool setColor(const half3& color); |
| |
| // Set rounded corner radius for this layer and its children. |
| // |
| // We only support 1 radius per layer in the hierarchy, where parent layers have precedence. |
| // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer |
| // from which we inferred the rounded corner radius. |
| virtual bool setCornerRadius(float cornerRadius); |
| virtual bool setTransparentRegionHint(const Region& transparent); |
| virtual bool setFlags(uint8_t flags, uint8_t mask); |
| virtual bool setLayerStack(uint32_t layerStack); |
| virtual uint32_t getLayerStack() const; |
| virtual void deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, |
| uint64_t frameNumber); |
| virtual void deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber); |
| virtual bool setOverrideScalingMode(int32_t overrideScalingMode); |
| virtual void setInfo(int32_t type, int32_t appId); |
| virtual bool reparentChildren(const sp<IBinder>& layer); |
| virtual void setChildrenDrawingParent(const sp<Layer>& layer); |
| virtual bool reparent(const sp<IBinder>& newParentHandle); |
| virtual bool detachChildren(); |
| bool attachChildren(); |
| bool isLayerDetached() const { return mLayerDetached; } |
| virtual bool setColorTransform(const mat4& matrix); |
| virtual mat4 getColorTransform() const; |
| virtual bool hasColorTransform() const; |
| |
| // Used only to set BufferStateLayer state |
| virtual bool setTransform(uint32_t /*transform*/) { return false; }; |
| virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; }; |
| virtual bool setCrop(const Rect& /*crop*/) { return false; }; |
| virtual bool setFrame(const Rect& /*frame*/) { return false; }; |
| virtual bool setBuffer(const sp<GraphicBuffer>& /*buffer*/) { return false; }; |
| virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; }; |
| virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; }; |
| virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; }; |
| virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; }; |
| virtual bool setApi(int32_t /*api*/) { return false; }; |
| virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; }; |
| virtual bool setTransactionCompletedListeners( |
| const std::vector<sp<CallbackHandle>>& /*handles*/) { |
| return false; |
| }; |
| |
| ui::Dataspace getDataSpace() const { return mCurrentDataSpace; } |
| |
| // Before color management is introduced, contents on Android have to be |
| // desaturated in order to match what they appears like visually. |
| // With color management, these contents will appear desaturated, thus |
| // needed to be saturated so that they match what they are designed for |
| // visually. |
| bool isLegacyDataSpace() const; |
| |
| // If we have received a new buffer this frame, we will pass its surface |
| // damage down to hardware composer. Otherwise, we must send a region with |
| // one empty rect. |
| virtual void useSurfaceDamage() {} |
| virtual void useEmptyDamage() {} |
| |
| uint32_t getTransactionFlags() const { return mTransactionFlags; } |
| uint32_t getTransactionFlags(uint32_t flags); |
| uint32_t setTransactionFlags(uint32_t flags); |
| |
| bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const { |
| return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay); |
| } |
| |
| void computeGeometry(const RenderArea& renderArea, renderengine::Mesh& mesh, |
| bool useIdentityTransform) const; |
| FloatRect computeBounds(const Region& activeTransparentRegion) const; |
| FloatRect computeBounds() const; |
| |
| int32_t getSequence() const { return sequence; } |
| |
| // ----------------------------------------------------------------------- |
| // Virtuals |
| virtual const char* getTypeId() const = 0; |
| |
| /* |
| * isOpaque - true if this surface is opaque |
| * |
| * This takes into account the buffer format (i.e. whether or not the |
| * pixel format includes an alpha channel) and the "opaque" flag set |
| * on the layer. It does not examine the current plane alpha value. |
| */ |
| virtual bool isOpaque(const Layer::State&) const { return false; } |
| |
| /* |
| * isSecure - true if this surface is secure, that is if it prevents |
| * screenshots or VNC servers. |
| */ |
| bool isSecure() const; |
| |
| /* |
| * isVisible - true if this layer is visible, false otherwise |
| */ |
| virtual bool isVisible() const = 0; |
| |
| /* |
| * isHiddenByPolicy - true if this layer has been forced invisible. |
| * just because this is false, doesn't mean isVisible() is true. |
| * For example if this layer has no active buffer, it may not be hidden by |
| * policy, but it still can not be visible. |
| */ |
| bool isHiddenByPolicy() const; |
| |
| /* |
| * isFixedSize - true if content has a fixed size |
| */ |
| virtual bool isFixedSize() const { return true; } |
| |
| // Most layers aren't created from the main thread, and therefore need to |
| // grab the SF state lock to access HWC, but ContainerLayer does, so we need |
| // to avoid grabbing the lock again to avoid deadlock |
| virtual bool isCreatedFromMainThread() const { return false; } |
| |
| bool isRemovedFromCurrentState() const; |
| |
| void writeToProto(LayerProto* layerInfo, |
| LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing); |
| |
| void writeToProto(LayerProto* layerInfo, DisplayId displayId); |
| |
| virtual Geometry getActiveGeometry(const Layer::State& s) const { return s.active_legacy; } |
| virtual uint32_t getActiveWidth(const Layer::State& s) const { return s.active_legacy.w; } |
| virtual uint32_t getActiveHeight(const Layer::State& s) const { return s.active_legacy.h; } |
| virtual ui::Transform getActiveTransform(const Layer::State& s) const { |
| return s.active_legacy.transform; |
| } |
| virtual Region getActiveTransparentRegion(const Layer::State& s) const { |
| return s.activeTransparentRegion_legacy; |
| } |
| virtual Rect getCrop(const Layer::State& s) const { return s.crop_legacy; } |
| |
| protected: |
| /* |
| * onDraw - draws the surface. |
| */ |
| virtual void onDraw(const RenderArea& renderArea, const Region& clip, |
| bool useIdentityTransform) = 0; |
| |
| public: |
| virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {} |
| |
| virtual bool isHdrY410() const { return false; } |
| |
| void setGeometry(const sp<const DisplayDevice>& display, uint32_t z); |
| void forceClientComposition(DisplayId displayId); |
| bool getForceClientComposition(DisplayId displayId); |
| virtual void setPerFrameData(DisplayId displayId, const ui::Transform& transform, |
| const Rect& viewport, int32_t supportedPerFrameMetadata) = 0; |
| |
| // callIntoHwc exists so we can update our local state and call |
| // acceptDisplayChanges without unnecessarily updating the device's state |
| void setCompositionType(DisplayId displayId, HWC2::Composition type, bool callIntoHwc = true); |
| HWC2::Composition getCompositionType(const std::optional<DisplayId>& displayId) const; |
| void setClearClientTarget(DisplayId displayId, bool clear); |
| bool getClearClientTarget(DisplayId displayId) const; |
| void updateCursorPosition(const sp<const DisplayDevice>& display); |
| |
| /* |
| * called after page-flip |
| */ |
| virtual void onLayerDisplayed(const sp<Fence>& releaseFence); |
| |
| virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; } |
| virtual void setTransformHint(uint32_t /*orientation*/) const { } |
| |
| /* |
| * called before composition. |
| * returns true if the layer has pending updates. |
| */ |
| virtual bool onPreComposition(nsecs_t refreshStartTime) = 0; |
| |
| /* |
| * called after composition. |
| * returns true if the layer latched a new buffer this frame. |
| */ |
| virtual bool onPostComposition(const std::optional<DisplayId>& /*displayId*/, |
| const std::shared_ptr<FenceTime>& /*glDoneFence*/, |
| const std::shared_ptr<FenceTime>& /*presentFence*/, |
| const CompositorTiming& /*compositorTiming*/) { |
| return false; |
| } |
| |
| // If a buffer was replaced this frame, release the former buffer |
| virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { } |
| |
| |
| /* |
| * draw - performs some global clipping optimizations |
| * and calls onDraw(). |
| */ |
| void draw(const RenderArea& renderArea, const Region& clip); |
| void draw(const RenderArea& renderArea, bool useIdentityTransform); |
| |
| /* |
| * doTransaction - process the transaction. This is a good place to figure |
| * out which attributes of the surface have changed. |
| */ |
| uint32_t doTransaction(uint32_t transactionFlags); |
| |
| /* |
| * setVisibleRegion - called to set the new visible region. This gives |
| * a chance to update the new visible region or record the fact it changed. |
| */ |
| void setVisibleRegion(const Region& visibleRegion); |
| |
| /* |
| * setCoveredRegion - called when the covered region changes. The covered |
| * region corresponds to any area of the surface that is covered |
| * (transparently or not) by another surface. |
| */ |
| void setCoveredRegion(const Region& coveredRegion); |
| |
| /* |
| * setVisibleNonTransparentRegion - called when the visible and |
| * non-transparent region changes. |
| */ |
| void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion); |
| |
| /* |
| * Clear the visible, covered, and non-transparent regions. |
| */ |
| void clearVisibilityRegions(); |
| |
| /* |
| * latchBuffer - called each time the screen is redrawn and returns whether |
| * the visible regions need to be recomputed (this is a fairly heavy |
| * operation, so this should be set only if needed). Typically this is used |
| * to figure out if the content or size of a surface has changed. |
| */ |
| virtual Region latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/, |
| const sp<Fence>& /*releaseFence*/) { |
| return {}; |
| } |
| |
| virtual bool isBufferLatched() const { return false; } |
| |
| /* |
| * called with the state lock from a binder thread when the layer is |
| * removed from the current list to the pending removal list |
| */ |
| void onRemovedFromCurrentState(); |
| |
| /* |
| * Called when the layer is added back to the current state list. |
| */ |
| void addToCurrentState(); |
| |
| // Updates the transform hint in our SurfaceFlingerConsumer to match |
| // the current orientation of the display device. |
| void updateTransformHint(const sp<const DisplayDevice>& display) const; |
| |
| /* |
| * returns the rectangle that crops the content of the layer and scales it |
| * to the layer's size. |
| */ |
| Rect getContentCrop() const; |
| |
| /* |
| * Returns if a frame is ready |
| */ |
| virtual bool hasReadyFrame() const { return false; } |
| |
| virtual int32_t getQueuedFrameCount() const { return 0; } |
| |
| // ----------------------------------------------------------------------- |
| |
| bool createHwcLayer(HWComposer* hwc, DisplayId displayId); |
| bool destroyHwcLayer(DisplayId displayId); |
| void destroyHwcLayersForAllDisplays(); |
| void destroyAllHwcLayersPlusChildren(); |
| |
| bool hasHwcLayer(DisplayId displayId) const { return getBE().mHwcLayers.count(displayId) > 0; } |
| |
| HWC2::Layer* getHwcLayer(DisplayId displayId) { |
| if (!hasHwcLayer(displayId)) { |
| return nullptr; |
| } |
| return getBE().mHwcLayers[displayId].layer.get(); |
| } |
| |
| bool setHwcLayer(DisplayId displayId) { |
| if (!hasHwcLayer(displayId)) { |
| return false; |
| } |
| getBE().compositionInfo.hwc.hwcLayer = getBE().mHwcLayers[displayId].layer; |
| return true; |
| } |
| |
| // ----------------------------------------------------------------------- |
| void clearWithOpenGL(const RenderArea& renderArea) const; |
| |
| inline const State& getDrawingState() const { return mDrawingState; } |
| inline const State& getCurrentState() const { return mCurrentState; } |
| inline State& getCurrentState() { return mCurrentState; } |
| |
| LayerDebugInfo getLayerDebugInfo() const; |
| |
| /* always call base class first */ |
| static void miniDumpHeader(std::string& result); |
| void miniDump(std::string& result, DisplayId displayId) const; |
| void dumpFrameStats(std::string& result) const; |
| void dumpFrameEvents(std::string& result); |
| void clearFrameStats(); |
| void logFrameStats(); |
| void getFrameStats(FrameStats* outStats) const; |
| |
| virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) { |
| return {}; |
| } |
| |
| void onDisconnect(); |
| void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry, |
| FrameEventHistoryDelta* outDelta); |
| |
| virtual bool getTransformToDisplayInverse() const { return false; } |
| |
| ui::Transform getTransform() const; |
| |
| // Returns the Alpha of the Surface, accounting for the Alpha |
| // of parent Surfaces in the hierarchy (alpha's will be multiplied |
| // down the hierarchy). |
| half getAlpha() const; |
| half4 getColor() const; |
| |
| // Returns how rounded corners should be drawn for this layer. |
| // This will traverse the hierarchy until it reaches its root, finding topmost rounded |
| // corner definition and converting it into current layer's coordinates. |
| // As of now, only 1 corner radius per display list is supported. Subsequent ones will be |
| // ignored. |
| RoundedCornerState getRoundedCornerState() const; |
| |
| void traverseInReverseZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); |
| |
| /** |
| * Traverse only children in z order, ignoring relative layers that are not children of the |
| * parent. |
| */ |
| void traverseChildrenInZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| |
| size_t getChildrenCount() const; |
| void addChild(const sp<Layer>& layer); |
| // Returns index if removed, or negative value otherwise |
| // for symmetry with Vector::remove |
| ssize_t removeChild(const sp<Layer>& layer); |
| sp<Layer> getParent() const { return mCurrentParent.promote(); } |
| bool hasParent() const { return getParent() != nullptr; } |
| Rect computeScreenBounds(bool reduceTransparentRegion = true) const; |
| bool setChildLayer(const sp<Layer>& childLayer, int32_t z); |
| bool setChildRelativeLayer(const sp<Layer>& childLayer, |
| const sp<IBinder>& relativeToHandle, int32_t relativeZ); |
| |
| // Copy the current list of children to the drawing state. Called by |
| // SurfaceFlinger to complete a transaction. |
| void commitChildList(); |
| int32_t getZ() const; |
| virtual void pushPendingState(); |
| |
| /** |
| * Returns active buffer size in the correct orientation. Buffer size is determined by undoing |
| * any buffer transformations. If the layer has no buffer then return INVALID_RECT. |
| */ |
| virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; } |
| |
| protected: |
| // constant |
| sp<SurfaceFlinger> mFlinger; |
| /* |
| * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer) |
| * is called. |
| */ |
| class LayerCleaner { |
| sp<SurfaceFlinger> mFlinger; |
| sp<Layer> mLayer; |
| |
| protected: |
| ~LayerCleaner() { |
| // destroy client resources |
| mFlinger->onHandleDestroyed(mLayer); |
| } |
| |
| public: |
| LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) |
| : mFlinger(flinger), mLayer(layer) {} |
| }; |
| |
| friend class impl::SurfaceInterceptor; |
| |
| // For unit tests |
| friend class TestableSurfaceFlinger; |
| |
| void commitTransaction(const State& stateToCommit); |
| |
| uint32_t getEffectiveUsage(uint32_t usage) const; |
| |
| virtual FloatRect computeCrop(const sp<const DisplayDevice>& display) const; |
| // Compute the initial crop as specified by parent layers and the |
| // SurfaceControl for this layer. Does not include buffer crop from the |
| // IGraphicBufferProducer client, as that should not affect child clipping. |
| // Returns in screen space. |
| Rect computeInitialCrop(const sp<const DisplayDevice>& display) const; |
| /** |
| * Setup rounded corners coordinates of this layer, taking into account the layer bounds and |
| * crop coordinates, transforming them into layer space. |
| */ |
| void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const; |
| |
| // drawing |
| void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b, |
| float alpha) const; |
| void setParent(const sp<Layer>& layer); |
| |
| LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers); |
| void addZOrderRelative(const wp<Layer>& relative); |
| void removeZOrderRelative(const wp<Layer>& relative); |
| |
| class SyncPoint { |
| public: |
| explicit SyncPoint(uint64_t frameNumber) |
| : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {} |
| |
| uint64_t getFrameNumber() const { return mFrameNumber; } |
| |
| bool frameIsAvailable() const { return mFrameIsAvailable; } |
| |
| void setFrameAvailable() { mFrameIsAvailable = true; } |
| |
| bool transactionIsApplied() const { return mTransactionIsApplied; } |
| |
| void setTransactionApplied() { mTransactionIsApplied = true; } |
| |
| private: |
| const uint64_t mFrameNumber; |
| std::atomic<bool> mFrameIsAvailable; |
| std::atomic<bool> mTransactionIsApplied; |
| }; |
| |
| // SyncPoints which will be signaled when the correct frame is at the head |
| // of the queue and dropped after the frame has been latched. Protected by |
| // mLocalSyncPointMutex. |
| Mutex mLocalSyncPointMutex; |
| std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints; |
| |
| // SyncPoints which will be signaled and then dropped when the transaction |
| // is applied |
| std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints; |
| |
| // Returns false if the relevant frame has already been latched |
| bool addSyncPoint(const std::shared_ptr<SyncPoint>& point); |
| |
| void popPendingState(State* stateToCommit); |
| virtual bool applyPendingStates(State* stateToCommit); |
| virtual uint32_t doTransactionResize(uint32_t flags, Layer::State* stateToCommit); |
| |
| void clearSyncPoints(); |
| |
| // Returns mCurrentScaling mode (originating from the |
| // Client) or mOverrideScalingMode mode (originating from |
| // the Surface Controller) if set. |
| virtual uint32_t getEffectiveScalingMode() const { return 0; } |
| |
| public: |
| /* |
| * The layer handle is just a BBinder object passed to the client |
| * (remote process) -- we don't keep any reference on our side such that |
| * the dtor is called when the remote side let go of its reference. |
| * |
| * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for |
| * this layer when the handle is destroyed. |
| */ |
| class Handle : public BBinder, public LayerCleaner { |
| public: |
| Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) |
| : LayerCleaner(flinger, layer), owner(layer) {} |
| |
| wp<Layer> owner; |
| }; |
| |
| sp<IBinder> getHandle(); |
| const String8& getName() const; |
| virtual void notifyAvailableFrames() {} |
| virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; } |
| bool getPremultipledAlpha() const; |
| |
| bool mPendingHWCDestroy{false}; |
| void setInputInfo(const InputWindowInfo& info); |
| |
| InputWindowInfo fillInputInfo(const Rect& screenBounds); |
| bool hasInput() const; |
| |
| protected: |
| // ----------------------------------------------------------------------- |
| bool usingRelativeZ(LayerVector::StateSet stateSet); |
| |
| bool mPremultipliedAlpha{true}; |
| String8 mName; |
| String8 mTransactionName; // A cached version of "TX - " + mName for systraces |
| |
| bool mPrimaryDisplayOnly = false; |
| |
| // these are protected by an external lock |
| State mCurrentState; |
| State mDrawingState; |
| std::atomic<uint32_t> mTransactionFlags{0}; |
| |
| // Accessed from main thread and binder threads |
| Mutex mPendingStateMutex; |
| Vector<State> mPendingStates; |
| |
| // Timestamp history for UIAutomation. Thread safe. |
| FrameTracker mFrameTracker; |
| |
| // Timestamp history for the consumer to query. |
| // Accessed by both consumer and producer on main and binder threads. |
| Mutex mFrameEventHistoryMutex; |
| ConsumerFrameEventHistory mFrameEventHistory; |
| FenceTimeline mAcquireTimeline; |
| FenceTimeline mReleaseTimeline; |
| |
| // main thread |
| sp<GraphicBuffer> mActiveBuffer; |
| ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN; |
| Rect mCurrentCrop; |
| uint32_t mCurrentTransform{0}; |
| // We encode unset as -1. |
| int32_t mOverrideScalingMode{-1}; |
| std::atomic<uint64_t> mCurrentFrameNumber{0}; |
| bool mFrameLatencyNeeded{false}; |
| // Whether filtering is needed b/c of the drawingstate |
| bool mNeedsFiltering{false}; |
| |
| std::atomic<bool> mRemovedFromCurrentState{false}; |
| |
| // page-flip thread (currently main thread) |
| bool mProtectedByApp{false}; // application requires protected path to external sink |
| |
| // protected by mLock |
| mutable Mutex mLock; |
| |
| const wp<Client> mClientRef; |
| |
| // This layer can be a cursor on some displays. |
| bool mPotentialCursor{false}; |
| |
| bool mFreezeGeometryUpdates{false}; |
| |
| // Child list about to be committed/used for editing. |
| LayerVector mCurrentChildren{LayerVector::StateSet::Current}; |
| // Child list used for rendering. |
| LayerVector mDrawingChildren{LayerVector::StateSet::Drawing}; |
| |
| wp<Layer> mCurrentParent; |
| wp<Layer> mDrawingParent; |
| |
| mutable LayerBE mBE; |
| |
| // Can only be accessed with the SF state lock held. |
| bool mLayerDetached{false}; |
| |
| private: |
| /** |
| * Returns an unsorted vector of all layers that are part of this tree. |
| * That includes the current layer and all its descendants. |
| */ |
| std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet); |
| /** |
| * Traverses layers that are part of this tree in the correct z order. |
| * layersInTree must be sorted before calling this method. |
| */ |
| void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, |
| LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet, |
| const std::vector<Layer*>& layersInTree); |
| |
| /** |
| * Retuns the child bounds in layer space cropped to its bounds as well all its parent bounds. |
| * The cropped bounds must be transformed back from parent layer space to child layer space by |
| * applying the inverse of the child's transformation. |
| */ |
| FloatRect cropChildBounds(const FloatRect& childBounds) const; |
| |
| /** |
| * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return |
| * INVALID_RECT if the layer has no buffer and no crop. |
| * A layer with an invalid buffer size and no crop is considered to be boundless. The layer |
| * bounds are constrained by its parent bounds. |
| */ |
| Rect getCroppedBufferSize(const Layer::State& s) const; |
| }; |
| |
| } // namespace android |
| |
| #define RETURN_IF_NO_HWC_LAYER(displayId, ...) \ |
| do { \ |
| if (!hasHwcLayer(displayId)) { \ |
| ALOGE("[%s] %s failed: no HWC layer found for display %s", mName.string(), \ |
| __FUNCTION__, to_string(displayId).c_str()); \ |
| return __VA_ARGS__; \ |
| } \ |
| } while (false) |
| |
| #endif // ANDROID_LAYER_H |