blob: bc68c379ce0b18619c15325b8845657525741643 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "RpcTransportTls"
#include <log/log.h>
#include <poll.h>
#include <openssl/bn.h>
#include <openssl/ssl.h>
#include <binder/RpcTlsUtils.h>
#include <binder/RpcTransportTls.h>
#include "FdTrigger.h"
#include "RpcState.h"
#include "Utils.h"
#define SHOULD_LOG_TLS_DETAIL false
#if SHOULD_LOG_TLS_DETAIL
#define LOG_TLS_DETAIL(...) ALOGI(__VA_ARGS__)
#else
#define LOG_TLS_DETAIL(...) ALOGV(__VA_ARGS__) // for type checking
#endif
namespace android {
namespace {
// Implement BIO for socket that ignores SIGPIPE.
int socketNew(BIO* bio) {
BIO_set_data(bio, reinterpret_cast<void*>(-1));
BIO_set_init(bio, 0);
return 1;
}
int socketFree(BIO* bio) {
LOG_ALWAYS_FATAL_IF(bio == nullptr);
return 1;
}
int socketRead(BIO* bio, char* buf, int size) {
android::base::borrowed_fd fd(static_cast<int>(reinterpret_cast<intptr_t>(BIO_get_data(bio))));
int ret = TEMP_FAILURE_RETRY(::recv(fd.get(), buf, size, MSG_NOSIGNAL));
BIO_clear_retry_flags(bio);
if (errno == EAGAIN || errno == EWOULDBLOCK) {
BIO_set_retry_read(bio);
}
return ret;
}
int socketWrite(BIO* bio, const char* buf, int size) {
android::base::borrowed_fd fd(static_cast<int>(reinterpret_cast<intptr_t>(BIO_get_data(bio))));
int ret = TEMP_FAILURE_RETRY(::send(fd.get(), buf, size, MSG_NOSIGNAL));
BIO_clear_retry_flags(bio);
if (errno == EAGAIN || errno == EWOULDBLOCK) {
BIO_set_retry_write(bio);
}
return ret;
}
long socketCtrl(BIO* bio, int cmd, long num, void*) { // NOLINT
android::base::borrowed_fd fd(static_cast<int>(reinterpret_cast<intptr_t>(BIO_get_data(bio))));
if (cmd == BIO_CTRL_FLUSH) return 1;
LOG_ALWAYS_FATAL("sockCtrl(fd=%d, %d, %ld)", fd.get(), cmd, num);
return 0;
}
bssl::UniquePtr<BIO> newSocketBio(android::base::borrowed_fd fd) {
static const BIO_METHOD* gMethods = ([] {
auto methods = BIO_meth_new(BIO_get_new_index(), "socket_no_signal");
LOG_ALWAYS_FATAL_IF(0 == BIO_meth_set_write(methods, socketWrite), "BIO_meth_set_write");
LOG_ALWAYS_FATAL_IF(0 == BIO_meth_set_read(methods, socketRead), "BIO_meth_set_read");
LOG_ALWAYS_FATAL_IF(0 == BIO_meth_set_ctrl(methods, socketCtrl), "BIO_meth_set_ctrl");
LOG_ALWAYS_FATAL_IF(0 == BIO_meth_set_create(methods, socketNew), "BIO_meth_set_create");
LOG_ALWAYS_FATAL_IF(0 == BIO_meth_set_destroy(methods, socketFree), "BIO_meth_set_destroy");
return methods;
})();
bssl::UniquePtr<BIO> ret(BIO_new(gMethods));
if (ret == nullptr) return nullptr;
BIO_set_data(ret.get(), reinterpret_cast<void*>(fd.get()));
BIO_set_init(ret.get(), 1);
return ret;
}
[[maybe_unused]] void sslDebugLog(const SSL* ssl, int type, int value) {
switch (type) {
case SSL_CB_HANDSHAKE_START:
LOG_TLS_DETAIL("Handshake started.");
break;
case SSL_CB_HANDSHAKE_DONE:
LOG_TLS_DETAIL("Handshake done.");
break;
case SSL_CB_ACCEPT_LOOP:
LOG_TLS_DETAIL("Handshake progress: %s", SSL_state_string_long(ssl));
break;
default:
LOG_TLS_DETAIL("SSL Debug Log: type = %d, value = %d", type, value);
break;
}
}
// Helper class to ErrorQueue::toString
class ErrorQueueString {
public:
static std::string toString() {
ErrorQueueString thiz;
ERR_print_errors_cb(staticCallback, &thiz);
return thiz.mSs.str();
}
private:
static int staticCallback(const char* str, size_t len, void* ctx) {
return reinterpret_cast<ErrorQueueString*>(ctx)->callback(str, len);
}
int callback(const char* str, size_t len) {
if (len == 0) return 1; // continue
// ERR_print_errors_cb place a new line at the end, but it doesn't say so in the API.
if (str[len - 1] == '\n') len -= 1;
if (!mIsFirst) {
mSs << '\n';
}
mSs << std::string_view(str, len);
mIsFirst = false;
return 1; // continue
}
std::stringstream mSs;
bool mIsFirst = true;
};
// Handles libssl's error queue.
//
// Call into any of its member functions to ensure the error queue is properly handled or cleared.
// If the error queue is not handled or cleared, the destructor will abort.
class ErrorQueue {
public:
~ErrorQueue() { LOG_ALWAYS_FATAL_IF(!mHandled); }
// Clear the error queue.
void clear() {
ERR_clear_error();
mHandled = true;
}
// Stores the error queue in |ssl| into a string, then clears the error queue.
std::string toString() {
auto ret = ErrorQueueString::toString();
// Though ERR_print_errors_cb should have cleared it, it is okay to clear again.
clear();
return ret;
}
status_t toStatus(int sslError, const char* fnString) {
switch (sslError) {
case SSL_ERROR_SYSCALL: {
auto queue = toString();
LOG_TLS_DETAIL("%s(): %s. Treating as DEAD_OBJECT. Error queue: %s", fnString,
SSL_error_description(sslError), queue.c_str());
return DEAD_OBJECT;
}
default: {
auto queue = toString();
ALOGE("%s(): %s. Error queue: %s", fnString, SSL_error_description(sslError),
queue.c_str());
return UNKNOWN_ERROR;
}
}
}
// |sslError| should be from Ssl::getError().
// If |sslError| is WANT_READ / WANT_WRITE, poll for POLLIN / POLLOUT respectively. Otherwise
// return error. Also return error if |fdTrigger| is triggered before or during poll().
status_t pollForSslError(android::base::borrowed_fd fd, int sslError, FdTrigger* fdTrigger,
const char* fnString, int additionalEvent,
const std::function<status_t()>& altPoll) {
switch (sslError) {
case SSL_ERROR_WANT_READ:
return handlePoll(POLLIN | additionalEvent, fd, fdTrigger, fnString, altPoll);
case SSL_ERROR_WANT_WRITE:
return handlePoll(POLLOUT | additionalEvent, fd, fdTrigger, fnString, altPoll);
default:
return toStatus(sslError, fnString);
}
}
private:
bool mHandled = false;
status_t handlePoll(int event, android::base::borrowed_fd fd, FdTrigger* fdTrigger,
const char* fnString, const std::function<status_t()>& altPoll) {
status_t ret;
if (altPoll) {
ret = altPoll();
if (fdTrigger->isTriggered()) ret = DEAD_OBJECT;
} else {
ret = fdTrigger->triggerablePoll(fd, event);
}
if (ret != OK && ret != DEAD_OBJECT) {
ALOGE("poll error while after %s(): %s", fnString, statusToString(ret).c_str());
}
clear();
return ret;
}
};
// Helper to call a function, with its return value instantiable.
template <typename Fn, typename... Args>
struct FuncCaller {
struct Monostate {};
static constexpr bool sIsVoid = std::is_void_v<std::invoke_result_t<Fn, Args...>>;
using Result = std::conditional_t<sIsVoid, Monostate, std::invoke_result_t<Fn, Args...>>;
static inline Result call(Fn fn, Args&&... args) {
if constexpr (std::is_void_v<std::invoke_result_t<Fn, Args...>>) {
std::invoke(fn, std::forward<Args>(args)...);
return {};
} else {
return std::invoke(fn, std::forward<Args>(args)...);
}
}
};
// Helper to Ssl::call(). Returns the result to the SSL_* function as well as an ErrorQueue object.
template <typename Fn, typename... Args>
struct SslCaller {
using RawCaller = FuncCaller<Fn, SSL*, Args...>;
struct ResultAndErrorQueue {
typename RawCaller::Result result;
ErrorQueue errorQueue;
};
static inline ResultAndErrorQueue call(Fn fn, SSL* ssl, Args&&... args) {
LOG_ALWAYS_FATAL_IF(ssl == nullptr);
auto result = RawCaller::call(fn, std::forward<SSL*>(ssl), std::forward<Args>(args)...);
return ResultAndErrorQueue{std::move(result), ErrorQueue()};
}
};
// A wrapper over bssl::UniquePtr<SSL>. This class ensures that all SSL_* functions are called
// through call(), which returns an ErrorQueue object that requires the caller to either handle
// or clear it.
// Example:
// auto [ret, errorQueue] = ssl.call(SSL_read, buf, size);
// if (ret >= 0) errorQueue.clear();
// else ALOGE("%s", errorQueue.toString().c_str());
class Ssl {
public:
explicit Ssl(bssl::UniquePtr<SSL> ssl) : mSsl(std::move(ssl)) {
LOG_ALWAYS_FATAL_IF(mSsl == nullptr);
}
template <typename Fn, typename... Args>
inline typename SslCaller<Fn, Args...>::ResultAndErrorQueue call(Fn fn, Args&&... args) {
return SslCaller<Fn, Args...>::call(fn, mSsl.get(), std::forward<Args>(args)...);
}
int getError(int ret) {
LOG_ALWAYS_FATAL_IF(mSsl == nullptr);
return SSL_get_error(mSsl.get(), ret);
}
private:
bssl::UniquePtr<SSL> mSsl;
};
class RpcTransportTls : public RpcTransport {
public:
RpcTransportTls(android::base::unique_fd socket, Ssl ssl)
: mSocket(std::move(socket)), mSsl(std::move(ssl)) {}
status_t peek(void* buf, size_t size, size_t* out_size) override;
status_t interruptableWriteFully(FdTrigger* fdTrigger, iovec* iovs, int niovs,
const std::function<status_t()>& altPoll) override;
status_t interruptableReadFully(FdTrigger* fdTrigger, iovec* iovs, int niovs,
const std::function<status_t()>& altPoll) override;
private:
android::base::unique_fd mSocket;
Ssl mSsl;
};
// Error code is errno.
status_t RpcTransportTls::peek(void* buf, size_t size, size_t* out_size) {
size_t todo = std::min<size_t>(size, std::numeric_limits<int>::max());
auto [ret, errorQueue] = mSsl.call(SSL_peek, buf, static_cast<int>(todo));
if (ret < 0) {
int err = mSsl.getError(ret);
if (err == SSL_ERROR_WANT_WRITE || err == SSL_ERROR_WANT_READ) {
// Seen EAGAIN / EWOULDBLOCK on recv(2) / send(2).
// Like RpcTransportRaw::peek(), don't handle it here.
errorQueue.clear();
return WOULD_BLOCK;
}
return errorQueue.toStatus(err, "SSL_peek");
}
errorQueue.clear();
LOG_TLS_DETAIL("TLS: Peeked %d bytes!", ret);
*out_size = static_cast<size_t>(ret);
return OK;
}
status_t RpcTransportTls::interruptableWriteFully(FdTrigger* fdTrigger, iovec* iovs, int niovs,
const std::function<status_t()>& altPoll) {
MAYBE_WAIT_IN_FLAKE_MODE;
if (niovs < 0) return BAD_VALUE;
// Before doing any I/O, check trigger once. This ensures the trigger is checked at least
// once. The trigger is also checked via triggerablePoll() after every SSL_write().
if (fdTrigger->isTriggered()) return DEAD_OBJECT;
size_t size = 0;
for (int i = 0; i < niovs; i++) {
const iovec& iov = iovs[i];
if (iov.iov_len == 0) {
continue;
}
size += iov.iov_len;
auto buffer = reinterpret_cast<const uint8_t*>(iov.iov_base);
const uint8_t* end = buffer + iov.iov_len;
while (buffer < end) {
size_t todo = std::min<size_t>(end - buffer, std::numeric_limits<int>::max());
auto [writeSize, errorQueue] = mSsl.call(SSL_write, buffer, todo);
if (writeSize > 0) {
buffer += writeSize;
errorQueue.clear();
continue;
}
// SSL_write() should never return 0 unless BIO_write were to return 0.
int sslError = mSsl.getError(writeSize);
// TODO(b/195788248): BIO should contain the FdTrigger, and send(2) / recv(2) should be
// triggerablePoll()-ed. Then additionalEvent is no longer necessary.
status_t pollStatus = errorQueue.pollForSslError(mSocket.get(), sslError, fdTrigger,
"SSL_write", POLLIN, altPoll);
if (pollStatus != OK) return pollStatus;
// Do not advance buffer. Try SSL_write() again.
}
}
LOG_TLS_DETAIL("TLS: Sent %zu bytes!", size);
return OK;
}
status_t RpcTransportTls::interruptableReadFully(FdTrigger* fdTrigger, iovec* iovs, int niovs,
const std::function<status_t()>& altPoll) {
MAYBE_WAIT_IN_FLAKE_MODE;
if (niovs < 0) return BAD_VALUE;
// Before doing any I/O, check trigger once. This ensures the trigger is checked at least
// once. The trigger is also checked via triggerablePoll() after every SSL_write().
if (fdTrigger->isTriggered()) return DEAD_OBJECT;
size_t size = 0;
for (int i = 0; i < niovs; i++) {
const iovec& iov = iovs[i];
if (iov.iov_len == 0) {
continue;
}
size += iov.iov_len;
auto buffer = reinterpret_cast<uint8_t*>(iov.iov_base);
const uint8_t* end = buffer + iov.iov_len;
while (buffer < end) {
size_t todo = std::min<size_t>(end - buffer, std::numeric_limits<int>::max());
auto [readSize, errorQueue] = mSsl.call(SSL_read, buffer, todo);
if (readSize > 0) {
buffer += readSize;
errorQueue.clear();
continue;
}
if (readSize == 0) {
// SSL_read() only returns 0 on EOF.
errorQueue.clear();
return DEAD_OBJECT;
}
int sslError = mSsl.getError(readSize);
status_t pollStatus = errorQueue.pollForSslError(mSocket.get(), sslError, fdTrigger,
"SSL_read", 0, altPoll);
if (pollStatus != OK) return pollStatus;
// Do not advance buffer. Try SSL_read() again.
}
}
LOG_TLS_DETAIL("TLS: Received %zu bytes!", size);
return OK;
}
// For |ssl|, set internal FD to |fd|, and do handshake. Handshake is triggerable by |fdTrigger|.
bool setFdAndDoHandshake(Ssl* ssl, android::base::borrowed_fd fd, FdTrigger* fdTrigger) {
bssl::UniquePtr<BIO> bio = newSocketBio(fd);
TEST_AND_RETURN(false, bio != nullptr);
auto [_, errorQueue] = ssl->call(SSL_set_bio, bio.get(), bio.get());
(void)bio.release(); // SSL_set_bio takes ownership.
errorQueue.clear();
MAYBE_WAIT_IN_FLAKE_MODE;
while (true) {
auto [ret, errorQueue] = ssl->call(SSL_do_handshake);
if (ret > 0) {
errorQueue.clear();
return true;
}
if (ret == 0) {
// SSL_do_handshake() only returns 0 on EOF.
ALOGE("SSL_do_handshake(): EOF: %s", errorQueue.toString().c_str());
return false;
}
int sslError = ssl->getError(ret);
status_t pollStatus =
errorQueue.pollForSslError(fd, sslError, fdTrigger, "SSL_do_handshake", 0, {});
if (pollStatus != OK) return false;
}
}
class RpcTransportCtxTls : public RpcTransportCtx {
public:
template <typename Impl,
typename = std::enable_if_t<std::is_base_of_v<RpcTransportCtxTls, Impl>>>
static std::unique_ptr<RpcTransportCtxTls> create(
std::shared_ptr<RpcCertificateVerifier> verifier, RpcAuth* auth);
std::unique_ptr<RpcTransport> newTransport(android::base::unique_fd fd,
FdTrigger* fdTrigger) const override;
std::vector<uint8_t> getCertificate(RpcCertificateFormat) const override;
protected:
static ssl_verify_result_t sslCustomVerify(SSL* ssl, uint8_t* outAlert);
virtual void preHandshake(Ssl* ssl) const = 0;
bssl::UniquePtr<SSL_CTX> mCtx;
std::shared_ptr<RpcCertificateVerifier> mCertVerifier;
};
std::vector<uint8_t> RpcTransportCtxTls::getCertificate(RpcCertificateFormat format) const {
X509* x509 = SSL_CTX_get0_certificate(mCtx.get()); // does not own
return serializeCertificate(x509, format);
}
// Verify by comparing the leaf of peer certificate with every certificate in
// mTrustedPeerCertificates. Does not support certificate chains.
ssl_verify_result_t RpcTransportCtxTls::sslCustomVerify(SSL* ssl, uint8_t* outAlert) {
LOG_ALWAYS_FATAL_IF(outAlert == nullptr);
const char* logPrefix = SSL_is_server(ssl) ? "Server" : "Client";
auto ctx = SSL_get_SSL_CTX(ssl); // Does not set error queue
LOG_ALWAYS_FATAL_IF(ctx == nullptr);
// void* -> RpcTransportCtxTls*
auto rpcTransportCtxTls = reinterpret_cast<RpcTransportCtxTls*>(SSL_CTX_get_app_data(ctx));
LOG_ALWAYS_FATAL_IF(rpcTransportCtxTls == nullptr);
status_t verifyStatus = rpcTransportCtxTls->mCertVerifier->verify(ssl, outAlert);
if (verifyStatus == OK) {
return ssl_verify_ok;
}
LOG_TLS_DETAIL("%s: Failed to verify client: status = %s, alert = %s", logPrefix,
statusToString(verifyStatus).c_str(), SSL_alert_desc_string_long(*outAlert));
return ssl_verify_invalid;
}
// Common implementation for creating server and client contexts. The child class, |Impl|, is
// provided as a template argument so that this function can initialize an |Impl| object.
template <typename Impl, typename>
std::unique_ptr<RpcTransportCtxTls> RpcTransportCtxTls::create(
std::shared_ptr<RpcCertificateVerifier> verifier, RpcAuth* auth) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
TEST_AND_RETURN(nullptr, ctx != nullptr);
if (status_t authStatus = auth->configure(ctx.get()); authStatus != OK) {
ALOGE("%s: Failed to configure auth info: %s", __PRETTY_FUNCTION__,
statusToString(authStatus).c_str());
return nullptr;
};
// Enable two-way authentication by setting SSL_VERIFY_FAIL_IF_NO_PEER_CERT on server.
// Client ignores SSL_VERIFY_FAIL_IF_NO_PEER_CERT flag.
SSL_CTX_set_custom_verify(ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
sslCustomVerify);
// Require at least TLS 1.3
TEST_AND_RETURN(nullptr, SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION));
if constexpr (SHOULD_LOG_TLS_DETAIL) { // NOLINT
SSL_CTX_set_info_callback(ctx.get(), sslDebugLog);
}
auto ret = std::make_unique<Impl>();
// RpcTransportCtxTls* -> void*
TEST_AND_RETURN(nullptr, SSL_CTX_set_app_data(ctx.get(), reinterpret_cast<void*>(ret.get())));
ret->mCtx = std::move(ctx);
ret->mCertVerifier = std::move(verifier);
return ret;
}
std::unique_ptr<RpcTransport> RpcTransportCtxTls::newTransport(android::base::unique_fd fd,
FdTrigger* fdTrigger) const {
bssl::UniquePtr<SSL> ssl(SSL_new(mCtx.get()));
TEST_AND_RETURN(nullptr, ssl != nullptr);
Ssl wrapped(std::move(ssl));
preHandshake(&wrapped);
TEST_AND_RETURN(nullptr, setFdAndDoHandshake(&wrapped, fd, fdTrigger));
return std::make_unique<RpcTransportTls>(std::move(fd), std::move(wrapped));
}
class RpcTransportCtxTlsServer : public RpcTransportCtxTls {
protected:
void preHandshake(Ssl* ssl) const override {
ssl->call(SSL_set_accept_state).errorQueue.clear();
}
};
class RpcTransportCtxTlsClient : public RpcTransportCtxTls {
protected:
void preHandshake(Ssl* ssl) const override {
ssl->call(SSL_set_connect_state).errorQueue.clear();
}
};
} // namespace
std::unique_ptr<RpcTransportCtx> RpcTransportCtxFactoryTls::newServerCtx() const {
return android::RpcTransportCtxTls::create<RpcTransportCtxTlsServer>(mCertVerifier,
mAuth.get());
}
std::unique_ptr<RpcTransportCtx> RpcTransportCtxFactoryTls::newClientCtx() const {
return android::RpcTransportCtxTls::create<RpcTransportCtxTlsClient>(mCertVerifier,
mAuth.get());
}
const char* RpcTransportCtxFactoryTls::toCString() const {
return "tls";
}
std::unique_ptr<RpcTransportCtxFactory> RpcTransportCtxFactoryTls::make(
std::shared_ptr<RpcCertificateVerifier> verifier, std::unique_ptr<RpcAuth> auth) {
if (verifier == nullptr) {
ALOGE("%s: Must provide a certificate verifier", __PRETTY_FUNCTION__);
return nullptr;
}
if (auth == nullptr) {
ALOGE("%s: Must provide an auth provider", __PRETTY_FUNCTION__);
return nullptr;
}
return std::unique_ptr<RpcTransportCtxFactoryTls>(
new RpcTransportCtxFactoryTls(std::move(verifier), std::move(auth)));
}
} // namespace android