blob: fb256638cd7164728b48c8e6ce761e15873f969d [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SurfaceFlinger"
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include <utils/IPCThreadState.h>
#include <utils/IServiceManager.h>
#include <utils/MemoryDealer.h>
#include <utils/MemoryBase.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <ui/PixelFormat.h>
#include <ui/DisplayInfo.h>
#include <ui/EGLDisplaySurface.h>
#include <pixelflinger/pixelflinger.h>
#include <GLES/gl.h>
#include "clz.h"
#include "CPUGauge.h"
#include "Layer.h"
#include "LayerBlur.h"
#include "LayerBuffer.h"
#include "LayerDim.h"
#include "LayerBitmap.h"
#include "LayerOrientationAnim.h"
#include "OrientationAnimation.h"
#include "SurfaceFlinger.h"
#include "VRamHeap.h"
#include "DisplayHardware/DisplayHardware.h"
#include "GPUHardware/GPUHardware.h"
/* ideally AID_GRAPHICS would be in a semi-public header
* or there would be a way to map a user/group name to its id
*/
#ifndef AID_GRAPHICS
#define AID_GRAPHICS 1003
#endif
#define DISPLAY_COUNT 1
namespace android {
// ---------------------------------------------------------------------------
void SurfaceFlinger::instantiate() {
defaultServiceManager()->addService(
String16("SurfaceFlinger"), new SurfaceFlinger());
}
void SurfaceFlinger::shutdown() {
// we should unregister here, but not really because
// when (if) the service manager goes away, all the services
// it has a reference to will leave too.
}
// ---------------------------------------------------------------------------
SurfaceFlinger::LayerVector::LayerVector(const SurfaceFlinger::LayerVector& rhs)
: lookup(rhs.lookup), layers(rhs.layers)
{
}
ssize_t SurfaceFlinger::LayerVector::indexOf(
LayerBase* key, size_t guess) const
{
if (guess<size() && lookup.keyAt(guess) == key)
return guess;
const ssize_t i = lookup.indexOfKey(key);
if (i>=0) {
const size_t idx = lookup.valueAt(i);
LOG_ASSERT(layers[idx]==key,
"LayerVector[%p]: layers[%d]=%p, key=%p",
this, int(idx), layers[idx], key);
return idx;
}
return i;
}
ssize_t SurfaceFlinger::LayerVector::add(
LayerBase* layer,
Vector<LayerBase*>::compar_t cmp)
{
size_t count = layers.size();
ssize_t l = 0;
ssize_t h = count-1;
ssize_t mid;
LayerBase* const* a = layers.array();
while (l <= h) {
mid = l + (h - l)/2;
const int c = cmp(a+mid, &layer);
if (c == 0) { l = mid; break; }
else if (c<0) { l = mid+1; }
else { h = mid-1; }
}
size_t order = l;
while (order<count && !cmp(&layer, a+order)) {
order++;
}
count = lookup.size();
for (size_t i=0 ; i<count ; i++) {
if (lookup.valueAt(i) >= order) {
lookup.editValueAt(i)++;
}
}
layers.insertAt(layer, order);
lookup.add(layer, order);
return order;
}
ssize_t SurfaceFlinger::LayerVector::remove(LayerBase* layer)
{
const ssize_t keyIndex = lookup.indexOfKey(layer);
if (keyIndex >= 0) {
const size_t index = lookup.valueAt(keyIndex);
LOG_ASSERT(layers[index]==layer,
"LayerVector[%p]: layers[%u]=%p, layer=%p",
this, int(index), layers[index], layer);
layers.removeItemsAt(index);
lookup.removeItemsAt(keyIndex);
const size_t count = lookup.size();
for (size_t i=0 ; i<count ; i++) {
if (lookup.valueAt(i) >= size_t(index)) {
lookup.editValueAt(i)--;
}
}
return index;
}
return NAME_NOT_FOUND;
}
ssize_t SurfaceFlinger::LayerVector::reorder(
LayerBase* layer,
Vector<LayerBase*>::compar_t cmp)
{
// XXX: it's a little lame. but oh well...
ssize_t err = remove(layer);
if (err >=0)
err = add(layer, cmp);
return err;
}
// ---------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
SurfaceFlinger::SurfaceFlinger()
: BnSurfaceComposer(), Thread(false),
mTransactionFlags(0),
mTransactionCount(0),
mBootTime(systemTime()),
mLastScheduledBroadcast(NULL),
mVisibleRegionsDirty(false),
mDeferReleaseConsole(false),
mFreezeDisplay(false),
mFreezeCount(0),
mFreezeDisplayTime(0),
mDebugRegion(0),
mDebugCpu(0),
mDebugFps(0),
mDebugBackground(0),
mSyncObject(),
mDeplayedTransactionPending(0),
mConsoleSignals(0),
mSecureFrameBuffer(0)
{
init();
}
void SurfaceFlinger::init()
{
LOGI("SurfaceFlinger is starting");
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.showcpu", value, "0");
mDebugCpu = atoi(value);
property_get("debug.sf.showbackground", value, "0");
mDebugBackground = atoi(value);
property_get("debug.sf.showfps", value, "0");
mDebugFps = atoi(value);
LOGI_IF(mDebugRegion, "showupdates enabled");
LOGI_IF(mDebugCpu, "showcpu enabled");
LOGI_IF(mDebugBackground, "showbackground enabled");
LOGI_IF(mDebugFps, "showfps enabled");
}
SurfaceFlinger::~SurfaceFlinger()
{
glDeleteTextures(1, &mWormholeTexName);
delete mOrientationAnimation;
}
copybit_device_t* SurfaceFlinger::getBlitEngine() const
{
return graphicPlane(0).displayHardware().getBlitEngine();
}
overlay_control_device_t* SurfaceFlinger::getOverlayEngine() const
{
return graphicPlane(0).displayHardware().getOverlayEngine();
}
sp<IMemory> SurfaceFlinger::getCblk() const
{
return mServerCblkMemory;
}
status_t SurfaceFlinger::requestGPU(const sp<IGPUCallback>& callback,
gpu_info_t* gpu)
{
if (mGPU == 0)
return INVALID_OPERATION;
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
status_t err = mGPU->request(pid, callback, gpu);
return err;
}
status_t SurfaceFlinger::revokeGPU()
{
if (mGPU == 0)
return INVALID_OPERATION;
return mGPU->friendlyRevoke();
}
sp<ISurfaceFlingerClient> SurfaceFlinger::createConnection()
{
Mutex::Autolock _l(mStateLock);
uint32_t token = mTokens.acquire();
Client* client = new Client(token, this);
if ((client == 0) || (client->ctrlblk == 0)) {
mTokens.release(token);
return 0;
}
status_t err = mClientsMap.add(token, client);
if (err < 0) {
delete client;
mTokens.release(token);
return 0;
}
sp<BClient> bclient =
new BClient(this, token, client->controlBlockMemory());
return bclient;
}
void SurfaceFlinger::destroyConnection(ClientID cid)
{
Mutex::Autolock _l(mStateLock);
Client* const client = mClientsMap.valueFor(cid);
if (client) {
// free all the layers this client owns
const Vector<LayerBaseClient*>& layers = client->getLayers();
const size_t count = layers.size();
for (size_t i=0 ; i<count ; i++) {
LayerBaseClient* const layer = layers[i];
removeLayer_l(layer);
}
// the resources associated with this client will be freed
// during the next transaction, after these surfaces have been
// properly removed from the screen
// remove this client from our ClientID->Client mapping.
mClientsMap.removeItem(cid);
// and add it to the list of disconnected clients
mDisconnectedClients.add(client);
// request a transaction
setTransactionFlags(eTransactionNeeded);
}
}
const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const
{
LOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy);
const GraphicPlane& plane(mGraphicPlanes[dpy]);
return plane;
}
GraphicPlane& SurfaceFlinger::graphicPlane(int dpy)
{
return const_cast<GraphicPlane&>(
const_cast<SurfaceFlinger const *>(this)->graphicPlane(dpy));
}
void SurfaceFlinger::bootFinished()
{
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
LOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
property_set("ctl.stop", "bootanim");
}
void SurfaceFlinger::onFirstRef()
{
run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
// Wait for the main thread to be done with its initialization
mReadyToRunBarrier.wait();
}
static inline uint16_t pack565(int r, int g, int b) {
return (r<<11)|(g<<5)|b;
}
// this is defined in libGLES_CM.so
extern ISurfaceComposer* GLES_localSurfaceManager;
status_t SurfaceFlinger::readyToRun()
{
LOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
// create the shared control-block
mServerHeap = new MemoryDealer(4096, MemoryDealer::READ_ONLY);
LOGE_IF(mServerHeap==0, "can't create shared memory dealer");
mServerCblkMemory = mServerHeap->allocate(4096);
LOGE_IF(mServerCblkMemory==0, "can't create shared control block");
mServerCblk = static_cast<surface_flinger_cblk_t *>(mServerCblkMemory->pointer());
LOGE_IF(mServerCblk==0, "can't get to shared control block's address");
new(mServerCblk) surface_flinger_cblk_t;
// get a reference to the GPU if we have one
mGPU = GPUFactory::getGPU();
// create the surface Heap manager, which manages the heaps
// (be it in RAM or VRAM) where surfaces are allocated
// We give 8 MB per client.
mSurfaceHeapManager = new SurfaceHeapManager(this, 8 << 20);
GLES_localSurfaceManager = static_cast<ISurfaceComposer*>(this);
// we only support one display currently
int dpy = 0;
{
// initialize the main display
GraphicPlane& plane(graphicPlane(dpy));
DisplayHardware* const hw = new DisplayHardware(this, dpy);
plane.setDisplayHardware(hw);
}
// initialize primary screen
// (other display should be initialized in the same manner, but
// asynchronously, as they could come and go. None of this is supported
// yet).
const GraphicPlane& plane(graphicPlane(dpy));
const DisplayHardware& hw = plane.displayHardware();
const uint32_t w = hw.getWidth();
const uint32_t h = hw.getHeight();
const uint32_t f = hw.getFormat();
hw.makeCurrent();
// initialize the shared control block
mServerCblk->connected |= 1<<dpy;
display_cblk_t* dcblk = mServerCblk->displays + dpy;
memset(dcblk, 0, sizeof(display_cblk_t));
dcblk->w = w;
dcblk->h = h;
dcblk->format = f;
dcblk->orientation = ISurfaceComposer::eOrientationDefault;
dcblk->xdpi = hw.getDpiX();
dcblk->ydpi = hw.getDpiY();
dcblk->fps = hw.getRefreshRate();
dcblk->density = hw.getDensity();
asm volatile ("":::"memory");
// Initialize OpenGL|ES
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glEnableClientState(GL_VERTEX_ARRAY);
glEnable(GL_SCISSOR_TEST);
glShadeModel(GL_FLAT);
glDisable(GL_DITHER);
glDisable(GL_CULL_FACE);
const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
const uint16_t g1 = pack565(0x17,0x2f,0x17);
const uint16_t textureData[4] = { g0, g1, g1, g0 };
glGenTextures(1, &mWormholeTexName);
glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
GL_RGB, GL_UNSIGNED_SHORT_5_6_5, textureData);
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrthof(0, w, h, 0, 0, 1);
LayerDim::initDimmer(this, w, h);
mReadyToRunBarrier.open();
/*
* We're now ready to accept clients...
*/
mOrientationAnimation = new OrientationAnimation(this);
// start CPU gauge display
if (mDebugCpu)
mCpuGauge = new CPUGauge(this, ms2ns(500));
// start boot animation
property_set("ctl.start", "bootanim");
return NO_ERROR;
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Events Handler
#endif
void SurfaceFlinger::waitForEvent()
{
// wait for something to do
if (UNLIKELY(isFrozen())) {
// wait 5 seconds
const nsecs_t freezeDisplayTimeout = ms2ns(5000);
const nsecs_t now = systemTime();
if (mFreezeDisplayTime == 0) {
mFreezeDisplayTime = now;
}
nsecs_t waitTime = freezeDisplayTimeout - (now - mFreezeDisplayTime);
int err = (waitTime > 0) ? mSyncObject.wait(waitTime) : TIMED_OUT;
if (err != NO_ERROR) {
if (isFrozen()) {
// we timed out and are still frozen
LOGW("timeout expired mFreezeDisplay=%d, mFreezeCount=%d",
mFreezeDisplay, mFreezeCount);
mFreezeCount = 0;
mFreezeDisplay = false;
}
}
} else {
mFreezeDisplayTime = 0;
mSyncObject.wait();
}
}
void SurfaceFlinger::signalEvent() {
mSyncObject.open();
}
void SurfaceFlinger::signal() const {
mSyncObject.open();
}
void SurfaceFlinger::signalDelayedEvent(nsecs_t delay)
{
if (android_atomic_or(1, &mDeplayedTransactionPending) == 0) {
sp<DelayedTransaction> delayedEvent(new DelayedTransaction(this, delay));
delayedEvent->run("DelayedeEvent", PRIORITY_URGENT_DISPLAY);
}
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Main loop
#endif
bool SurfaceFlinger::threadLoop()
{
waitForEvent();
// check for transactions
if (UNLIKELY(mConsoleSignals)) {
handleConsoleEvents();
}
if (LIKELY(mTransactionCount == 0)) {
// if we're in a global transaction, don't do anything.
const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
uint32_t transactionFlags = getTransactionFlags(mask);
if (LIKELY(transactionFlags)) {
handleTransaction(transactionFlags);
}
}
// post surfaces (if needed)
handlePageFlip();
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (LIKELY(hw.canDraw())) {
// repaint the framebuffer (if needed)
handleRepaint();
// release the clients before we flip ('cause flip might block)
unlockClients();
executeScheduledBroadcasts();
// sample the cpu gauge
if (UNLIKELY(mDebugCpu)) {
handleDebugCpu();
}
postFramebuffer();
} else {
// pretend we did the post
unlockClients();
executeScheduledBroadcasts();
usleep(16667); // 60 fps period
}
return true;
}
void SurfaceFlinger::postFramebuffer()
{
const bool skip = mOrientationAnimation->run();
if (UNLIKELY(skip)) {
return;
}
if (!mInvalidRegion.isEmpty()) {
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (UNLIKELY(mDebugFps)) {
debugShowFPS();
}
hw.flip(mInvalidRegion);
mInvalidRegion.clear();
if (Layer::deletedTextures.size()) {
glDeleteTextures(
Layer::deletedTextures.size(),
Layer::deletedTextures.array());
Layer::deletedTextures.clear();
}
}
}
void SurfaceFlinger::handleConsoleEvents()
{
// something to do with the console
const DisplayHardware& hw = graphicPlane(0).displayHardware();
int what = android_atomic_and(0, &mConsoleSignals);
if (what & eConsoleAcquired) {
hw.acquireScreen();
}
if (mDeferReleaseConsole && hw.canDraw()) {
// We got the release signal before the aquire signal
mDeferReleaseConsole = false;
revokeGPU();
hw.releaseScreen();
}
if (what & eConsoleReleased) {
if (hw.canDraw()) {
revokeGPU();
hw.releaseScreen();
} else {
mDeferReleaseConsole = true;
}
}
mDirtyRegion.set(hw.bounds());
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
Mutex::Autolock _l(mStateLock);
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
if (layersNeedTransaction) {
for (size_t i=0 ; i<count ; i++) {
LayerBase* const layer = currentLayers[i];
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) continue;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
if (flags & Layer::eRestartTransaction) {
// restart the transaction, but back-off a little
layer->setTransactionFlags(eTransactionNeeded);
setTransactionFlags(eTraversalNeeded, ms2ns(8));
}
}
}
/*
* Perform our own transaction if needed
*/
if (transactionFlags & eTransactionNeeded) {
if (mCurrentState.orientation != mDrawingState.orientation) {
// the orientation has changed, recompute all visible regions
// and invalidate everything.
const int dpy = 0;
const int orientation = mCurrentState.orientation;
const uint32_t type = mCurrentState.orientationType;
GraphicPlane& plane(graphicPlane(dpy));
plane.setOrientation(orientation);
// update the shared control block
const DisplayHardware& hw(plane.displayHardware());
volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
dcblk->orientation = orientation;
if (orientation & eOrientationSwapMask) {
// 90 or 270 degrees orientation
dcblk->w = hw.getHeight();
dcblk->h = hw.getWidth();
} else {
dcblk->w = hw.getWidth();
dcblk->h = hw.getHeight();
}
mVisibleRegionsDirty = true;
mDirtyRegion.set(hw.bounds());
mFreezeDisplayTime = 0;
mOrientationAnimation->onOrientationChanged(type);
}
if (mCurrentState.freezeDisplay != mDrawingState.freezeDisplay) {
// freezing or unfreezing the display -> trigger animation if needed
mFreezeDisplay = mCurrentState.freezeDisplay;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
size_t c = mRemovedLayers.size();
if (c) {
mVisibleRegionsDirty = true;
}
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
// layers have been added
mVisibleRegionsDirty = true;
}
// get rid of all resources we don't need anymore
// (layers and clients)
free_resources_l();
}
commitTransaction();
}
sp<FreezeLock> SurfaceFlinger::getFreezeLock() const
{
return new FreezeLock(const_cast<SurfaceFlinger *>(this));
}
void SurfaceFlinger::computeVisibleRegions(
LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
{
const GraphicPlane& plane(graphicPlane(0));
const Transform& planeTransform(plane.transform());
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
bool secureFrameBuffer = false;
size_t i = currentLayers.size();
while (i--) {
LayerBase* const layer = currentLayers[i];
layer->validateVisibility(planeTransform);
// start with the whole surface at its current location
const Layer::State& s = layer->drawingState();
const Rect bounds(layer->visibleBounds());
// handle hidden surfaces by setting the visible region to empty
Region opaqueRegion;
Region visibleRegion;
Region coveredRegion;
if (UNLIKELY((s.flags & ISurfaceComposer::eLayerHidden) || !s.alpha)) {
visibleRegion.clear();
} else {
const bool translucent = layer->needsBlending();
visibleRegion.set(bounds);
coveredRegion = visibleRegion;
// Remove the transparent area from the visible region
if (translucent) {
visibleRegion.subtractSelf(layer->transparentRegionScreen);
}
// compute the opaque region
if (s.alpha==255 && !translucent && layer->getOrientation()>=0) {
// the opaque region is the visible region
opaqueRegion = visibleRegion;
}
}
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
coveredRegion.andSelf(aboveCoveredLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegionScreen);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* exposed = what's VISIBLE and NOT COVERED now
* but was COVERED before
*/
dirty = (visibleRegion - coveredRegion) & layer->coveredRegionScreen;
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
dirtyRegion.orSelf(dirty);
// updade aboveOpaqueLayers/aboveCoveredLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
aboveCoveredLayers.orSelf(visibleRegion);
// Store the visible region is screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
// If a secure layer is partially visible, lockdown the screen!
if (layer->isSecure() && !visibleRegion.isEmpty()) {
secureFrameBuffer = true;
}
}
mSecureFrameBuffer = secureFrameBuffer;
opaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::commitTransaction()
{
mDrawingState = mCurrentState;
mTransactionCV.signal();
}
void SurfaceFlinger::handlePageFlip()
{
bool visibleRegions = mVisibleRegionsDirty;
LayerVector& currentLayers = const_cast<LayerVector&>(mDrawingState.layersSortedByZ);
visibleRegions |= lockPageFlip(currentLayers);
const DisplayHardware& hw = graphicPlane(0).displayHardware();
const Region screenRegion(hw.bounds());
if (visibleRegions) {
Region opaqueRegion;
computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion);
mWormholeRegion = screenRegion.subtract(opaqueRegion);
mVisibleRegionsDirty = false;
}
unlockPageFlip(currentLayers);
mDirtyRegion.andSelf(screenRegion);
}
bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers)
{
bool recomputeVisibleRegions = false;
size_t count = currentLayers.size();
LayerBase* const* layers = currentLayers.array();
for (size_t i=0 ; i<count ; i++) {
LayerBase* const layer = layers[i];
layer->lockPageFlip(recomputeVisibleRegions);
}
return recomputeVisibleRegions;
}
void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers)
{
const GraphicPlane& plane(graphicPlane(0));
const Transform& planeTransform(plane.transform());
size_t count = currentLayers.size();
LayerBase* const* layers = currentLayers.array();
for (size_t i=0 ; i<count ; i++) {
LayerBase* const layer = layers[i];
layer->unlockPageFlip(planeTransform, mDirtyRegion);
}
}
void SurfaceFlinger::handleRepaint()
{
// set the frame buffer
const DisplayHardware& hw(graphicPlane(0).displayHardware());
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
if (UNLIKELY(mDebugRegion)) {
debugFlashRegions();
}
// compute the invalid region
mInvalidRegion.orSelf(mDirtyRegion);
uint32_t flags = hw.getFlags();
if (flags & DisplayHardware::BUFFER_PRESERVED) {
// here we assume DisplayHardware::flip()'s implementation
// performs the copy-back optimization.
} else {
if (flags & DisplayHardware::UPDATE_ON_DEMAND) {
// we need to fully redraw the part that will be updated
mDirtyRegion.set(mInvalidRegion.bounds());
} else {
// we need to redraw everything
mDirtyRegion.set(hw.bounds());
mInvalidRegion = mDirtyRegion;
}
}
// compose all surfaces
composeSurfaces(mDirtyRegion);
// clear the dirty regions
mDirtyRegion.clear();
}
void SurfaceFlinger::composeSurfaces(const Region& dirty)
{
if (UNLIKELY(!mWormholeRegion.isEmpty())) {
// should never happen unless the window manager has a bug
// draw something...
drawWormhole();
}
const SurfaceFlinger& flinger(*this);
const LayerVector& drawingLayers(mDrawingState.layersSortedByZ);
const size_t count = drawingLayers.size();
LayerBase const* const* const layers = drawingLayers.array();
for (size_t i=0 ; i<count ; ++i) {
LayerBase const * const layer = layers[i];
const Region& visibleRegion(layer->visibleRegionScreen);
if (!visibleRegion.isEmpty()) {
const Region clip(dirty.intersect(visibleRegion));
if (!clip.isEmpty()) {
layer->draw(clip);
}
}
}
}
void SurfaceFlinger::unlockClients()
{
const LayerVector& drawingLayers(mDrawingState.layersSortedByZ);
const size_t count = drawingLayers.size();
LayerBase* const* const layers = drawingLayers.array();
for (size_t i=0 ; i<count ; ++i) {
LayerBase* const layer = layers[i];
layer->finishPageFlip();
}
}
void SurfaceFlinger::scheduleBroadcast(Client* client)
{
if (mLastScheduledBroadcast != client) {
mLastScheduledBroadcast = client;
mScheduledBroadcasts.add(client);
}
}
void SurfaceFlinger::executeScheduledBroadcasts()
{
SortedVector<Client*>& list = mScheduledBroadcasts;
size_t count = list.size();
while (count--) {
per_client_cblk_t* const cblk = list[count]->ctrlblk;
if (cblk->lock.tryLock() == NO_ERROR) {
cblk->cv.broadcast();
list.removeAt(count);
cblk->lock.unlock();
} else {
// schedule another round
LOGW("executeScheduledBroadcasts() skipped, "
"contention on the client. We'll try again later...");
signalDelayedEvent(ms2ns(4));
}
}
mLastScheduledBroadcast = 0;
}
void SurfaceFlinger::handleDebugCpu()
{
Mutex::Autolock _l(mDebugLock);
if (mCpuGauge != 0)
mCpuGauge->sample();
}
void SurfaceFlinger::debugFlashRegions()
{
if (UNLIKELY(!mDirtyRegion.isRect())) {
// TODO: do this only if we don't have preserving
// swapBuffer. If we don't have update-on-demand,
// redraw everything.
composeSurfaces(Region(mDirtyRegion.bounds()));
}
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glDisable(GL_DITHER);
glDisable(GL_SCISSOR_TEST);
glColor4x(0x10000, 0, 0x10000, 0x10000);
Rect r;
Region::iterator iterator(mDirtyRegion);
while (iterator.iterate(&r)) {
GLfloat vertices[][2] = {
{ r.left, r.top },
{ r.left, r.bottom },
{ r.right, r.bottom },
{ r.right, r.top }
};
glVertexPointer(2, GL_FLOAT, 0, vertices);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
const DisplayHardware& hw(graphicPlane(0).displayHardware());
hw.flip(mDirtyRegion.merge(mInvalidRegion));
mInvalidRegion.clear();
if (mDebugRegion > 1)
usleep(mDebugRegion * 1000);
glEnable(GL_SCISSOR_TEST);
//mDirtyRegion.dump("mDirtyRegion");
}
void SurfaceFlinger::drawWormhole() const
{
const Region region(mWormholeRegion.intersect(mDirtyRegion));
if (region.isEmpty())
return;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const int32_t width = hw.getWidth();
const int32_t height = hw.getHeight();
glDisable(GL_BLEND);
glDisable(GL_DITHER);
if (LIKELY(!mDebugBackground)) {
glClearColorx(0,0,0,0);
Rect r;
Region::iterator iterator(region);
while (iterator.iterate(&r)) {
const GLint sy = height - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glClear(GL_COLOR_BUFFER_BIT);
}
} else {
const GLshort vertices[][2] = { { 0, 0 }, { width, 0 },
{ width, height }, { 0, height } };
const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } };
glVertexPointer(2, GL_SHORT, 0, vertices);
glTexCoordPointer(2, GL_SHORT, 0, tcoords);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1);
Rect r;
Region::iterator iterator(region);
while (iterator.iterate(&r)) {
const GLint sy = height - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
}
void SurfaceFlinger::debugShowFPS() const
{
static int mFrameCount;
static int mLastFrameCount = 0;
static nsecs_t mLastFpsTime = 0;
static float mFps = 0;
mFrameCount++;
nsecs_t now = systemTime();
nsecs_t diff = now - mLastFpsTime;
if (diff > ms2ns(250)) {
mFps = ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff;
mLastFpsTime = now;
mLastFrameCount = mFrameCount;
}
// XXX: mFPS has the value we want
}
status_t SurfaceFlinger::addLayer(LayerBase* layer)
{
Mutex::Autolock _l(mStateLock);
addLayer_l(layer);
setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
return NO_ERROR;
}
status_t SurfaceFlinger::removeLayer(LayerBase* layer)
{
Mutex::Autolock _l(mStateLock);
removeLayer_l(layer);
setTransactionFlags(eTransactionNeeded);
return NO_ERROR;
}
status_t SurfaceFlinger::invalidateLayerVisibility(LayerBase* layer)
{
layer->forceVisibilityTransaction();
setTransactionFlags(eTraversalNeeded);
return NO_ERROR;
}
status_t SurfaceFlinger::addLayer_l(LayerBase* layer)
{
ssize_t i = mCurrentState.layersSortedByZ.add(
layer, &LayerBase::compareCurrentStateZ);
LayerBaseClient* lbc = LayerBase::dynamicCast<LayerBaseClient*>(layer);
if (lbc) {
mLayerMap.add(lbc->serverIndex(), lbc);
}
mRemovedLayers.remove(layer);
return NO_ERROR;
}
status_t SurfaceFlinger::removeLayer_l(LayerBase* layerBase)
{
ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
if (index >= 0) {
mRemovedLayers.add(layerBase);
LayerBaseClient* layer = LayerBase::dynamicCast<LayerBaseClient*>(layerBase);
if (layer) {
mLayerMap.removeItem(layer->serverIndex());
}
return NO_ERROR;
}
// it's possible that we don't find a layer, because it might
// have been destroyed already -- this is not technically an error
// from the user because there is a race between destroySurface,
// destroyclient and destroySurface-from-a-transaction.
return (index == NAME_NOT_FOUND) ? status_t(NO_ERROR) : index;
}
void SurfaceFlinger::free_resources_l()
{
// Destroy layers that were removed
destroy_all_removed_layers_l();
// free resources associated with disconnected clients
SortedVector<Client*>& scheduledBroadcasts(mScheduledBroadcasts);
Vector<Client*>& disconnectedClients(mDisconnectedClients);
const size_t count = disconnectedClients.size();
for (size_t i=0 ; i<count ; i++) {
Client* client = disconnectedClients[i];
// if this client is the scheduled broadcast list,
// remove it from there (and we don't need to signal it
// since it is dead).
int32_t index = scheduledBroadcasts.indexOf(client);
if (index >= 0) {
scheduledBroadcasts.removeItemsAt(index);
}
mTokens.release(client->cid);
delete client;
}
disconnectedClients.clear();
}
void SurfaceFlinger::destroy_all_removed_layers_l()
{
size_t c = mRemovedLayers.size();
while (c--) {
LayerBase* const removed_layer = mRemovedLayers[c];
LOGE_IF(mCurrentState.layersSortedByZ.indexOf(removed_layer) >= 0,
"layer %p removed but still in the current state list",
removed_layer);
delete removed_layer;
}
mRemovedLayers.clear();
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
{
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags, nsecs_t delay)
{
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
if ((old & flags)==0) { // wake the server up
if (delay > 0) {
signalDelayedEvent(delay);
} else {
signalEvent();
}
}
return old;
}
void SurfaceFlinger::openGlobalTransaction()
{
android_atomic_inc(&mTransactionCount);
}
void SurfaceFlinger::closeGlobalTransaction()
{
if (android_atomic_dec(&mTransactionCount) == 1) {
signalEvent();
}
}
status_t SurfaceFlinger::freezeDisplay(DisplayID dpy, uint32_t flags)
{
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
Mutex::Autolock _l(mStateLock);
mCurrentState.freezeDisplay = 1;
setTransactionFlags(eTransactionNeeded);
// flags is intended to communicate some sort of animation behavior
// (for instance fadding)
return NO_ERROR;
}
status_t SurfaceFlinger::unfreezeDisplay(DisplayID dpy, uint32_t flags)
{
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
Mutex::Autolock _l(mStateLock);
mCurrentState.freezeDisplay = 0;
setTransactionFlags(eTransactionNeeded);
// flags is intended to communicate some sort of animation behavior
// (for instance fadding)
return NO_ERROR;
}
int SurfaceFlinger::setOrientation(DisplayID dpy,
int orientation, uint32_t flags)
{
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
Mutex::Autolock _l(mStateLock);
if (mCurrentState.orientation != orientation) {
if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
mCurrentState.orientationType = flags;
mCurrentState.orientation = orientation;
setTransactionFlags(eTransactionNeeded);
mTransactionCV.wait(mStateLock);
} else {
orientation = BAD_VALUE;
}
}
return orientation;
}
sp<ISurface> SurfaceFlinger::createSurface(ClientID clientId, int pid,
ISurfaceFlingerClient::surface_data_t* params,
DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
{
LayerBaseClient* layer = 0;
sp<LayerBaseClient::Surface> surfaceHandle;
if (int32_t(w|h) < 0) {
LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return surfaceHandle;
}
Mutex::Autolock _l(mStateLock);
Client* const c = mClientsMap.valueFor(clientId);
if (UNLIKELY(!c)) {
LOGE("createSurface() failed, client not found (id=%d)", clientId);
return surfaceHandle;
}
//LOGD("createSurface for pid %d (%d x %d)", pid, w, h);
int32_t id = c->generateId(pid);
if (uint32_t(id) >= NUM_LAYERS_MAX) {
LOGE("createSurface() failed, generateId = %d", id);
return surfaceHandle;
}
switch (flags & eFXSurfaceMask) {
case eFXSurfaceNormal:
if (UNLIKELY(flags & ePushBuffers)) {
layer = createPushBuffersSurfaceLocked(c, d, id, w, h, flags);
} else {
layer = createNormalSurfaceLocked(c, d, id, w, h, format, flags);
}
break;
case eFXSurfaceBlur:
layer = createBlurSurfaceLocked(c, d, id, w, h, flags);
break;
case eFXSurfaceDim:
layer = createDimSurfaceLocked(c, d, id, w, h, flags);
break;
}
if (layer) {
setTransactionFlags(eTransactionNeeded);
surfaceHandle = layer->getSurface();
if (surfaceHandle != 0)
surfaceHandle->getSurfaceData(params);
}
return surfaceHandle;
}
LayerBaseClient* SurfaceFlinger::createNormalSurfaceLocked(
Client* client, DisplayID display,
int32_t id, uint32_t w, uint32_t h, PixelFormat format, uint32_t flags)
{
// initialize the surfaces
switch (format) { // TODO: take h/w into account
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
format = PIXEL_FORMAT_RGB_565;
break;
}
Layer* layer = new Layer(this, display, client, id);
status_t err = layer->setBuffers(client, w, h, format, flags);
if (LIKELY(err == NO_ERROR)) {
layer->initStates(w, h, flags);
addLayer_l(layer);
} else {
LOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
delete layer;
return 0;
}
return layer;
}
LayerBaseClient* SurfaceFlinger::createBlurSurfaceLocked(
Client* client, DisplayID display,
int32_t id, uint32_t w, uint32_t h, uint32_t flags)
{
LayerBlur* layer = new LayerBlur(this, display, client, id);
layer->initStates(w, h, flags);
addLayer_l(layer);
return layer;
}
LayerBaseClient* SurfaceFlinger::createDimSurfaceLocked(
Client* client, DisplayID display,
int32_t id, uint32_t w, uint32_t h, uint32_t flags)
{
LayerDim* layer = new LayerDim(this, display, client, id);
layer->initStates(w, h, flags);
addLayer_l(layer);
return layer;
}
LayerBaseClient* SurfaceFlinger::createPushBuffersSurfaceLocked(
Client* client, DisplayID display,
int32_t id, uint32_t w, uint32_t h, uint32_t flags)
{
LayerBuffer* layer = new LayerBuffer(this, display, client, id);
layer->initStates(w, h, flags);
addLayer_l(layer);
return layer;
}
status_t SurfaceFlinger::destroySurface(SurfaceID index)
{
Mutex::Autolock _l(mStateLock);
LayerBaseClient* const layer = getLayerUser_l(index);
status_t err = removeLayer_l(layer);
if (err < 0)
return err;
setTransactionFlags(eTransactionNeeded);
return NO_ERROR;
}
status_t SurfaceFlinger::setClientState(
ClientID cid,
int32_t count,
const layer_state_t* states)
{
Mutex::Autolock _l(mStateLock);
uint32_t flags = 0;
cid <<= 16;
for (int i=0 ; i<count ; i++) {
const layer_state_t& s = states[i];
LayerBaseClient* layer = getLayerUser_l(s.surface | cid);
if (layer) {
const uint32_t what = s.what;
// check if it has been destroyed first
if (what & eDestroyed) {
if (removeLayer_l(layer) == NO_ERROR) {
flags |= eTransactionNeeded;
// we skip everything else... well, no, not really
// we skip ONLY that transaction.
continue;
}
}
if (what & ePositionChanged) {
if (layer->setPosition(s.x, s.y))
flags |= eTraversalNeeded;
}
if (what & eLayerChanged) {
if (layer->setLayer(s.z)) {
mCurrentState.layersSortedByZ.reorder(
layer, &Layer::compareCurrentStateZ);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & eSizeChanged) {
if (layer->setSize(s.w, s.h))
flags |= eTraversalNeeded;
}
if (what & eAlphaChanged) {
if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
flags |= eTraversalNeeded;
}
if (what & eMatrixChanged) {
if (layer->setMatrix(s.matrix))
flags |= eTraversalNeeded;
}
if (what & eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & eVisibilityChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
}
}
if (flags) {
setTransactionFlags(flags);
}
return NO_ERROR;
}
LayerBaseClient* SurfaceFlinger::getLayerUser_l(SurfaceID s) const
{
return mLayerMap.valueFor(s);
}
void SurfaceFlinger::screenReleased(int dpy)
{
// this may be called by a signal handler, we can't do too much in here
android_atomic_or(eConsoleReleased, &mConsoleSignals);
signalEvent();
}
void SurfaceFlinger::screenAcquired(int dpy)
{
// this may be called by a signal handler, we can't do too much in here
android_atomic_or(eConsoleAcquired, &mConsoleSignals);
signalEvent();
}
status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
{
const size_t SIZE = 1024;
char buffer[SIZE];
String8 result;
if (checkCallingPermission(
String16("android.permission.DUMP")) == false)
{ // not allowed
snprintf(buffer, SIZE, "Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
result.append(buffer);
} else {
Mutex::Autolock _l(mStateLock);
size_t s = mClientsMap.size();
char name[64];
for (size_t i=0 ; i<s ; i++) {
Client* client = mClientsMap.valueAt(i);
sprintf(name, " Client (id=0x%08x)", client->cid);
client->dump(name);
}
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
/*** LayerBase ***/
LayerBase const * const layer = currentLayers[i];
const Layer::State& s = layer->drawingState();
snprintf(buffer, SIZE,
"+ %s %p\n"
" "
"z=%9d, pos=(%4d,%4d), size=(%4d,%4d), "
"needsBlending=%1d, invalidate=%1d, "
"alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n",
layer->getTypeID(), layer,
s.z, layer->tx(), layer->ty(), s.w, s.h,
layer->needsBlending(), layer->contentDirty,
s.alpha, s.flags,
s.transform[0], s.transform[1],
s.transform[2], s.transform[3]);
result.append(buffer);
buffer[0] = 0;
/*** LayerBaseClient ***/
LayerBaseClient* const lbc =
LayerBase::dynamicCast<LayerBaseClient*>((LayerBase*)layer);
if (lbc) {
snprintf(buffer, SIZE,
" "
"id=0x%08x, client=0x%08x, identity=%u\n",
lbc->clientIndex(), lbc->client ? lbc->client->cid : 0,
lbc->getIdentity());
}
result.append(buffer);
buffer[0] = 0;
/*** Layer ***/
Layer* const l = LayerBase::dynamicCast<Layer*>((LayerBase*)layer);
if (l) {
const LayerBitmap& buf0(l->getBuffer(0));
const LayerBitmap& buf1(l->getBuffer(1));
snprintf(buffer, SIZE,
" "
"format=%2d, [%3ux%3u:%3u] [%3ux%3u:%3u], mTextureName=%d,"
" freezeLock=%p, swapState=0x%08x\n",
l->pixelFormat(),
buf0.width(), buf0.height(), buf0.stride(),
buf1.width(), buf1.height(), buf1.stride(),
l->getTextureName(), l->getFreezeLock().get(),
l->lcblk->swapState);
}
result.append(buffer);
buffer[0] = 0;
s.transparentRegion.dump(result, "transparentRegion");
layer->transparentRegionScreen.dump(result, "transparentRegionScreen");
layer->visibleRegionScreen.dump(result, "visibleRegionScreen");
}
mWormholeRegion.dump(result, "WormholeRegion");
const DisplayHardware& hw(graphicPlane(0).displayHardware());
snprintf(buffer, SIZE,
" display frozen: %s, freezeCount=%d, orientation=%d, canDraw=%d\n",
mFreezeDisplay?"yes":"no", mFreezeCount,
mCurrentState.orientation, hw.canDraw());
result.append(buffer);
sp<AllocatorInterface> allocator;
if (mGPU != 0) {
snprintf(buffer, SIZE, " GPU owner: %d\n", mGPU->getOwner());
result.append(buffer);
allocator = mGPU->getAllocator();
if (allocator != 0) {
allocator->dump(result, "GPU Allocator");
}
}
allocator = mSurfaceHeapManager->getAllocator(NATIVE_MEMORY_TYPE_PMEM);
if (allocator != 0) {
allocator->dump(result, "PMEM Allocator");
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
status_t SurfaceFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case CREATE_CONNECTION:
case OPEN_GLOBAL_TRANSACTION:
case CLOSE_GLOBAL_TRANSACTION:
case SET_ORIENTATION:
case FREEZE_DISPLAY:
case UNFREEZE_DISPLAY:
case BOOT_FINISHED:
case REVOKE_GPU:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
const int self_pid = getpid();
if (UNLIKELY(pid != self_pid && uid != AID_GRAPHICS)) {
// we're called from a different process, do the real check
if (!checkCallingPermission(
String16("android.permission.ACCESS_SURFACE_FLINGER")))
{
LOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
}
}
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
// HARDWARE_TEST stuff...
if (UNLIKELY(checkCallingPermission(
String16("android.permission.HARDWARE_TEST")) == false))
{ // not allowed
LOGE("Permission Denial: pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU
n = data.readInt32();
mDebugCpu = n ? 1 : 0;
if (mDebugCpu) {
if (mCpuGauge == 0) {
mCpuGauge = new CPUGauge(this, ms2ns(500));
}
} else {
if (mCpuGauge != 0) {
mCpuGauge->requestExitAndWait();
Mutex::Autolock _l(mDebugLock);
mCpuGauge.clear();
}
}
return NO_ERROR;
case 1001: // SHOW_FPS
n = data.readInt32();
mDebugFps = n ? 1 : 0;
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
return NO_ERROR;
case 1003: // SHOW_BACKGROUND
n = data.readInt32();
mDebugBackground = n ? 1 : 0;
return NO_ERROR;
case 1004:{ // repaint everything
Mutex::Autolock _l(mStateLock);
const DisplayHardware& hw(graphicPlane(0).displayHardware());
mDirtyRegion.set(hw.bounds()); // careful that's not thread-safe
signalEvent();
}
return NO_ERROR;
case 1005: // ask GPU revoke
if (mGPU != 0) {
mGPU->friendlyRevoke();
}
return NO_ERROR;
case 1006: // revoke GPU
if (mGPU != 0) {
mGPU->unconditionalRevoke();
}
return NO_ERROR;
case 1007: // set mFreezeCount
mFreezeCount = data.readInt32();
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(mDebugCpu);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(mDebugBackground);
return NO_ERROR;
case 1013: {
Mutex::Autolock _l(mStateLock);
const DisplayHardware& hw(graphicPlane(0).displayHardware());
reply->writeInt32(hw.getPageFlipCount());
}
return NO_ERROR;
}
}
return err;
}
// ---------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
Client::Client(ClientID clientID, const sp<SurfaceFlinger>& flinger)
: ctrlblk(0), cid(clientID), mPid(0), mBitmap(0), mFlinger(flinger)
{
mSharedHeapAllocator = getSurfaceHeapManager()->createHeap();
const int pgsize = getpagesize();
const int cblksize=((sizeof(per_client_cblk_t)+(pgsize-1))&~(pgsize-1));
mCblkHeap = new MemoryDealer(cblksize);
mCblkMemory = mCblkHeap->allocate(cblksize);
if (mCblkMemory != 0) {
ctrlblk = static_cast<per_client_cblk_t *>(mCblkMemory->pointer());
if (ctrlblk) { // construct the shared structure in-place.
new(ctrlblk) per_client_cblk_t;
}
}
}
Client::~Client() {
if (ctrlblk) {
const int pgsize = getpagesize();
ctrlblk->~per_client_cblk_t(); // destroy our shared-structure.
}
}
const sp<SurfaceHeapManager>& Client::getSurfaceHeapManager() const {
return mFlinger->getSurfaceHeapManager();
}
int32_t Client::generateId(int pid)
{
const uint32_t i = clz( ~mBitmap );
if (i >= NUM_LAYERS_MAX) {
return NO_MEMORY;
}
mPid = pid;
mInUse.add(uint8_t(i));
mBitmap |= 1<<(31-i);
return i;
}
status_t Client::bindLayer(LayerBaseClient* layer, int32_t id)
{
ssize_t idx = mInUse.indexOf(id);
if (idx < 0)
return NAME_NOT_FOUND;
return mLayers.insertAt(layer, idx);
}
void Client::free(int32_t id)
{
ssize_t idx = mInUse.remove(uint8_t(id));
if (idx >= 0) {
mBitmap &= ~(1<<(31-id));
mLayers.removeItemsAt(idx);
}
}
sp<MemoryDealer> Client::createAllocator(uint32_t flags)
{
sp<MemoryDealer> allocator;
allocator = getSurfaceHeapManager()->createHeap(
flags, getClientPid(), mSharedHeapAllocator);
return allocator;
}
bool Client::isValid(int32_t i) const {
return (uint32_t(i)<NUM_LAYERS_MAX) && (mBitmap & (1<<(31-i)));
}
const uint8_t* Client::inUseArray() const {
return mInUse.array();
}
size_t Client::numActiveLayers() const {
return mInUse.size();
}
LayerBaseClient* Client::getLayerUser(int32_t i) const {
ssize_t idx = mInUse.indexOf(uint8_t(i));
if (idx<0) return 0;
return mLayers[idx];
}
void Client::dump(const char* what)
{
}
// ---------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
BClient::BClient(SurfaceFlinger *flinger, ClientID cid, const sp<IMemory>& cblk)
: mId(cid), mFlinger(flinger), mCblk(cblk)
{
}
BClient::~BClient() {
// destroy all resources attached to this client
mFlinger->destroyConnection(mId);
}
void BClient::getControlBlocks(sp<IMemory>* ctrl) const {
*ctrl = mCblk;
}
sp<ISurface> BClient::createSurface(
ISurfaceFlingerClient::surface_data_t* params, int pid,
DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
{
return mFlinger->createSurface(mId, pid, params, display, w, h, format, flags);
}
status_t BClient::destroySurface(SurfaceID sid)
{
sid |= (mId << 16); // add the client-part to id
return mFlinger->destroySurface(sid);
}
status_t BClient::setState(int32_t count, const layer_state_t* states)
{
return mFlinger->setClientState(mId, count, states);
}
// ---------------------------------------------------------------------------
GraphicPlane::GraphicPlane()
: mHw(0)
{
}
GraphicPlane::~GraphicPlane() {
delete mHw;
}
bool GraphicPlane::initialized() const {
return mHw ? true : false;
}
void GraphicPlane::setDisplayHardware(DisplayHardware *hw) {
mHw = hw;
}
void GraphicPlane::setTransform(const Transform& tr) {
mTransform = tr;
mGlobalTransform = mOrientationTransform * mTransform;
}
status_t GraphicPlane::orientationToTransfrom(
int orientation, int w, int h, Transform* tr)
{
float a, b, c, d, x, y;
switch (orientation) {
case ISurfaceComposer::eOrientationDefault:
a=1; b=0; c=0; d=1; x=0; y=0;
break;
case ISurfaceComposer::eOrientation90:
a=0; b=-1; c=1; d=0; x=w; y=0;
break;
case ISurfaceComposer::eOrientation180:
a=-1; b=0; c=0; d=-1; x=w; y=h;
break;
case ISurfaceComposer::eOrientation270:
a=0; b=1; c=-1; d=0; x=0; y=h;
break;
default:
return BAD_VALUE;
}
tr->set(a, b, c, d);
tr->set(x, y);
return NO_ERROR;
}
status_t GraphicPlane::setOrientation(int orientation)
{
const DisplayHardware& hw(displayHardware());
const float w = hw.getWidth();
const float h = hw.getHeight();
if (orientation == ISurfaceComposer::eOrientationDefault) {
// make sure the default orientation is optimal
mOrientationTransform.reset();
mOrientation = orientation;
mGlobalTransform = mTransform;
return NO_ERROR;
}
// If the rotation can be handled in hardware, this is where
// the magic should happen.
if (UNLIKELY(orientation == 42)) {
float a, b, c, d, x, y;
const float r = (3.14159265f / 180.0f) * 42.0f;
const float si = sinf(r);
const float co = cosf(r);
a=co; b=-si; c=si; d=co;
x = si*(h*0.5f) + (1-co)*(w*0.5f);
y =-si*(w*0.5f) + (1-co)*(h*0.5f);
mOrientationTransform.set(a, b, c, d);
mOrientationTransform.set(x, y);
} else {
GraphicPlane::orientationToTransfrom(orientation, w, h,
&mOrientationTransform);
}
mOrientation = orientation;
mGlobalTransform = mOrientationTransform * mTransform;
return NO_ERROR;
}
const DisplayHardware& GraphicPlane::displayHardware() const {
return *mHw;
}
const Transform& GraphicPlane::transform() const {
return mGlobalTransform;
}
// ---------------------------------------------------------------------------
}; // namespace android