| /* |
| * Copyright (C) 2020 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <BinderRpcTestClientInfo.h> |
| #include <BinderRpcTestServerInfo.h> |
| #include <BnBinderRpcCallback.h> |
| #include <BnBinderRpcSession.h> |
| #include <BnBinderRpcTest.h> |
| #include <aidl/IBinderRpcTest.h> |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/properties.h> |
| #include <android/binder_auto_utils.h> |
| #include <android/binder_libbinder.h> |
| #include <binder/Binder.h> |
| #include <binder/BpBinder.h> |
| #include <binder/IPCThreadState.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/ProcessState.h> |
| #include <binder/RpcServer.h> |
| #include <binder/RpcSession.h> |
| #include <binder/RpcTlsTestUtils.h> |
| #include <binder/RpcTlsUtils.h> |
| #include <binder/RpcTransport.h> |
| #include <binder/RpcTransportRaw.h> |
| #include <binder/RpcTransportTls.h> |
| #include <gtest/gtest.h> |
| |
| #include <chrono> |
| #include <cstdlib> |
| #include <iostream> |
| #include <thread> |
| #include <type_traits> |
| |
| #include <poll.h> |
| #include <sys/prctl.h> |
| #include <unistd.h> |
| |
| #include "../FdTrigger.h" |
| #include "../RpcSocketAddress.h" // for testing preconnected clients |
| #include "../RpcState.h" // for debugging |
| #include "../vm_sockets.h" // for VMADDR_* |
| |
| using namespace std::chrono_literals; |
| using namespace std::placeholders; |
| using testing::AssertionFailure; |
| using testing::AssertionResult; |
| using testing::AssertionSuccess; |
| |
| namespace android { |
| |
| static_assert(RPC_WIRE_PROTOCOL_VERSION + 1 == RPC_WIRE_PROTOCOL_VERSION_NEXT || |
| RPC_WIRE_PROTOCOL_VERSION == RPC_WIRE_PROTOCOL_VERSION_EXPERIMENTAL); |
| const char* kLocalInetAddress = "127.0.0.1"; |
| |
| enum class RpcSecurity { RAW, TLS }; |
| |
| static inline std::vector<RpcSecurity> RpcSecurityValues() { |
| return {RpcSecurity::RAW, RpcSecurity::TLS}; |
| } |
| |
| static inline std::unique_ptr<RpcTransportCtxFactory> newFactory( |
| RpcSecurity rpcSecurity, std::shared_ptr<RpcCertificateVerifier> verifier = nullptr, |
| std::unique_ptr<RpcAuth> auth = nullptr) { |
| switch (rpcSecurity) { |
| case RpcSecurity::RAW: |
| return RpcTransportCtxFactoryRaw::make(); |
| case RpcSecurity::TLS: { |
| if (verifier == nullptr) { |
| verifier = std::make_shared<RpcCertificateVerifierSimple>(); |
| } |
| if (auth == nullptr) { |
| auth = std::make_unique<RpcAuthSelfSigned>(); |
| } |
| return RpcTransportCtxFactoryTls::make(std::move(verifier), std::move(auth)); |
| } |
| default: |
| LOG_ALWAYS_FATAL("Unknown RpcSecurity %d", rpcSecurity); |
| } |
| } |
| |
| TEST(BinderRpcParcel, EntireParcelFormatted) { |
| Parcel p; |
| p.writeInt32(3); |
| |
| EXPECT_DEATH(p.markForBinder(sp<BBinder>::make()), ""); |
| } |
| |
| class BinderRpcSimple : public ::testing::TestWithParam<RpcSecurity> { |
| public: |
| static std::string PrintTestParam(const ::testing::TestParamInfo<ParamType>& info) { |
| return newFactory(info.param)->toCString(); |
| } |
| }; |
| |
| TEST_P(BinderRpcSimple, SetExternalServerTest) { |
| base::unique_fd sink(TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR))); |
| int sinkFd = sink.get(); |
| auto server = RpcServer::make(newFactory(GetParam())); |
| ASSERT_FALSE(server->hasServer()); |
| ASSERT_EQ(OK, server->setupExternalServer(std::move(sink))); |
| ASSERT_TRUE(server->hasServer()); |
| base::unique_fd retrieved = server->releaseServer(); |
| ASSERT_FALSE(server->hasServer()); |
| ASSERT_EQ(sinkFd, retrieved.get()); |
| } |
| |
| TEST(BinderRpc, CannotUseNextWireVersion) { |
| auto session = RpcSession::make(); |
| EXPECT_FALSE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_NEXT)); |
| EXPECT_FALSE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_NEXT + 1)); |
| EXPECT_FALSE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_NEXT + 2)); |
| EXPECT_FALSE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_NEXT + 15)); |
| } |
| |
| TEST(BinderRpc, CanUseExperimentalWireVersion) { |
| auto session = RpcSession::make(); |
| EXPECT_TRUE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_EXPERIMENTAL)); |
| } |
| |
| using android::binder::Status; |
| |
| #define EXPECT_OK(status) \ |
| do { \ |
| Status stat = (status); \ |
| EXPECT_TRUE(stat.isOk()) << stat; \ |
| } while (false) |
| |
| class MyBinderRpcSession : public BnBinderRpcSession { |
| public: |
| static std::atomic<int32_t> gNum; |
| |
| MyBinderRpcSession(const std::string& name) : mName(name) { gNum++; } |
| Status getName(std::string* name) override { |
| *name = mName; |
| return Status::ok(); |
| } |
| ~MyBinderRpcSession() { gNum--; } |
| |
| private: |
| std::string mName; |
| }; |
| std::atomic<int32_t> MyBinderRpcSession::gNum; |
| |
| class MyBinderRpcCallback : public BnBinderRpcCallback { |
| Status sendCallback(const std::string& value) { |
| std::unique_lock _l(mMutex); |
| mValues.push_back(value); |
| _l.unlock(); |
| mCv.notify_one(); |
| return Status::ok(); |
| } |
| Status sendOnewayCallback(const std::string& value) { return sendCallback(value); } |
| |
| public: |
| std::mutex mMutex; |
| std::condition_variable mCv; |
| std::vector<std::string> mValues; |
| }; |
| |
| class MyBinderRpcTest : public BnBinderRpcTest { |
| public: |
| wp<RpcServer> server; |
| int port = 0; |
| |
| Status sendString(const std::string& str) override { |
| (void)str; |
| return Status::ok(); |
| } |
| Status doubleString(const std::string& str, std::string* strstr) override { |
| *strstr = str + str; |
| return Status::ok(); |
| } |
| Status getClientPort(int* out) override { |
| *out = port; |
| return Status::ok(); |
| } |
| Status countBinders(std::vector<int32_t>* out) override { |
| sp<RpcServer> spServer = server.promote(); |
| if (spServer == nullptr) { |
| return Status::fromExceptionCode(Status::EX_NULL_POINTER); |
| } |
| out->clear(); |
| for (auto session : spServer->listSessions()) { |
| size_t count = session->state()->countBinders(); |
| out->push_back(count); |
| } |
| return Status::ok(); |
| } |
| Status pingMe(const sp<IBinder>& binder, int32_t* out) override { |
| if (binder == nullptr) { |
| std::cout << "Received null binder!" << std::endl; |
| return Status::fromExceptionCode(Status::EX_NULL_POINTER); |
| } |
| *out = binder->pingBinder(); |
| return Status::ok(); |
| } |
| Status repeatBinder(const sp<IBinder>& binder, sp<IBinder>* out) override { |
| *out = binder; |
| return Status::ok(); |
| } |
| static sp<IBinder> mHeldBinder; |
| Status holdBinder(const sp<IBinder>& binder) override { |
| mHeldBinder = binder; |
| return Status::ok(); |
| } |
| Status getHeldBinder(sp<IBinder>* held) override { |
| *held = mHeldBinder; |
| return Status::ok(); |
| } |
| Status nestMe(const sp<IBinderRpcTest>& binder, int count) override { |
| if (count <= 0) return Status::ok(); |
| return binder->nestMe(this, count - 1); |
| } |
| Status alwaysGiveMeTheSameBinder(sp<IBinder>* out) override { |
| static sp<IBinder> binder = new BBinder; |
| *out = binder; |
| return Status::ok(); |
| } |
| Status openSession(const std::string& name, sp<IBinderRpcSession>* out) override { |
| *out = new MyBinderRpcSession(name); |
| return Status::ok(); |
| } |
| Status getNumOpenSessions(int32_t* out) override { |
| *out = MyBinderRpcSession::gNum; |
| return Status::ok(); |
| } |
| |
| std::mutex blockMutex; |
| Status lock() override { |
| blockMutex.lock(); |
| return Status::ok(); |
| } |
| Status unlockInMsAsync(int32_t ms) override { |
| usleep(ms * 1000); |
| blockMutex.unlock(); |
| return Status::ok(); |
| } |
| Status lockUnlock() override { |
| std::lock_guard<std::mutex> _l(blockMutex); |
| return Status::ok(); |
| } |
| |
| Status sleepMs(int32_t ms) override { |
| usleep(ms * 1000); |
| return Status::ok(); |
| } |
| |
| Status sleepMsAsync(int32_t ms) override { |
| // In-process binder calls are asynchronous, but the call to this method |
| // is synchronous wrt its client. This in/out-process threading model |
| // diffentiation is a classic binder leaky abstraction (for better or |
| // worse) and is preserved here the way binder sockets plugs itself |
| // into BpBinder, as nothing is changed at the higher levels |
| // (IInterface) which result in this behavior. |
| return sleepMs(ms); |
| } |
| |
| Status doCallback(const sp<IBinderRpcCallback>& callback, bool oneway, bool delayed, |
| const std::string& value) override { |
| if (callback == nullptr) { |
| return Status::fromExceptionCode(Status::EX_NULL_POINTER); |
| } |
| |
| if (delayed) { |
| std::thread([=]() { |
| ALOGE("Executing delayed callback: '%s'", value.c_str()); |
| Status status = doCallback(callback, oneway, false, value); |
| ALOGE("Delayed callback status: '%s'", status.toString8().c_str()); |
| }).detach(); |
| return Status::ok(); |
| } |
| |
| if (oneway) { |
| return callback->sendOnewayCallback(value); |
| } |
| |
| return callback->sendCallback(value); |
| } |
| |
| Status doCallbackAsync(const sp<IBinderRpcCallback>& callback, bool oneway, bool delayed, |
| const std::string& value) override { |
| return doCallback(callback, oneway, delayed, value); |
| } |
| |
| Status die(bool cleanup) override { |
| if (cleanup) { |
| exit(1); |
| } else { |
| _exit(1); |
| } |
| } |
| |
| Status scheduleShutdown() override { |
| sp<RpcServer> strongServer = server.promote(); |
| if (strongServer == nullptr) { |
| return Status::fromExceptionCode(Status::EX_NULL_POINTER); |
| } |
| std::thread([=] { |
| LOG_ALWAYS_FATAL_IF(!strongServer->shutdown(), "Could not shutdown"); |
| }).detach(); |
| return Status::ok(); |
| } |
| |
| Status useKernelBinderCallingId() override { |
| // this is WRONG! It does not make sense when using RPC binder, and |
| // because it is SO wrong, and so much code calls this, it should abort! |
| |
| (void)IPCThreadState::self()->getCallingPid(); |
| return Status::ok(); |
| } |
| }; |
| sp<IBinder> MyBinderRpcTest::mHeldBinder; |
| |
| class Process { |
| public: |
| Process(Process&&) = default; |
| Process(const std::function<void(android::base::borrowed_fd /* writeEnd */, |
| android::base::borrowed_fd /* readEnd */)>& f) { |
| android::base::unique_fd childWriteEnd; |
| android::base::unique_fd childReadEnd; |
| CHECK(android::base::Pipe(&mReadEnd, &childWriteEnd)) << strerror(errno); |
| CHECK(android::base::Pipe(&childReadEnd, &mWriteEnd)) << strerror(errno); |
| if (0 == (mPid = fork())) { |
| // racey: assume parent doesn't crash before this is set |
| prctl(PR_SET_PDEATHSIG, SIGHUP); |
| |
| f(childWriteEnd, childReadEnd); |
| |
| exit(0); |
| } |
| } |
| ~Process() { |
| if (mPid != 0) { |
| waitpid(mPid, nullptr, 0); |
| } |
| } |
| android::base::borrowed_fd readEnd() { return mReadEnd; } |
| android::base::borrowed_fd writeEnd() { return mWriteEnd; } |
| |
| private: |
| pid_t mPid = 0; |
| android::base::unique_fd mReadEnd; |
| android::base::unique_fd mWriteEnd; |
| }; |
| |
| static std::string allocateSocketAddress() { |
| static size_t id = 0; |
| std::string temp = getenv("TMPDIR") ?: "/tmp"; |
| auto ret = temp + "/binderRpcTest_" + std::to_string(id++); |
| unlink(ret.c_str()); |
| return ret; |
| }; |
| |
| static unsigned int allocateVsockPort() { |
| static unsigned int vsockPort = 3456; |
| return vsockPort++; |
| } |
| |
| struct ProcessSession { |
| // reference to process hosting a socket server |
| Process host; |
| |
| struct SessionInfo { |
| sp<RpcSession> session; |
| sp<IBinder> root; |
| }; |
| |
| // client session objects associated with other process |
| // each one represents a separate session |
| std::vector<SessionInfo> sessions; |
| |
| ProcessSession(ProcessSession&&) = default; |
| ~ProcessSession() { |
| for (auto& session : sessions) { |
| session.root = nullptr; |
| } |
| |
| for (auto& info : sessions) { |
| sp<RpcSession>& session = info.session; |
| |
| EXPECT_NE(nullptr, session); |
| EXPECT_NE(nullptr, session->state()); |
| EXPECT_EQ(0, session->state()->countBinders()) << (session->state()->dump(), "dump:"); |
| |
| wp<RpcSession> weakSession = session; |
| session = nullptr; |
| EXPECT_EQ(nullptr, weakSession.promote()) << "Leaked session"; |
| } |
| } |
| }; |
| |
| // Process session where the process hosts IBinderRpcTest, the server used |
| // for most testing here |
| struct BinderRpcTestProcessSession { |
| ProcessSession proc; |
| |
| // pre-fetched root object (for first session) |
| sp<IBinder> rootBinder; |
| |
| // pre-casted root object (for first session) |
| sp<IBinderRpcTest> rootIface; |
| |
| // whether session should be invalidated by end of run |
| bool expectAlreadyShutdown = false; |
| |
| BinderRpcTestProcessSession(BinderRpcTestProcessSession&&) = default; |
| ~BinderRpcTestProcessSession() { |
| EXPECT_NE(nullptr, rootIface); |
| if (rootIface == nullptr) return; |
| |
| if (!expectAlreadyShutdown) { |
| std::vector<int32_t> remoteCounts; |
| // calling over any sessions counts across all sessions |
| EXPECT_OK(rootIface->countBinders(&remoteCounts)); |
| EXPECT_EQ(remoteCounts.size(), proc.sessions.size()); |
| for (auto remoteCount : remoteCounts) { |
| EXPECT_EQ(remoteCount, 1); |
| } |
| |
| // even though it is on another thread, shutdown races with |
| // the transaction reply being written |
| if (auto status = rootIface->scheduleShutdown(); !status.isOk()) { |
| EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status; |
| } |
| } |
| |
| rootIface = nullptr; |
| rootBinder = nullptr; |
| } |
| }; |
| |
| enum class SocketType { |
| PRECONNECTED, |
| UNIX, |
| VSOCK, |
| INET, |
| }; |
| static inline std::string PrintToString(SocketType socketType) { |
| switch (socketType) { |
| case SocketType::PRECONNECTED: |
| return "preconnected_uds"; |
| case SocketType::UNIX: |
| return "unix_domain_socket"; |
| case SocketType::VSOCK: |
| return "vm_socket"; |
| case SocketType::INET: |
| return "inet_socket"; |
| default: |
| LOG_ALWAYS_FATAL("Unknown socket type"); |
| return ""; |
| } |
| } |
| |
| static base::unique_fd connectTo(const RpcSocketAddress& addr) { |
| base::unique_fd serverFd( |
| TEMP_FAILURE_RETRY(socket(addr.addr()->sa_family, SOCK_STREAM | SOCK_CLOEXEC, 0))); |
| int savedErrno = errno; |
| CHECK(serverFd.ok()) << "Could not create socket " << addr.toString() << ": " |
| << strerror(savedErrno); |
| |
| if (0 != TEMP_FAILURE_RETRY(connect(serverFd.get(), addr.addr(), addr.addrSize()))) { |
| int savedErrno = errno; |
| LOG(FATAL) << "Could not connect to socket " << addr.toString() << ": " |
| << strerror(savedErrno); |
| } |
| return serverFd; |
| } |
| |
| class BinderRpc : public ::testing::TestWithParam<std::tuple<SocketType, RpcSecurity>> { |
| public: |
| struct Options { |
| size_t numThreads = 1; |
| size_t numSessions = 1; |
| size_t numIncomingConnections = 0; |
| size_t numOutgoingConnections = SIZE_MAX; |
| }; |
| |
| static inline std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) { |
| auto [type, security] = info.param; |
| return PrintToString(type) + "_" + newFactory(security)->toCString(); |
| } |
| |
| static inline void writeString(android::base::borrowed_fd fd, std::string_view str) { |
| uint64_t length = str.length(); |
| CHECK(android::base::WriteFully(fd, &length, sizeof(length))); |
| CHECK(android::base::WriteFully(fd, str.data(), str.length())); |
| } |
| |
| static inline std::string readString(android::base::borrowed_fd fd) { |
| uint64_t length; |
| CHECK(android::base::ReadFully(fd, &length, sizeof(length))); |
| std::string ret(length, '\0'); |
| CHECK(android::base::ReadFully(fd, ret.data(), length)); |
| return ret; |
| } |
| |
| static inline void writeToFd(android::base::borrowed_fd fd, const Parcelable& parcelable) { |
| Parcel parcel; |
| CHECK_EQ(OK, parcelable.writeToParcel(&parcel)); |
| writeString(fd, |
| std::string(reinterpret_cast<const char*>(parcel.data()), parcel.dataSize())); |
| } |
| |
| template <typename T> |
| static inline T readFromFd(android::base::borrowed_fd fd) { |
| std::string data = readString(fd); |
| Parcel parcel; |
| CHECK_EQ(OK, parcel.setData(reinterpret_cast<const uint8_t*>(data.data()), data.size())); |
| T object; |
| CHECK_EQ(OK, object.readFromParcel(&parcel)); |
| return object; |
| } |
| |
| // This creates a new process serving an interface on a certain number of |
| // threads. |
| ProcessSession createRpcTestSocketServerProcess( |
| const Options& options, const std::function<void(const sp<RpcServer>&)>& configure) { |
| CHECK_GE(options.numSessions, 1) << "Must have at least one session to a server"; |
| |
| SocketType socketType = std::get<0>(GetParam()); |
| RpcSecurity rpcSecurity = std::get<1>(GetParam()); |
| |
| unsigned int vsockPort = allocateVsockPort(); |
| std::string addr = allocateSocketAddress(); |
| |
| auto ret = ProcessSession{ |
| .host = Process([&](android::base::borrowed_fd writeEnd, |
| android::base::borrowed_fd readEnd) { |
| auto certVerifier = std::make_shared<RpcCertificateVerifierSimple>(); |
| sp<RpcServer> server = RpcServer::make(newFactory(rpcSecurity, certVerifier)); |
| |
| server->setMaxThreads(options.numThreads); |
| |
| unsigned int outPort = 0; |
| |
| switch (socketType) { |
| case SocketType::PRECONNECTED: |
| [[fallthrough]]; |
| case SocketType::UNIX: |
| CHECK_EQ(OK, server->setupUnixDomainServer(addr.c_str())) << addr; |
| break; |
| case SocketType::VSOCK: |
| CHECK_EQ(OK, server->setupVsockServer(vsockPort)); |
| break; |
| case SocketType::INET: { |
| CHECK_EQ(OK, server->setupInetServer(kLocalInetAddress, 0, &outPort)); |
| CHECK_NE(0, outPort); |
| break; |
| } |
| default: |
| LOG_ALWAYS_FATAL("Unknown socket type"); |
| } |
| |
| BinderRpcTestServerInfo serverInfo; |
| serverInfo.port = static_cast<int64_t>(outPort); |
| serverInfo.cert.data = server->getCertificate(RpcCertificateFormat::PEM); |
| writeToFd(writeEnd, serverInfo); |
| auto clientInfo = readFromFd<BinderRpcTestClientInfo>(readEnd); |
| |
| if (rpcSecurity == RpcSecurity::TLS) { |
| for (const auto& clientCert : clientInfo.certs) { |
| CHECK_EQ(OK, |
| certVerifier |
| ->addTrustedPeerCertificate(RpcCertificateFormat::PEM, |
| clientCert.data)); |
| } |
| } |
| |
| configure(server); |
| |
| server->join(); |
| |
| // Another thread calls shutdown. Wait for it to complete. |
| (void)server->shutdown(); |
| }), |
| }; |
| |
| std::vector<sp<RpcSession>> sessions; |
| auto certVerifier = std::make_shared<RpcCertificateVerifierSimple>(); |
| for (size_t i = 0; i < options.numSessions; i++) { |
| sessions.emplace_back(RpcSession::make(newFactory(rpcSecurity, certVerifier))); |
| } |
| |
| auto serverInfo = readFromFd<BinderRpcTestServerInfo>(ret.host.readEnd()); |
| BinderRpcTestClientInfo clientInfo; |
| for (const auto& session : sessions) { |
| auto& parcelableCert = clientInfo.certs.emplace_back(); |
| parcelableCert.data = session->getCertificate(RpcCertificateFormat::PEM); |
| } |
| writeToFd(ret.host.writeEnd(), clientInfo); |
| |
| CHECK_LE(serverInfo.port, std::numeric_limits<unsigned int>::max()); |
| if (socketType == SocketType::INET) { |
| CHECK_NE(0, serverInfo.port); |
| } |
| |
| if (rpcSecurity == RpcSecurity::TLS) { |
| const auto& serverCert = serverInfo.cert.data; |
| CHECK_EQ(OK, |
| certVerifier->addTrustedPeerCertificate(RpcCertificateFormat::PEM, |
| serverCert)); |
| } |
| |
| status_t status; |
| |
| for (const auto& session : sessions) { |
| session->setMaxIncomingThreads(options.numIncomingConnections); |
| session->setMaxOutgoingThreads(options.numOutgoingConnections); |
| |
| switch (socketType) { |
| case SocketType::PRECONNECTED: |
| status = session->setupPreconnectedClient({}, [=]() { |
| return connectTo(UnixSocketAddress(addr.c_str())); |
| }); |
| break; |
| case SocketType::UNIX: |
| status = session->setupUnixDomainClient(addr.c_str()); |
| break; |
| case SocketType::VSOCK: |
| status = session->setupVsockClient(VMADDR_CID_LOCAL, vsockPort); |
| break; |
| case SocketType::INET: |
| status = session->setupInetClient("127.0.0.1", serverInfo.port); |
| break; |
| default: |
| LOG_ALWAYS_FATAL("Unknown socket type"); |
| } |
| CHECK_EQ(status, OK) << "Could not connect: " << statusToString(status); |
| ret.sessions.push_back({session, session->getRootObject()}); |
| } |
| return ret; |
| } |
| |
| BinderRpcTestProcessSession createRpcTestSocketServerProcess(const Options& options) { |
| BinderRpcTestProcessSession ret{ |
| .proc = createRpcTestSocketServerProcess( |
| options, |
| [&](const sp<RpcServer>& server) { |
| server->setPerSessionRootObject([&](const sockaddr* addr, |
| socklen_t len) { |
| sp<MyBinderRpcTest> service = sp<MyBinderRpcTest>::make(); |
| switch (addr->sa_family) { |
| case AF_UNIX: |
| // nothing to save |
| break; |
| case AF_VSOCK: |
| CHECK_EQ(len, sizeof(sockaddr_vm)); |
| service->port = reinterpret_cast<const sockaddr_vm*>(addr) |
| ->svm_port; |
| break; |
| case AF_INET: |
| CHECK_EQ(len, sizeof(sockaddr_in)); |
| service->port = |
| ntohs(reinterpret_cast<const sockaddr_in*>(addr) |
| ->sin_port); |
| break; |
| case AF_INET6: |
| CHECK_EQ(len, sizeof(sockaddr_in)); |
| service->port = |
| ntohs(reinterpret_cast<const sockaddr_in6*>(addr) |
| ->sin6_port); |
| break; |
| default: |
| LOG_ALWAYS_FATAL("Unrecognized address family %d", |
| addr->sa_family); |
| } |
| service->server = server; |
| return service; |
| }); |
| }), |
| }; |
| |
| ret.rootBinder = ret.proc.sessions.at(0).root; |
| ret.rootIface = interface_cast<IBinderRpcTest>(ret.rootBinder); |
| |
| return ret; |
| } |
| |
| void testThreadPoolOverSaturated(sp<IBinderRpcTest> iface, size_t numCalls, |
| size_t sleepMs = 500); |
| }; |
| |
| TEST_P(BinderRpc, Ping) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| ASSERT_NE(proc.rootBinder, nullptr); |
| EXPECT_EQ(OK, proc.rootBinder->pingBinder()); |
| } |
| |
| TEST_P(BinderRpc, GetInterfaceDescriptor) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| ASSERT_NE(proc.rootBinder, nullptr); |
| EXPECT_EQ(IBinderRpcTest::descriptor, proc.rootBinder->getInterfaceDescriptor()); |
| } |
| |
| TEST_P(BinderRpc, MultipleSessions) { |
| auto proc = createRpcTestSocketServerProcess({.numThreads = 1, .numSessions = 5}); |
| for (auto session : proc.proc.sessions) { |
| ASSERT_NE(nullptr, session.root); |
| EXPECT_EQ(OK, session.root->pingBinder()); |
| } |
| } |
| |
| TEST_P(BinderRpc, SeparateRootObject) { |
| SocketType type = std::get<0>(GetParam()); |
| if (type == SocketType::PRECONNECTED || type == SocketType::UNIX) { |
| // we can't get port numbers for unix sockets |
| return; |
| } |
| |
| auto proc = createRpcTestSocketServerProcess({.numSessions = 2}); |
| |
| int port1 = 0; |
| EXPECT_OK(proc.rootIface->getClientPort(&port1)); |
| |
| sp<IBinderRpcTest> rootIface2 = interface_cast<IBinderRpcTest>(proc.proc.sessions.at(1).root); |
| int port2; |
| EXPECT_OK(rootIface2->getClientPort(&port2)); |
| |
| // we should have a different IBinderRpcTest object created for each |
| // session, because we use setPerSessionRootObject |
| EXPECT_NE(port1, port2); |
| } |
| |
| TEST_P(BinderRpc, TransactionsMustBeMarkedRpc) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| Parcel data; |
| Parcel reply; |
| EXPECT_EQ(BAD_TYPE, proc.rootBinder->transact(IBinder::PING_TRANSACTION, data, &reply, 0)); |
| } |
| |
| TEST_P(BinderRpc, AppendSeparateFormats) { |
| auto proc1 = createRpcTestSocketServerProcess({}); |
| auto proc2 = createRpcTestSocketServerProcess({}); |
| |
| Parcel pRaw; |
| |
| Parcel p1; |
| p1.markForBinder(proc1.rootBinder); |
| p1.writeInt32(3); |
| |
| EXPECT_EQ(BAD_TYPE, p1.appendFrom(&pRaw, 0, p1.dataSize())); |
| EXPECT_EQ(BAD_TYPE, pRaw.appendFrom(&p1, 0, p1.dataSize())); |
| |
| Parcel p2; |
| p2.markForBinder(proc2.rootBinder); |
| p2.writeInt32(7); |
| |
| EXPECT_EQ(BAD_TYPE, p1.appendFrom(&p2, 0, p2.dataSize())); |
| EXPECT_EQ(BAD_TYPE, p2.appendFrom(&p1, 0, p1.dataSize())); |
| } |
| |
| TEST_P(BinderRpc, UnknownTransaction) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| Parcel data; |
| data.markForBinder(proc.rootBinder); |
| Parcel reply; |
| EXPECT_EQ(UNKNOWN_TRANSACTION, proc.rootBinder->transact(1337, data, &reply, 0)); |
| } |
| |
| TEST_P(BinderRpc, SendSomethingOneway) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| EXPECT_OK(proc.rootIface->sendString("asdf")); |
| } |
| |
| TEST_P(BinderRpc, SendAndGetResultBack) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| std::string doubled; |
| EXPECT_OK(proc.rootIface->doubleString("cool ", &doubled)); |
| EXPECT_EQ("cool cool ", doubled); |
| } |
| |
| TEST_P(BinderRpc, SendAndGetResultBackBig) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| std::string single = std::string(1024, 'a'); |
| std::string doubled; |
| EXPECT_OK(proc.rootIface->doubleString(single, &doubled)); |
| EXPECT_EQ(single + single, doubled); |
| } |
| |
| TEST_P(BinderRpc, CallMeBack) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| int32_t pingResult; |
| EXPECT_OK(proc.rootIface->pingMe(new MyBinderRpcSession("foo"), &pingResult)); |
| EXPECT_EQ(OK, pingResult); |
| |
| EXPECT_EQ(0, MyBinderRpcSession::gNum); |
| } |
| |
| TEST_P(BinderRpc, RepeatBinder) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinder> inBinder = new MyBinderRpcSession("foo"); |
| sp<IBinder> outBinder; |
| EXPECT_OK(proc.rootIface->repeatBinder(inBinder, &outBinder)); |
| EXPECT_EQ(inBinder, outBinder); |
| |
| wp<IBinder> weak = inBinder; |
| inBinder = nullptr; |
| outBinder = nullptr; |
| |
| // Force reading a reply, to process any pending dec refs from the other |
| // process (the other process will process dec refs there before processing |
| // the ping here). |
| EXPECT_EQ(OK, proc.rootBinder->pingBinder()); |
| |
| EXPECT_EQ(nullptr, weak.promote()); |
| |
| EXPECT_EQ(0, MyBinderRpcSession::gNum); |
| } |
| |
| TEST_P(BinderRpc, RepeatTheirBinder) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinderRpcSession> session; |
| EXPECT_OK(proc.rootIface->openSession("aoeu", &session)); |
| |
| sp<IBinder> inBinder = IInterface::asBinder(session); |
| sp<IBinder> outBinder; |
| EXPECT_OK(proc.rootIface->repeatBinder(inBinder, &outBinder)); |
| EXPECT_EQ(inBinder, outBinder); |
| |
| wp<IBinder> weak = inBinder; |
| session = nullptr; |
| inBinder = nullptr; |
| outBinder = nullptr; |
| |
| // Force reading a reply, to process any pending dec refs from the other |
| // process (the other process will process dec refs there before processing |
| // the ping here). |
| EXPECT_EQ(OK, proc.rootBinder->pingBinder()); |
| |
| EXPECT_EQ(nullptr, weak.promote()); |
| } |
| |
| TEST_P(BinderRpc, RepeatBinderNull) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinder> outBinder; |
| EXPECT_OK(proc.rootIface->repeatBinder(nullptr, &outBinder)); |
| EXPECT_EQ(nullptr, outBinder); |
| } |
| |
| TEST_P(BinderRpc, HoldBinder) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| IBinder* ptr = nullptr; |
| { |
| sp<IBinder> binder = new BBinder(); |
| ptr = binder.get(); |
| EXPECT_OK(proc.rootIface->holdBinder(binder)); |
| } |
| |
| sp<IBinder> held; |
| EXPECT_OK(proc.rootIface->getHeldBinder(&held)); |
| |
| EXPECT_EQ(held.get(), ptr); |
| |
| // stop holding binder, because we test to make sure references are cleaned |
| // up |
| EXPECT_OK(proc.rootIface->holdBinder(nullptr)); |
| // and flush ref counts |
| EXPECT_EQ(OK, proc.rootBinder->pingBinder()); |
| } |
| |
| // START TESTS FOR LIMITATIONS OF SOCKET BINDER |
| // These are behavioral differences form regular binder, where certain usecases |
| // aren't supported. |
| |
| TEST_P(BinderRpc, CannotMixBindersBetweenUnrelatedSocketSessions) { |
| auto proc1 = createRpcTestSocketServerProcess({}); |
| auto proc2 = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinder> outBinder; |
| EXPECT_EQ(INVALID_OPERATION, |
| proc1.rootIface->repeatBinder(proc2.rootBinder, &outBinder).transactionError()); |
| } |
| |
| TEST_P(BinderRpc, CannotMixBindersBetweenTwoSessionsToTheSameServer) { |
| auto proc = createRpcTestSocketServerProcess({.numThreads = 1, .numSessions = 2}); |
| |
| sp<IBinder> outBinder; |
| EXPECT_EQ(INVALID_OPERATION, |
| proc.rootIface->repeatBinder(proc.proc.sessions.at(1).root, &outBinder) |
| .transactionError()); |
| } |
| |
| TEST_P(BinderRpc, CannotSendRegularBinderOverSocketBinder) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinder> someRealBinder = IInterface::asBinder(defaultServiceManager()); |
| sp<IBinder> outBinder; |
| EXPECT_EQ(INVALID_OPERATION, |
| proc.rootIface->repeatBinder(someRealBinder, &outBinder).transactionError()); |
| } |
| |
| TEST_P(BinderRpc, CannotSendSocketBinderOverRegularBinder) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| // for historical reasons, IServiceManager interface only returns the |
| // exception code |
| EXPECT_EQ(binder::Status::EX_TRANSACTION_FAILED, |
| defaultServiceManager()->addService(String16("not_suspicious"), proc.rootBinder)); |
| } |
| |
| // END TESTS FOR LIMITATIONS OF SOCKET BINDER |
| |
| TEST_P(BinderRpc, RepeatRootObject) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinder> outBinder; |
| EXPECT_OK(proc.rootIface->repeatBinder(proc.rootBinder, &outBinder)); |
| EXPECT_EQ(proc.rootBinder, outBinder); |
| } |
| |
| TEST_P(BinderRpc, NestedTransactions) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| auto nastyNester = sp<MyBinderRpcTest>::make(); |
| EXPECT_OK(proc.rootIface->nestMe(nastyNester, 10)); |
| |
| wp<IBinder> weak = nastyNester; |
| nastyNester = nullptr; |
| EXPECT_EQ(nullptr, weak.promote()); |
| } |
| |
| TEST_P(BinderRpc, SameBinderEquality) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinder> a; |
| EXPECT_OK(proc.rootIface->alwaysGiveMeTheSameBinder(&a)); |
| |
| sp<IBinder> b; |
| EXPECT_OK(proc.rootIface->alwaysGiveMeTheSameBinder(&b)); |
| |
| EXPECT_EQ(a, b); |
| } |
| |
| TEST_P(BinderRpc, SameBinderEqualityWeak) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinder> a; |
| EXPECT_OK(proc.rootIface->alwaysGiveMeTheSameBinder(&a)); |
| wp<IBinder> weak = a; |
| a = nullptr; |
| |
| sp<IBinder> b; |
| EXPECT_OK(proc.rootIface->alwaysGiveMeTheSameBinder(&b)); |
| |
| // this is the wrong behavior, since BpBinder |
| // doesn't implement onIncStrongAttempted |
| // but make sure there is no crash |
| EXPECT_EQ(nullptr, weak.promote()); |
| |
| GTEST_SKIP() << "Weak binders aren't currently re-promotable for RPC binder."; |
| |
| // In order to fix this: |
| // - need to have incStrongAttempted reflected across IPC boundary (wait for |
| // response to promote - round trip...) |
| // - sendOnLastWeakRef, to delete entries out of RpcState table |
| EXPECT_EQ(b, weak.promote()); |
| } |
| |
| #define expectSessions(expected, iface) \ |
| do { \ |
| int session; \ |
| EXPECT_OK((iface)->getNumOpenSessions(&session)); \ |
| EXPECT_EQ(expected, session); \ |
| } while (false) |
| |
| TEST_P(BinderRpc, SingleSession) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| sp<IBinderRpcSession> session; |
| EXPECT_OK(proc.rootIface->openSession("aoeu", &session)); |
| std::string out; |
| EXPECT_OK(session->getName(&out)); |
| EXPECT_EQ("aoeu", out); |
| |
| expectSessions(1, proc.rootIface); |
| session = nullptr; |
| expectSessions(0, proc.rootIface); |
| } |
| |
| TEST_P(BinderRpc, ManySessions) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| std::vector<sp<IBinderRpcSession>> sessions; |
| |
| for (size_t i = 0; i < 15; i++) { |
| expectSessions(i, proc.rootIface); |
| sp<IBinderRpcSession> session; |
| EXPECT_OK(proc.rootIface->openSession(std::to_string(i), &session)); |
| sessions.push_back(session); |
| } |
| expectSessions(sessions.size(), proc.rootIface); |
| for (size_t i = 0; i < sessions.size(); i++) { |
| std::string out; |
| EXPECT_OK(sessions.at(i)->getName(&out)); |
| EXPECT_EQ(std::to_string(i), out); |
| } |
| expectSessions(sessions.size(), proc.rootIface); |
| |
| while (!sessions.empty()) { |
| sessions.pop_back(); |
| expectSessions(sessions.size(), proc.rootIface); |
| } |
| expectSessions(0, proc.rootIface); |
| } |
| |
| size_t epochMillis() { |
| using std::chrono::duration_cast; |
| using std::chrono::milliseconds; |
| using std::chrono::seconds; |
| using std::chrono::system_clock; |
| return duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count(); |
| } |
| |
| TEST_P(BinderRpc, ThreadPoolGreaterThanEqualRequested) { |
| constexpr size_t kNumThreads = 10; |
| |
| auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads}); |
| |
| EXPECT_OK(proc.rootIface->lock()); |
| |
| // block all but one thread taking locks |
| std::vector<std::thread> ts; |
| for (size_t i = 0; i < kNumThreads - 1; i++) { |
| ts.push_back(std::thread([&] { proc.rootIface->lockUnlock(); })); |
| } |
| |
| usleep(100000); // give chance for calls on other threads |
| |
| // other calls still work |
| EXPECT_EQ(OK, proc.rootBinder->pingBinder()); |
| |
| constexpr size_t blockTimeMs = 500; |
| size_t epochMsBefore = epochMillis(); |
| // after this, we should never see a response within this time |
| EXPECT_OK(proc.rootIface->unlockInMsAsync(blockTimeMs)); |
| |
| // this call should be blocked for blockTimeMs |
| EXPECT_EQ(OK, proc.rootBinder->pingBinder()); |
| |
| size_t epochMsAfter = epochMillis(); |
| EXPECT_GE(epochMsAfter, epochMsBefore + blockTimeMs) << epochMsBefore; |
| |
| for (auto& t : ts) t.join(); |
| } |
| |
| void BinderRpc::testThreadPoolOverSaturated(sp<IBinderRpcTest> iface, size_t numCalls, |
| size_t sleepMs) { |
| size_t epochMsBefore = epochMillis(); |
| |
| std::vector<std::thread> ts; |
| for (size_t i = 0; i < numCalls; i++) { |
| ts.push_back(std::thread([&] { iface->sleepMs(sleepMs); })); |
| } |
| |
| for (auto& t : ts) t.join(); |
| |
| size_t epochMsAfter = epochMillis(); |
| |
| EXPECT_GE(epochMsAfter, epochMsBefore + 2 * sleepMs); |
| |
| // Potential flake, but make sure calls are handled in parallel. |
| EXPECT_LE(epochMsAfter, epochMsBefore + 3 * sleepMs); |
| } |
| |
| TEST_P(BinderRpc, ThreadPoolOverSaturated) { |
| constexpr size_t kNumThreads = 10; |
| constexpr size_t kNumCalls = kNumThreads + 3; |
| auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads}); |
| testThreadPoolOverSaturated(proc.rootIface, kNumCalls); |
| } |
| |
| TEST_P(BinderRpc, ThreadPoolLimitOutgoing) { |
| constexpr size_t kNumThreads = 20; |
| constexpr size_t kNumOutgoingConnections = 10; |
| constexpr size_t kNumCalls = kNumOutgoingConnections + 3; |
| auto proc = createRpcTestSocketServerProcess( |
| {.numThreads = kNumThreads, .numOutgoingConnections = kNumOutgoingConnections}); |
| testThreadPoolOverSaturated(proc.rootIface, kNumCalls); |
| } |
| |
| TEST_P(BinderRpc, ThreadingStressTest) { |
| constexpr size_t kNumClientThreads = 10; |
| constexpr size_t kNumServerThreads = 10; |
| constexpr size_t kNumCalls = 100; |
| |
| auto proc = createRpcTestSocketServerProcess({.numThreads = kNumServerThreads}); |
| |
| std::vector<std::thread> threads; |
| for (size_t i = 0; i < kNumClientThreads; i++) { |
| threads.push_back(std::thread([&] { |
| for (size_t j = 0; j < kNumCalls; j++) { |
| sp<IBinder> out; |
| EXPECT_OK(proc.rootIface->repeatBinder(proc.rootBinder, &out)); |
| EXPECT_EQ(proc.rootBinder, out); |
| } |
| })); |
| } |
| |
| for (auto& t : threads) t.join(); |
| } |
| |
| static void saturateThreadPool(size_t threadCount, const sp<IBinderRpcTest>& iface) { |
| std::vector<std::thread> threads; |
| for (size_t i = 0; i < threadCount; i++) { |
| threads.push_back(std::thread([&] { EXPECT_OK(iface->sleepMs(500)); })); |
| } |
| for (auto& t : threads) t.join(); |
| } |
| |
| TEST_P(BinderRpc, OnewayStressTest) { |
| constexpr size_t kNumClientThreads = 10; |
| constexpr size_t kNumServerThreads = 10; |
| constexpr size_t kNumCalls = 1000; |
| |
| auto proc = createRpcTestSocketServerProcess({.numThreads = kNumServerThreads}); |
| |
| std::vector<std::thread> threads; |
| for (size_t i = 0; i < kNumClientThreads; i++) { |
| threads.push_back(std::thread([&] { |
| for (size_t j = 0; j < kNumCalls; j++) { |
| EXPECT_OK(proc.rootIface->sendString("a")); |
| } |
| })); |
| } |
| |
| for (auto& t : threads) t.join(); |
| |
| saturateThreadPool(kNumServerThreads, proc.rootIface); |
| } |
| |
| TEST_P(BinderRpc, OnewayCallDoesNotWait) { |
| constexpr size_t kReallyLongTimeMs = 100; |
| constexpr size_t kSleepMs = kReallyLongTimeMs * 5; |
| |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| size_t epochMsBefore = epochMillis(); |
| |
| EXPECT_OK(proc.rootIface->sleepMsAsync(kSleepMs)); |
| |
| size_t epochMsAfter = epochMillis(); |
| EXPECT_LT(epochMsAfter, epochMsBefore + kReallyLongTimeMs); |
| } |
| |
| TEST_P(BinderRpc, OnewayCallQueueing) { |
| constexpr size_t kNumSleeps = 10; |
| constexpr size_t kNumExtraServerThreads = 4; |
| constexpr size_t kSleepMs = 50; |
| |
| // make sure calls to the same object happen on the same thread |
| auto proc = createRpcTestSocketServerProcess({.numThreads = 1 + kNumExtraServerThreads}); |
| |
| EXPECT_OK(proc.rootIface->lock()); |
| |
| size_t epochMsBefore = epochMillis(); |
| |
| // all these *Async commands should be queued on the server sequentially, |
| // even though there are multiple threads. |
| for (size_t i = 0; i + 1 < kNumSleeps; i++) { |
| proc.rootIface->sleepMsAsync(kSleepMs); |
| } |
| EXPECT_OK(proc.rootIface->unlockInMsAsync(kSleepMs)); |
| |
| // this can only return once the final async call has unlocked |
| EXPECT_OK(proc.rootIface->lockUnlock()); |
| |
| size_t epochMsAfter = epochMillis(); |
| |
| EXPECT_GT(epochMsAfter, epochMsBefore + kSleepMs * kNumSleeps); |
| |
| saturateThreadPool(1 + kNumExtraServerThreads, proc.rootIface); |
| } |
| |
| TEST_P(BinderRpc, OnewayCallExhaustion) { |
| constexpr size_t kNumClients = 2; |
| constexpr size_t kTooLongMs = 1000; |
| |
| auto proc = createRpcTestSocketServerProcess({.numThreads = kNumClients, .numSessions = 2}); |
| |
| // Build up oneway calls on the second session to make sure it terminates |
| // and shuts down. The first session should be unaffected (proc destructor |
| // checks the first session). |
| auto iface = interface_cast<IBinderRpcTest>(proc.proc.sessions.at(1).root); |
| |
| std::vector<std::thread> threads; |
| for (size_t i = 0; i < kNumClients; i++) { |
| // one of these threads will get stuck queueing a transaction once the |
| // socket fills up, the other will be able to fill up transactions on |
| // this object |
| threads.push_back(std::thread([&] { |
| while (iface->sleepMsAsync(kTooLongMs).isOk()) { |
| } |
| })); |
| } |
| for (auto& t : threads) t.join(); |
| |
| Status status = iface->sleepMsAsync(kTooLongMs); |
| EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status; |
| |
| // now that it has died, wait for the remote session to shutdown |
| std::vector<int32_t> remoteCounts; |
| do { |
| EXPECT_OK(proc.rootIface->countBinders(&remoteCounts)); |
| } while (remoteCounts.size() == kNumClients); |
| |
| // the second session should be shutdown in the other process by the time we |
| // are able to join above (it'll only be hung up once it finishes processing |
| // any pending commands). We need to erase this session from the record |
| // here, so that the destructor for our session won't check that this |
| // session is valid, but we still want it to test the other session. |
| proc.proc.sessions.erase(proc.proc.sessions.begin() + 1); |
| } |
| |
| TEST_P(BinderRpc, Callbacks) { |
| const static std::string kTestString = "good afternoon!"; |
| |
| for (bool callIsOneway : {true, false}) { |
| for (bool callbackIsOneway : {true, false}) { |
| for (bool delayed : {true, false}) { |
| auto proc = createRpcTestSocketServerProcess( |
| {.numThreads = 1, .numSessions = 1, .numIncomingConnections = 1}); |
| auto cb = sp<MyBinderRpcCallback>::make(); |
| |
| if (callIsOneway) { |
| EXPECT_OK(proc.rootIface->doCallbackAsync(cb, callbackIsOneway, delayed, |
| kTestString)); |
| } else { |
| EXPECT_OK( |
| proc.rootIface->doCallback(cb, callbackIsOneway, delayed, kTestString)); |
| } |
| |
| using std::literals::chrono_literals::operator""s; |
| std::unique_lock<std::mutex> _l(cb->mMutex); |
| cb->mCv.wait_for(_l, 1s, [&] { return !cb->mValues.empty(); }); |
| |
| EXPECT_EQ(cb->mValues.size(), 1) |
| << "callIsOneway: " << callIsOneway |
| << " callbackIsOneway: " << callbackIsOneway << " delayed: " << delayed; |
| if (cb->mValues.empty()) continue; |
| EXPECT_EQ(cb->mValues.at(0), kTestString) |
| << "callIsOneway: " << callIsOneway |
| << " callbackIsOneway: " << callbackIsOneway << " delayed: " << delayed; |
| |
| // since we are severing the connection, we need to go ahead and |
| // tell the server to shutdown and exit so that waitpid won't hang |
| if (auto status = proc.rootIface->scheduleShutdown(); !status.isOk()) { |
| EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status; |
| } |
| |
| // since this session has an incoming connection w/ a threadpool, we |
| // need to manually shut it down |
| EXPECT_TRUE(proc.proc.sessions.at(0).session->shutdownAndWait(true)); |
| |
| proc.expectAlreadyShutdown = true; |
| } |
| } |
| } |
| } |
| |
| TEST_P(BinderRpc, OnewayCallbackWithNoThread) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| auto cb = sp<MyBinderRpcCallback>::make(); |
| |
| Status status = proc.rootIface->doCallback(cb, true /*oneway*/, false /*delayed*/, "anything"); |
| EXPECT_EQ(WOULD_BLOCK, status.transactionError()); |
| } |
| |
| TEST_P(BinderRpc, Die) { |
| for (bool doDeathCleanup : {true, false}) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| // make sure there is some state during crash |
| // 1. we hold their binder |
| sp<IBinderRpcSession> session; |
| EXPECT_OK(proc.rootIface->openSession("happy", &session)); |
| // 2. they hold our binder |
| sp<IBinder> binder = new BBinder(); |
| EXPECT_OK(proc.rootIface->holdBinder(binder)); |
| |
| EXPECT_EQ(DEAD_OBJECT, proc.rootIface->die(doDeathCleanup).transactionError()) |
| << "Do death cleanup: " << doDeathCleanup; |
| |
| proc.expectAlreadyShutdown = true; |
| } |
| } |
| |
| TEST_P(BinderRpc, UseKernelBinderCallingId) { |
| bool okToFork = ProcessState::selfOrNull() == nullptr; |
| |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| // If this process has used ProcessState already, then the forked process |
| // cannot use it at all. If this process hasn't used it (depending on the |
| // order tests are run), then the forked process can use it, and we'll only |
| // catch the invalid usage the second time. Such is the burden of global |
| // state! |
| if (okToFork) { |
| // we can't allocate IPCThreadState so actually the first time should |
| // succeed :( |
| EXPECT_OK(proc.rootIface->useKernelBinderCallingId()); |
| } |
| |
| // second time! we catch the error :) |
| EXPECT_EQ(DEAD_OBJECT, proc.rootIface->useKernelBinderCallingId().transactionError()); |
| |
| proc.expectAlreadyShutdown = true; |
| } |
| |
| TEST_P(BinderRpc, WorksWithLibbinderNdkPing) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(proc.rootBinder)); |
| ASSERT_NE(binder, nullptr); |
| |
| ASSERT_EQ(STATUS_OK, AIBinder_ping(binder.get())); |
| } |
| |
| TEST_P(BinderRpc, WorksWithLibbinderNdkUserTransaction) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| |
| ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(proc.rootBinder)); |
| ASSERT_NE(binder, nullptr); |
| |
| auto ndkBinder = aidl::IBinderRpcTest::fromBinder(binder); |
| ASSERT_NE(ndkBinder, nullptr); |
| |
| std::string out; |
| ndk::ScopedAStatus status = ndkBinder->doubleString("aoeu", &out); |
| ASSERT_TRUE(status.isOk()) << status.getDescription(); |
| ASSERT_EQ("aoeuaoeu", out); |
| } |
| |
| ssize_t countFds() { |
| DIR* dir = opendir("/proc/self/fd/"); |
| if (dir == nullptr) return -1; |
| ssize_t ret = 0; |
| dirent* ent; |
| while ((ent = readdir(dir)) != nullptr) ret++; |
| closedir(dir); |
| return ret; |
| } |
| |
| TEST_P(BinderRpc, Fds) { |
| ssize_t beforeFds = countFds(); |
| ASSERT_GE(beforeFds, 0); |
| { |
| auto proc = createRpcTestSocketServerProcess({.numThreads = 10}); |
| ASSERT_EQ(OK, proc.rootBinder->pingBinder()); |
| } |
| ASSERT_EQ(beforeFds, countFds()) << (system("ls -l /proc/self/fd/"), "fd leak?"); |
| } |
| |
| TEST_P(BinderRpc, AidlDelegatorTest) { |
| auto proc = createRpcTestSocketServerProcess({}); |
| auto myDelegator = sp<IBinderRpcTestDelegator>::make(proc.rootIface); |
| ASSERT_NE(nullptr, myDelegator); |
| |
| std::string doubled; |
| EXPECT_OK(myDelegator->doubleString("cool ", &doubled)); |
| EXPECT_EQ("cool cool ", doubled); |
| } |
| |
| static bool testSupportVsockLoopback() { |
| // We don't need to enable TLS to know if vsock is supported. |
| unsigned int vsockPort = allocateVsockPort(); |
| sp<RpcServer> server = RpcServer::make(RpcTransportCtxFactoryRaw::make()); |
| if (status_t status = server->setupVsockServer(vsockPort); status != OK) { |
| if (status == -EAFNOSUPPORT) { |
| return false; |
| } |
| LOG_ALWAYS_FATAL("Could not setup vsock server: %s", statusToString(status).c_str()); |
| } |
| server->start(); |
| |
| sp<RpcSession> session = RpcSession::make(RpcTransportCtxFactoryRaw::make()); |
| status_t status = session->setupVsockClient(VMADDR_CID_LOCAL, vsockPort); |
| while (!server->shutdown()) usleep(10000); |
| ALOGE("Detected vsock loopback supported: %s", statusToString(status).c_str()); |
| return status == OK; |
| } |
| |
| static std::vector<SocketType> testSocketTypes(bool hasPreconnected = true) { |
| std::vector<SocketType> ret = {SocketType::UNIX, SocketType::INET}; |
| |
| if (hasPreconnected) ret.push_back(SocketType::PRECONNECTED); |
| |
| static bool hasVsockLoopback = testSupportVsockLoopback(); |
| |
| if (hasVsockLoopback) { |
| ret.push_back(SocketType::VSOCK); |
| } |
| |
| return ret; |
| } |
| |
| INSTANTIATE_TEST_CASE_P(PerSocket, BinderRpc, |
| ::testing::Combine(::testing::ValuesIn(testSocketTypes()), |
| ::testing::ValuesIn(RpcSecurityValues())), |
| BinderRpc::PrintParamInfo); |
| |
| class BinderRpcServerRootObject |
| : public ::testing::TestWithParam<std::tuple<bool, bool, RpcSecurity>> {}; |
| |
| TEST_P(BinderRpcServerRootObject, WeakRootObject) { |
| using SetFn = std::function<void(RpcServer*, sp<IBinder>)>; |
| auto setRootObject = [](bool isStrong) -> SetFn { |
| return isStrong ? SetFn(&RpcServer::setRootObject) : SetFn(&RpcServer::setRootObjectWeak); |
| }; |
| |
| auto [isStrong1, isStrong2, rpcSecurity] = GetParam(); |
| auto server = RpcServer::make(newFactory(rpcSecurity)); |
| auto binder1 = sp<BBinder>::make(); |
| IBinder* binderRaw1 = binder1.get(); |
| setRootObject(isStrong1)(server.get(), binder1); |
| EXPECT_EQ(binderRaw1, server->getRootObject()); |
| binder1.clear(); |
| EXPECT_EQ((isStrong1 ? binderRaw1 : nullptr), server->getRootObject()); |
| |
| auto binder2 = sp<BBinder>::make(); |
| IBinder* binderRaw2 = binder2.get(); |
| setRootObject(isStrong2)(server.get(), binder2); |
| EXPECT_EQ(binderRaw2, server->getRootObject()); |
| binder2.clear(); |
| EXPECT_EQ((isStrong2 ? binderRaw2 : nullptr), server->getRootObject()); |
| } |
| |
| INSTANTIATE_TEST_CASE_P(BinderRpc, BinderRpcServerRootObject, |
| ::testing::Combine(::testing::Bool(), ::testing::Bool(), |
| ::testing::ValuesIn(RpcSecurityValues()))); |
| |
| class OneOffSignal { |
| public: |
| // If notify() was previously called, or is called within |duration|, return true; else false. |
| template <typename R, typename P> |
| bool wait(std::chrono::duration<R, P> duration) { |
| std::unique_lock<std::mutex> lock(mMutex); |
| return mCv.wait_for(lock, duration, [this] { return mValue; }); |
| } |
| void notify() { |
| std::unique_lock<std::mutex> lock(mMutex); |
| mValue = true; |
| lock.unlock(); |
| mCv.notify_all(); |
| } |
| |
| private: |
| std::mutex mMutex; |
| std::condition_variable mCv; |
| bool mValue = false; |
| }; |
| |
| TEST_P(BinderRpcSimple, Shutdown) { |
| auto addr = allocateSocketAddress(); |
| auto server = RpcServer::make(newFactory(GetParam())); |
| ASSERT_EQ(OK, server->setupUnixDomainServer(addr.c_str())); |
| auto joinEnds = std::make_shared<OneOffSignal>(); |
| |
| // If things are broken and the thread never stops, don't block other tests. Because the thread |
| // may run after the test finishes, it must not access the stack memory of the test. Hence, |
| // shared pointers are passed. |
| std::thread([server, joinEnds] { |
| server->join(); |
| joinEnds->notify(); |
| }).detach(); |
| |
| bool shutdown = false; |
| for (int i = 0; i < 10 && !shutdown; i++) { |
| usleep(300 * 1000); // 300ms; total 3s |
| if (server->shutdown()) shutdown = true; |
| } |
| ASSERT_TRUE(shutdown) << "server->shutdown() never returns true"; |
| |
| ASSERT_TRUE(joinEnds->wait(2s)) |
| << "After server->shutdown() returns true, join() did not stop after 2s"; |
| } |
| |
| TEST(BinderRpc, Java) { |
| #if !defined(__ANDROID__) |
| GTEST_SKIP() << "This test is only run on Android. Though it can technically run on host on" |
| "createRpcDelegateServiceManager() with a device attached, such test belongs " |
| "to binderHostDeviceTest. Hence, just disable this test on host."; |
| #endif // !__ANDROID__ |
| sp<IServiceManager> sm = defaultServiceManager(); |
| ASSERT_NE(nullptr, sm); |
| // Any Java service with non-empty getInterfaceDescriptor() would do. |
| // Let's pick batteryproperties. |
| auto binder = sm->checkService(String16("batteryproperties")); |
| ASSERT_NE(nullptr, binder); |
| auto descriptor = binder->getInterfaceDescriptor(); |
| ASSERT_GE(descriptor.size(), 0); |
| ASSERT_EQ(OK, binder->pingBinder()); |
| |
| auto rpcServer = RpcServer::make(); |
| unsigned int port; |
| ASSERT_EQ(OK, rpcServer->setupInetServer(kLocalInetAddress, 0, &port)); |
| auto socket = rpcServer->releaseServer(); |
| |
| auto keepAlive = sp<BBinder>::make(); |
| auto setRpcClientDebugStatus = binder->setRpcClientDebug(std::move(socket), keepAlive); |
| |
| if (!android::base::GetBoolProperty("ro.debuggable", false) || |
| android::base::GetProperty("ro.build.type", "") == "user") { |
| ASSERT_EQ(INVALID_OPERATION, setRpcClientDebugStatus) |
| << "setRpcClientDebug should return INVALID_OPERATION on non-debuggable or user " |
| "builds, but get " |
| << statusToString(setRpcClientDebugStatus); |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(OK, setRpcClientDebugStatus); |
| |
| auto rpcSession = RpcSession::make(); |
| ASSERT_EQ(OK, rpcSession->setupInetClient("127.0.0.1", port)); |
| auto rpcBinder = rpcSession->getRootObject(); |
| ASSERT_NE(nullptr, rpcBinder); |
| |
| ASSERT_EQ(OK, rpcBinder->pingBinder()); |
| |
| ASSERT_EQ(descriptor, rpcBinder->getInterfaceDescriptor()) |
| << "getInterfaceDescriptor should not crash system_server"; |
| ASSERT_EQ(OK, rpcBinder->pingBinder()); |
| } |
| |
| INSTANTIATE_TEST_CASE_P(BinderRpc, BinderRpcSimple, ::testing::ValuesIn(RpcSecurityValues()), |
| BinderRpcSimple::PrintTestParam); |
| |
| class RpcTransportTestUtils { |
| public: |
| using Param = std::tuple<SocketType, RpcSecurity, std::optional<RpcCertificateFormat>>; |
| using ConnectToServer = std::function<base::unique_fd()>; |
| |
| // A server that handles client socket connections. |
| class Server { |
| public: |
| explicit Server() {} |
| Server(Server&&) = default; |
| ~Server() { shutdownAndWait(); } |
| [[nodiscard]] AssertionResult setUp( |
| const Param& param, |
| std::unique_ptr<RpcAuth> auth = std::make_unique<RpcAuthSelfSigned>()) { |
| auto [socketType, rpcSecurity, certificateFormat] = param; |
| auto rpcServer = RpcServer::make(newFactory(rpcSecurity)); |
| switch (socketType) { |
| case SocketType::PRECONNECTED: { |
| return AssertionFailure() << "Not supported by this test"; |
| } break; |
| case SocketType::UNIX: { |
| auto addr = allocateSocketAddress(); |
| auto status = rpcServer->setupUnixDomainServer(addr.c_str()); |
| if (status != OK) { |
| return AssertionFailure() |
| << "setupUnixDomainServer: " << statusToString(status); |
| } |
| mConnectToServer = [addr] { |
| return connectTo(UnixSocketAddress(addr.c_str())); |
| }; |
| } break; |
| case SocketType::VSOCK: { |
| auto port = allocateVsockPort(); |
| auto status = rpcServer->setupVsockServer(port); |
| if (status != OK) { |
| return AssertionFailure() << "setupVsockServer: " << statusToString(status); |
| } |
| mConnectToServer = [port] { |
| return connectTo(VsockSocketAddress(VMADDR_CID_LOCAL, port)); |
| }; |
| } break; |
| case SocketType::INET: { |
| unsigned int port; |
| auto status = rpcServer->setupInetServer(kLocalInetAddress, 0, &port); |
| if (status != OK) { |
| return AssertionFailure() << "setupInetServer: " << statusToString(status); |
| } |
| mConnectToServer = [port] { |
| const char* addr = kLocalInetAddress; |
| auto aiStart = InetSocketAddress::getAddrInfo(addr, port); |
| if (aiStart == nullptr) return base::unique_fd{}; |
| for (auto ai = aiStart.get(); ai != nullptr; ai = ai->ai_next) { |
| auto fd = connectTo( |
| InetSocketAddress(ai->ai_addr, ai->ai_addrlen, addr, port)); |
| if (fd.ok()) return fd; |
| } |
| ALOGE("None of the socket address resolved for %s:%u can be connected", |
| addr, port); |
| return base::unique_fd{}; |
| }; |
| } |
| } |
| mFd = rpcServer->releaseServer(); |
| if (!mFd.ok()) return AssertionFailure() << "releaseServer returns invalid fd"; |
| mCtx = newFactory(rpcSecurity, mCertVerifier, std::move(auth))->newServerCtx(); |
| if (mCtx == nullptr) return AssertionFailure() << "newServerCtx"; |
| mSetup = true; |
| return AssertionSuccess(); |
| } |
| RpcTransportCtx* getCtx() const { return mCtx.get(); } |
| std::shared_ptr<RpcCertificateVerifierSimple> getCertVerifier() const { |
| return mCertVerifier; |
| } |
| ConnectToServer getConnectToServerFn() { return mConnectToServer; } |
| void start() { |
| LOG_ALWAYS_FATAL_IF(!mSetup, "Call Server::setup first!"); |
| mThread = std::make_unique<std::thread>(&Server::run, this); |
| } |
| void run() { |
| LOG_ALWAYS_FATAL_IF(!mSetup, "Call Server::setup first!"); |
| |
| std::vector<std::thread> threads; |
| while (OK == mFdTrigger->triggerablePoll(mFd, POLLIN)) { |
| base::unique_fd acceptedFd( |
| TEMP_FAILURE_RETRY(accept4(mFd.get(), nullptr, nullptr /*length*/, |
| SOCK_CLOEXEC | SOCK_NONBLOCK))); |
| threads.emplace_back(&Server::handleOne, this, std::move(acceptedFd)); |
| } |
| |
| for (auto& thread : threads) thread.join(); |
| } |
| void handleOne(android::base::unique_fd acceptedFd) { |
| ASSERT_TRUE(acceptedFd.ok()); |
| auto serverTransport = mCtx->newTransport(std::move(acceptedFd), mFdTrigger.get()); |
| if (serverTransport == nullptr) return; // handshake failed |
| ASSERT_TRUE(mPostConnect(serverTransport.get(), mFdTrigger.get())); |
| } |
| void shutdownAndWait() { |
| shutdown(); |
| join(); |
| } |
| void shutdown() { mFdTrigger->trigger(); } |
| |
| void setPostConnect( |
| std::function<AssertionResult(RpcTransport*, FdTrigger* fdTrigger)> fn) { |
| mPostConnect = std::move(fn); |
| } |
| |
| private: |
| std::unique_ptr<std::thread> mThread; |
| ConnectToServer mConnectToServer; |
| std::unique_ptr<FdTrigger> mFdTrigger = FdTrigger::make(); |
| base::unique_fd mFd; |
| std::unique_ptr<RpcTransportCtx> mCtx; |
| std::shared_ptr<RpcCertificateVerifierSimple> mCertVerifier = |
| std::make_shared<RpcCertificateVerifierSimple>(); |
| bool mSetup = false; |
| // The function invoked after connection and handshake. By default, it is |
| // |defaultPostConnect| that sends |kMessage| to the client. |
| std::function<AssertionResult(RpcTransport*, FdTrigger* fdTrigger)> mPostConnect = |
| Server::defaultPostConnect; |
| |
| void join() { |
| if (mThread != nullptr) { |
| mThread->join(); |
| mThread = nullptr; |
| } |
| } |
| |
| static AssertionResult defaultPostConnect(RpcTransport* serverTransport, |
| FdTrigger* fdTrigger) { |
| std::string message(kMessage); |
| iovec messageIov{message.data(), message.size()}; |
| auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1, {}); |
| if (status != OK) return AssertionFailure() << statusToString(status); |
| return AssertionSuccess(); |
| } |
| }; |
| |
| class Client { |
| public: |
| explicit Client(ConnectToServer connectToServer) : mConnectToServer(connectToServer) {} |
| Client(Client&&) = default; |
| [[nodiscard]] AssertionResult setUp(const Param& param) { |
| auto [socketType, rpcSecurity, certificateFormat] = param; |
| mFdTrigger = FdTrigger::make(); |
| mCtx = newFactory(rpcSecurity, mCertVerifier)->newClientCtx(); |
| if (mCtx == nullptr) return AssertionFailure() << "newClientCtx"; |
| return AssertionSuccess(); |
| } |
| RpcTransportCtx* getCtx() const { return mCtx.get(); } |
| std::shared_ptr<RpcCertificateVerifierSimple> getCertVerifier() const { |
| return mCertVerifier; |
| } |
| // connect() and do handshake |
| bool setUpTransport() { |
| mFd = mConnectToServer(); |
| if (!mFd.ok()) return AssertionFailure() << "Cannot connect to server"; |
| mClientTransport = mCtx->newTransport(std::move(mFd), mFdTrigger.get()); |
| return mClientTransport != nullptr; |
| } |
| AssertionResult readMessage(const std::string& expectedMessage = kMessage) { |
| LOG_ALWAYS_FATAL_IF(mClientTransport == nullptr, "setUpTransport not called or failed"); |
| std::string readMessage(expectedMessage.size(), '\0'); |
| iovec readMessageIov{readMessage.data(), readMessage.size()}; |
| status_t readStatus = mClientTransport->interruptableReadFully(mFdTrigger.get(), |
| &readMessageIov, 1, {}); |
| if (readStatus != OK) { |
| return AssertionFailure() << statusToString(readStatus); |
| } |
| if (readMessage != expectedMessage) { |
| return AssertionFailure() |
| << "Expected " << expectedMessage << ", actual " << readMessage; |
| } |
| return AssertionSuccess(); |
| } |
| void run(bool handshakeOk = true, bool readOk = true) { |
| if (!setUpTransport()) { |
| ASSERT_FALSE(handshakeOk) << "newTransport returns nullptr, but it shouldn't"; |
| return; |
| } |
| ASSERT_TRUE(handshakeOk) << "newTransport does not return nullptr, but it should"; |
| ASSERT_EQ(readOk, readMessage()); |
| } |
| |
| private: |
| ConnectToServer mConnectToServer; |
| base::unique_fd mFd; |
| std::unique_ptr<FdTrigger> mFdTrigger = FdTrigger::make(); |
| std::unique_ptr<RpcTransportCtx> mCtx; |
| std::shared_ptr<RpcCertificateVerifierSimple> mCertVerifier = |
| std::make_shared<RpcCertificateVerifierSimple>(); |
| std::unique_ptr<RpcTransport> mClientTransport; |
| }; |
| |
| // Make A trust B. |
| template <typename A, typename B> |
| static status_t trust(RpcSecurity rpcSecurity, |
| std::optional<RpcCertificateFormat> certificateFormat, const A& a, |
| const B& b) { |
| if (rpcSecurity != RpcSecurity::TLS) return OK; |
| LOG_ALWAYS_FATAL_IF(!certificateFormat.has_value()); |
| auto bCert = b->getCtx()->getCertificate(*certificateFormat); |
| return a->getCertVerifier()->addTrustedPeerCertificate(*certificateFormat, bCert); |
| } |
| |
| static constexpr const char* kMessage = "hello"; |
| }; |
| |
| class RpcTransportTest : public testing::TestWithParam<RpcTransportTestUtils::Param> { |
| public: |
| using Server = RpcTransportTestUtils::Server; |
| using Client = RpcTransportTestUtils::Client; |
| static inline std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) { |
| auto [socketType, rpcSecurity, certificateFormat] = info.param; |
| auto ret = PrintToString(socketType) + "_" + newFactory(rpcSecurity)->toCString(); |
| if (certificateFormat.has_value()) ret += "_" + PrintToString(*certificateFormat); |
| return ret; |
| } |
| static std::vector<ParamType> getRpcTranportTestParams() { |
| std::vector<ParamType> ret; |
| for (auto socketType : testSocketTypes(false /* hasPreconnected */)) { |
| for (auto rpcSecurity : RpcSecurityValues()) { |
| switch (rpcSecurity) { |
| case RpcSecurity::RAW: { |
| ret.emplace_back(socketType, rpcSecurity, std::nullopt); |
| } break; |
| case RpcSecurity::TLS: { |
| ret.emplace_back(socketType, rpcSecurity, RpcCertificateFormat::PEM); |
| ret.emplace_back(socketType, rpcSecurity, RpcCertificateFormat::DER); |
| } break; |
| } |
| } |
| } |
| return ret; |
| } |
| template <typename A, typename B> |
| status_t trust(const A& a, const B& b) { |
| auto [socketType, rpcSecurity, certificateFormat] = GetParam(); |
| return RpcTransportTestUtils::trust(rpcSecurity, certificateFormat, a, b); |
| } |
| }; |
| |
| TEST_P(RpcTransportTest, GoodCertificate) { |
| auto server = std::make_unique<Server>(); |
| ASSERT_TRUE(server->setUp(GetParam())); |
| |
| Client client(server->getConnectToServerFn()); |
| ASSERT_TRUE(client.setUp(GetParam())); |
| |
| ASSERT_EQ(OK, trust(&client, server)); |
| ASSERT_EQ(OK, trust(server, &client)); |
| |
| server->start(); |
| client.run(); |
| } |
| |
| TEST_P(RpcTransportTest, MultipleClients) { |
| auto server = std::make_unique<Server>(); |
| ASSERT_TRUE(server->setUp(GetParam())); |
| |
| std::vector<Client> clients; |
| for (int i = 0; i < 2; i++) { |
| auto& client = clients.emplace_back(server->getConnectToServerFn()); |
| ASSERT_TRUE(client.setUp(GetParam())); |
| ASSERT_EQ(OK, trust(&client, server)); |
| ASSERT_EQ(OK, trust(server, &client)); |
| } |
| |
| server->start(); |
| for (auto& client : clients) client.run(); |
| } |
| |
| TEST_P(RpcTransportTest, UntrustedServer) { |
| auto [socketType, rpcSecurity, certificateFormat] = GetParam(); |
| |
| auto untrustedServer = std::make_unique<Server>(); |
| ASSERT_TRUE(untrustedServer->setUp(GetParam())); |
| |
| Client client(untrustedServer->getConnectToServerFn()); |
| ASSERT_TRUE(client.setUp(GetParam())); |
| |
| ASSERT_EQ(OK, trust(untrustedServer, &client)); |
| |
| untrustedServer->start(); |
| |
| // For TLS, this should reject the certificate. For RAW sockets, it should pass because |
| // the client can't verify the server's identity. |
| bool handshakeOk = rpcSecurity != RpcSecurity::TLS; |
| client.run(handshakeOk); |
| } |
| TEST_P(RpcTransportTest, MaliciousServer) { |
| auto [socketType, rpcSecurity, certificateFormat] = GetParam(); |
| auto validServer = std::make_unique<Server>(); |
| ASSERT_TRUE(validServer->setUp(GetParam())); |
| |
| auto maliciousServer = std::make_unique<Server>(); |
| ASSERT_TRUE(maliciousServer->setUp(GetParam())); |
| |
| Client client(maliciousServer->getConnectToServerFn()); |
| ASSERT_TRUE(client.setUp(GetParam())); |
| |
| ASSERT_EQ(OK, trust(&client, validServer)); |
| ASSERT_EQ(OK, trust(validServer, &client)); |
| ASSERT_EQ(OK, trust(maliciousServer, &client)); |
| |
| maliciousServer->start(); |
| |
| // For TLS, this should reject the certificate. For RAW sockets, it should pass because |
| // the client can't verify the server's identity. |
| bool handshakeOk = rpcSecurity != RpcSecurity::TLS; |
| client.run(handshakeOk); |
| } |
| |
| TEST_P(RpcTransportTest, UntrustedClient) { |
| auto [socketType, rpcSecurity, certificateFormat] = GetParam(); |
| auto server = std::make_unique<Server>(); |
| ASSERT_TRUE(server->setUp(GetParam())); |
| |
| Client client(server->getConnectToServerFn()); |
| ASSERT_TRUE(client.setUp(GetParam())); |
| |
| ASSERT_EQ(OK, trust(&client, server)); |
| |
| server->start(); |
| |
| // For TLS, Client should be able to verify server's identity, so client should see |
| // do_handshake() successfully executed. However, server shouldn't be able to verify client's |
| // identity and should drop the connection, so client shouldn't be able to read anything. |
| bool readOk = rpcSecurity != RpcSecurity::TLS; |
| client.run(true, readOk); |
| } |
| |
| TEST_P(RpcTransportTest, MaliciousClient) { |
| auto [socketType, rpcSecurity, certificateFormat] = GetParam(); |
| auto server = std::make_unique<Server>(); |
| ASSERT_TRUE(server->setUp(GetParam())); |
| |
| Client validClient(server->getConnectToServerFn()); |
| ASSERT_TRUE(validClient.setUp(GetParam())); |
| Client maliciousClient(server->getConnectToServerFn()); |
| ASSERT_TRUE(maliciousClient.setUp(GetParam())); |
| |
| ASSERT_EQ(OK, trust(&validClient, server)); |
| ASSERT_EQ(OK, trust(&maliciousClient, server)); |
| |
| server->start(); |
| |
| // See UntrustedClient. |
| bool readOk = rpcSecurity != RpcSecurity::TLS; |
| maliciousClient.run(true, readOk); |
| } |
| |
| TEST_P(RpcTransportTest, Trigger) { |
| std::string msg2 = ", world!"; |
| std::mutex writeMutex; |
| std::condition_variable writeCv; |
| bool shouldContinueWriting = false; |
| auto serverPostConnect = [&](RpcTransport* serverTransport, FdTrigger* fdTrigger) { |
| std::string message(RpcTransportTestUtils::kMessage); |
| iovec messageIov{message.data(), message.size()}; |
| auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1, {}); |
| if (status != OK) return AssertionFailure() << statusToString(status); |
| |
| { |
| std::unique_lock<std::mutex> lock(writeMutex); |
| if (!writeCv.wait_for(lock, 3s, [&] { return shouldContinueWriting; })) { |
| return AssertionFailure() << "write barrier not cleared in time!"; |
| } |
| } |
| |
| iovec msg2Iov{msg2.data(), msg2.size()}; |
| status = serverTransport->interruptableWriteFully(fdTrigger, &msg2Iov, 1, {}); |
| if (status != DEAD_OBJECT) |
| return AssertionFailure() << "When FdTrigger is shut down, interruptableWriteFully " |
| "should return DEAD_OBJECT, but it is " |
| << statusToString(status); |
| return AssertionSuccess(); |
| }; |
| |
| auto server = std::make_unique<Server>(); |
| ASSERT_TRUE(server->setUp(GetParam())); |
| |
| // Set up client |
| Client client(server->getConnectToServerFn()); |
| ASSERT_TRUE(client.setUp(GetParam())); |
| |
| // Exchange keys |
| ASSERT_EQ(OK, trust(&client, server)); |
| ASSERT_EQ(OK, trust(server, &client)); |
| |
| server->setPostConnect(serverPostConnect); |
| |
| server->start(); |
| // connect() to server and do handshake |
| ASSERT_TRUE(client.setUpTransport()); |
| // read the first message. This ensures that server has finished handshake and start handling |
| // client fd. Server thread should pause at writeCv.wait_for(). |
| ASSERT_TRUE(client.readMessage(RpcTransportTestUtils::kMessage)); |
| // Trigger server shutdown after server starts handling client FD. This ensures that the second |
| // write is on an FdTrigger that has been shut down. |
| server->shutdown(); |
| // Continues server thread to write the second message. |
| { |
| std::lock_guard<std::mutex> lock(writeMutex); |
| shouldContinueWriting = true; |
| } |
| writeCv.notify_all(); |
| // After this line, server thread unblocks and attempts to write the second message, but |
| // shutdown is triggered, so write should failed with DEAD_OBJECT. See |serverPostConnect|. |
| // On the client side, second read fails with DEAD_OBJECT |
| ASSERT_FALSE(client.readMessage(msg2)); |
| } |
| |
| INSTANTIATE_TEST_CASE_P(BinderRpc, RpcTransportTest, |
| ::testing::ValuesIn(RpcTransportTest::getRpcTranportTestParams()), |
| RpcTransportTest::PrintParamInfo); |
| |
| class RpcTransportTlsKeyTest |
| : public testing::TestWithParam<std::tuple<SocketType, RpcCertificateFormat, RpcKeyFormat>> { |
| public: |
| template <typename A, typename B> |
| status_t trust(const A& a, const B& b) { |
| auto [socketType, certificateFormat, keyFormat] = GetParam(); |
| return RpcTransportTestUtils::trust(RpcSecurity::TLS, certificateFormat, a, b); |
| } |
| static std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) { |
| auto [socketType, certificateFormat, keyFormat] = info.param; |
| auto ret = PrintToString(socketType) + "_certificate_" + PrintToString(certificateFormat) + |
| "_key_" + PrintToString(keyFormat); |
| return ret; |
| }; |
| }; |
| |
| TEST_P(RpcTransportTlsKeyTest, PreSignedCertificate) { |
| auto [socketType, certificateFormat, keyFormat] = GetParam(); |
| |
| std::vector<uint8_t> pkeyData, certData; |
| { |
| auto pkey = makeKeyPairForSelfSignedCert(); |
| ASSERT_NE(nullptr, pkey); |
| auto cert = makeSelfSignedCert(pkey.get(), kCertValidSeconds); |
| ASSERT_NE(nullptr, cert); |
| pkeyData = serializeUnencryptedPrivatekey(pkey.get(), keyFormat); |
| certData = serializeCertificate(cert.get(), certificateFormat); |
| } |
| |
| auto desPkey = deserializeUnencryptedPrivatekey(pkeyData, keyFormat); |
| auto desCert = deserializeCertificate(certData, certificateFormat); |
| auto auth = std::make_unique<RpcAuthPreSigned>(std::move(desPkey), std::move(desCert)); |
| auto utilsParam = |
| std::make_tuple(socketType, RpcSecurity::TLS, std::make_optional(certificateFormat)); |
| |
| auto server = std::make_unique<RpcTransportTestUtils::Server>(); |
| ASSERT_TRUE(server->setUp(utilsParam, std::move(auth))); |
| |
| RpcTransportTestUtils::Client client(server->getConnectToServerFn()); |
| ASSERT_TRUE(client.setUp(utilsParam)); |
| |
| ASSERT_EQ(OK, trust(&client, server)); |
| ASSERT_EQ(OK, trust(server, &client)); |
| |
| server->start(); |
| client.run(); |
| } |
| |
| INSTANTIATE_TEST_CASE_P( |
| BinderRpc, RpcTransportTlsKeyTest, |
| testing::Combine(testing::ValuesIn(testSocketTypes(false /* hasPreconnected*/)), |
| testing::Values(RpcCertificateFormat::PEM, RpcCertificateFormat::DER), |
| testing::Values(RpcKeyFormat::PEM, RpcKeyFormat::DER)), |
| RpcTransportTlsKeyTest::PrintParamInfo); |
| |
| } // namespace android |
| |
| int main(int argc, char** argv) { |
| ::testing::InitGoogleTest(&argc, argv); |
| android::base::InitLogging(argv, android::base::StderrLogger, android::base::DefaultAborter); |
| |
| return RUN_ALL_TESTS(); |
| } |