| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // TODO(b/129481165): remove the #pragma below and fix conversion issues |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wconversion" |
| |
| //#define LOG_NDEBUG 0 |
| #undef LOG_TAG |
| #define LOG_TAG "Layer" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "Layer.h" |
| |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android/native_window.h> |
| #include <binder/IPCThreadState.h> |
| #include <compositionengine/Display.h> |
| #include <compositionengine/LayerFECompositionState.h> |
| #include <compositionengine/OutputLayer.h> |
| #include <compositionengine/impl/OutputLayerCompositionState.h> |
| #include <cutils/compiler.h> |
| #include <cutils/native_handle.h> |
| #include <cutils/properties.h> |
| #include <gui/BufferItem.h> |
| #include <gui/LayerDebugInfo.h> |
| #include <gui/Surface.h> |
| #include <math.h> |
| #include <private/android_filesystem_config.h> |
| #include <renderengine/RenderEngine.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <sys/types.h> |
| #include <ui/DebugUtils.h> |
| #include <ui/GraphicBuffer.h> |
| #include <ui/PixelFormat.h> |
| #include <utils/Errors.h> |
| #include <utils/Log.h> |
| #include <utils/NativeHandle.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Trace.h> |
| |
| #include <algorithm> |
| #include <mutex> |
| #include <sstream> |
| |
| #include "BufferLayer.h" |
| #include "Colorizer.h" |
| #include "DisplayDevice.h" |
| #include "DisplayHardware/HWComposer.h" |
| #include "EffectLayer.h" |
| #include "FrameTimeline.h" |
| #include "FrameTracer/FrameTracer.h" |
| #include "LayerProtoHelper.h" |
| #include "LayerRejecter.h" |
| #include "MonitoredProducer.h" |
| #include "SurfaceFlinger.h" |
| #include "TimeStats/TimeStats.h" |
| #include "input/InputWindow.h" |
| |
| #define DEBUG_RESIZE 0 |
| |
| namespace android { |
| namespace { |
| constexpr int kDumpTableRowLength = 159; |
| } // namespace |
| |
| using base::StringAppendF; |
| using namespace android::flag_operators; |
| using PresentState = frametimeline::SurfaceFrame::PresentState; |
| |
| std::atomic<int32_t> Layer::sSequence{1}; |
| |
| Layer::Layer(const LayerCreationArgs& args) |
| : mFlinger(args.flinger), |
| mName(args.name), |
| mClientRef(args.client), |
| mWindowType(static_cast<InputWindowInfo::Type>( |
| args.metadata.getInt32(METADATA_WINDOW_TYPE, 0))) { |
| uint32_t layerFlags = 0; |
| if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden; |
| if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque; |
| if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure; |
| if (args.flags & ISurfaceComposerClient::eSkipScreenshot) |
| layerFlags |= layer_state_t::eLayerSkipScreenshot; |
| |
| mCurrentState.active_legacy.w = args.w; |
| mCurrentState.active_legacy.h = args.h; |
| mCurrentState.flags = layerFlags; |
| mCurrentState.active_legacy.transform.set(0, 0); |
| mCurrentState.crop.makeInvalid(); |
| mCurrentState.requestedCrop = mCurrentState.crop; |
| mCurrentState.z = 0; |
| mCurrentState.color.a = 1.0f; |
| mCurrentState.layerStack = 0; |
| mCurrentState.sequence = 0; |
| mCurrentState.requested_legacy = mCurrentState.active_legacy; |
| mCurrentState.width = UINT32_MAX; |
| mCurrentState.height = UINT32_MAX; |
| mCurrentState.transform.set(0, 0); |
| mCurrentState.frameNumber = 0; |
| mCurrentState.bufferTransform = 0; |
| mCurrentState.transformToDisplayInverse = false; |
| mCurrentState.crop.makeInvalid(); |
| mCurrentState.acquireFence = sp<Fence>::make(-1); |
| mCurrentState.acquireFenceTime = std::make_shared<FenceTime>(mCurrentState.acquireFence); |
| mCurrentState.dataspace = ui::Dataspace::UNKNOWN; |
| mCurrentState.hdrMetadata.validTypes = 0; |
| mCurrentState.surfaceDamageRegion = Region::INVALID_REGION; |
| mCurrentState.cornerRadius = 0.0f; |
| mCurrentState.backgroundBlurRadius = 0; |
| mCurrentState.api = -1; |
| mCurrentState.hasColorTransform = false; |
| mCurrentState.colorSpaceAgnostic = false; |
| mCurrentState.frameRateSelectionPriority = PRIORITY_UNSET; |
| mCurrentState.metadata = args.metadata; |
| mCurrentState.shadowRadius = 0.f; |
| mCurrentState.treeHasFrameRateVote = false; |
| mCurrentState.fixedTransformHint = ui::Transform::ROT_INVALID; |
| mCurrentState.frameTimelineInfo = {}; |
| mCurrentState.postTime = -1; |
| |
| if (args.flags & ISurfaceComposerClient::eNoColorFill) { |
| // Set an invalid color so there is no color fill. |
| mCurrentState.color.r = -1.0_hf; |
| mCurrentState.color.g = -1.0_hf; |
| mCurrentState.color.b = -1.0_hf; |
| } |
| |
| // drawing state & current state are identical |
| mDrawingState = mCurrentState; |
| |
| CompositorTiming compositorTiming; |
| args.flinger->getCompositorTiming(&compositorTiming); |
| mFrameEventHistory.initializeCompositorTiming(compositorTiming); |
| mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval); |
| |
| mCallingPid = args.callingPid; |
| mCallingUid = args.callingUid; |
| |
| if (mCallingUid == AID_GRAPHICS || mCallingUid == AID_SYSTEM) { |
| // If the system didn't send an ownerUid, use the callingUid for the ownerUid. |
| mOwnerUid = args.metadata.getInt32(METADATA_OWNER_UID, mCallingUid); |
| mOwnerPid = args.metadata.getInt32(METADATA_OWNER_PID, mCallingPid); |
| } else { |
| // A create layer request from a non system request cannot specify the owner uid |
| mOwnerUid = mCallingUid; |
| mOwnerPid = mCallingPid; |
| } |
| } |
| |
| void Layer::onFirstRef() { |
| mFlinger->onLayerFirstRef(this); |
| } |
| |
| Layer::~Layer() { |
| sp<Client> c(mClientRef.promote()); |
| if (c != 0) { |
| c->detachLayer(this); |
| } |
| |
| mFrameTracker.logAndResetStats(mName); |
| mFlinger->onLayerDestroyed(this); |
| } |
| |
| LayerCreationArgs::LayerCreationArgs(SurfaceFlinger* flinger, sp<Client> client, std::string name, |
| uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata) |
| : flinger(flinger), |
| client(std::move(client)), |
| name(std::move(name)), |
| w(w), |
| h(h), |
| flags(flags), |
| metadata(std::move(metadata)) { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| callingPid = ipc->getCallingPid(); |
| callingUid = ipc->getCallingUid(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // callbacks |
| // --------------------------------------------------------------------------- |
| |
| /* |
| * onLayerDisplayed is only meaningful for BufferLayer, but, is called through |
| * Layer. So, the implementation is done in BufferLayer. When called on a |
| * EffectLayer object, it's essentially a NOP. |
| */ |
| void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {} |
| |
| void Layer::removeRemoteSyncPoints() { |
| for (auto& point : mRemoteSyncPoints) { |
| point->setTransactionApplied(); |
| } |
| mRemoteSyncPoints.clear(); |
| |
| { |
| for (State pendingState : mPendingStates) { |
| pendingState.barrierLayer_legacy = nullptr; |
| } |
| } |
| } |
| |
| void Layer::removeRelativeZ(const std::vector<Layer*>& layersInTree) { |
| if (mCurrentState.zOrderRelativeOf == nullptr) { |
| return; |
| } |
| |
| sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); |
| if (strongRelative == nullptr) { |
| setZOrderRelativeOf(nullptr); |
| return; |
| } |
| |
| if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { |
| strongRelative->removeZOrderRelative(this); |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| setZOrderRelativeOf(nullptr); |
| } |
| } |
| |
| void Layer::removeFromCurrentState() { |
| mRemovedFromCurrentState = true; |
| |
| // Since we are no longer reachable from CurrentState SurfaceFlinger |
| // will no longer invoke doTransaction for us, and so we will |
| // never finish applying transactions. We signal the sync point |
| // now so that another layer will not become indefinitely |
| // blocked. |
| removeRemoteSyncPoints(); |
| |
| { |
| Mutex::Autolock syncLock(mLocalSyncPointMutex); |
| for (auto& point : mLocalSyncPoints) { |
| point->setFrameAvailable(); |
| } |
| mLocalSyncPoints.clear(); |
| } |
| |
| mFlinger->markLayerPendingRemovalLocked(this); |
| } |
| |
| sp<Layer> Layer::getRootLayer() { |
| sp<Layer> parent = getParent(); |
| if (parent == nullptr) { |
| return this; |
| } |
| return parent->getRootLayer(); |
| } |
| |
| void Layer::onRemovedFromCurrentState() { |
| // Use the root layer since we want to maintain the hierarchy for the entire subtree. |
| auto layersInTree = getRootLayer()->getLayersInTree(LayerVector::StateSet::Current); |
| std::sort(layersInTree.begin(), layersInTree.end()); |
| |
| traverse(LayerVector::StateSet::Current, [&](Layer* layer) { |
| layer->removeFromCurrentState(); |
| layer->removeRelativeZ(layersInTree); |
| }); |
| } |
| |
| void Layer::addToCurrentState() { |
| mRemovedFromCurrentState = false; |
| |
| for (const auto& child : mCurrentChildren) { |
| child->addToCurrentState(); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| // set-up |
| // --------------------------------------------------------------------------- |
| |
| bool Layer::getPremultipledAlpha() const { |
| return mPremultipliedAlpha; |
| } |
| |
| sp<IBinder> Layer::getHandle() { |
| Mutex::Autolock _l(mLock); |
| if (mGetHandleCalled) { |
| ALOGE("Get handle called twice" ); |
| return nullptr; |
| } |
| mGetHandleCalled = true; |
| return new Handle(mFlinger, this); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // h/w composer set-up |
| // --------------------------------------------------------------------------- |
| |
| static Rect reduce(const Rect& win, const Region& exclude) { |
| if (CC_LIKELY(exclude.isEmpty())) { |
| return win; |
| } |
| if (exclude.isRect()) { |
| return win.reduce(exclude.getBounds()); |
| } |
| return Region(win).subtract(exclude).getBounds(); |
| } |
| |
| static FloatRect reduce(const FloatRect& win, const Region& exclude) { |
| if (CC_LIKELY(exclude.isEmpty())) { |
| return win; |
| } |
| // Convert through Rect (by rounding) for lack of FloatRegion |
| return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); |
| } |
| |
| Rect Layer::getScreenBounds(bool reduceTransparentRegion) const { |
| if (!reduceTransparentRegion) { |
| return Rect{mScreenBounds}; |
| } |
| |
| FloatRect bounds = getBounds(); |
| ui::Transform t = getTransform(); |
| // Transform to screen space. |
| bounds = t.transform(bounds); |
| return Rect{bounds}; |
| } |
| |
| FloatRect Layer::getBounds() const { |
| const State& s(getDrawingState()); |
| return getBounds(getActiveTransparentRegion(s)); |
| } |
| |
| FloatRect Layer::getBounds(const Region& activeTransparentRegion) const { |
| // Subtract the transparent region and snap to the bounds. |
| return reduce(mBounds, activeTransparentRegion); |
| } |
| |
| ui::Transform Layer::getBufferScaleTransform() const { |
| // If the layer is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g. |
| // it isFixedSize) then there may be additional scaling not accounted |
| // for in the layer transform. |
| if (!isFixedSize() || getBuffer() == nullptr) { |
| return {}; |
| } |
| |
| // If the layer is a buffer state layer, the active width and height |
| // could be infinite. In that case, return the effective transform. |
| const uint32_t activeWidth = getActiveWidth(getDrawingState()); |
| const uint32_t activeHeight = getActiveHeight(getDrawingState()); |
| if (activeWidth >= UINT32_MAX && activeHeight >= UINT32_MAX) { |
| return {}; |
| } |
| |
| int bufferWidth = getBuffer()->getWidth(); |
| int bufferHeight = getBuffer()->getHeight(); |
| |
| if (getBufferTransform() & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| std::swap(bufferWidth, bufferHeight); |
| } |
| |
| float sx = activeWidth / static_cast<float>(bufferWidth); |
| float sy = activeHeight / static_cast<float>(bufferHeight); |
| |
| ui::Transform extraParentScaling; |
| extraParentScaling.set(sx, 0, 0, sy); |
| return extraParentScaling; |
| } |
| |
| ui::Transform Layer::getTransformWithScale(const ui::Transform& bufferScaleTransform) const { |
| // We need to mirror this scaling to child surfaces or we will break the contract where WM can |
| // treat child surfaces as pixels in the parent surface. |
| if (!isFixedSize() || getBuffer() == nullptr) { |
| return mEffectiveTransform; |
| } |
| return mEffectiveTransform * bufferScaleTransform; |
| } |
| |
| FloatRect Layer::getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const { |
| // We need the pre scaled layer bounds when computing child bounds to make sure the child is |
| // cropped to its parent layer after any buffer transform scaling is applied. |
| if (!isFixedSize() || getBuffer() == nullptr) { |
| return mBounds; |
| } |
| return bufferScaleTransform.inverse().transform(mBounds); |
| } |
| |
| void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform, |
| float parentShadowRadius) { |
| const State& s(getDrawingState()); |
| |
| // Calculate effective layer transform |
| mEffectiveTransform = parentTransform * getActiveTransform(s); |
| |
| // Transform parent bounds to layer space |
| parentBounds = getActiveTransform(s).inverse().transform(parentBounds); |
| |
| // Calculate source bounds |
| mSourceBounds = computeSourceBounds(parentBounds); |
| |
| // Calculate bounds by croping diplay frame with layer crop and parent bounds |
| FloatRect bounds = mSourceBounds; |
| const Rect layerCrop = getCrop(s); |
| if (!layerCrop.isEmpty()) { |
| bounds = mSourceBounds.intersect(layerCrop.toFloatRect()); |
| } |
| bounds = bounds.intersect(parentBounds); |
| |
| mBounds = bounds; |
| mScreenBounds = mEffectiveTransform.transform(mBounds); |
| |
| // Use the layer's own shadow radius if set. Otherwise get the radius from |
| // parent. |
| if (s.shadowRadius > 0.f) { |
| mEffectiveShadowRadius = s.shadowRadius; |
| } else { |
| mEffectiveShadowRadius = parentShadowRadius; |
| } |
| |
| // Shadow radius is passed down to only one layer so if the layer can draw shadows, |
| // don't pass it to its children. |
| const float childShadowRadius = canDrawShadows() ? 0.f : mEffectiveShadowRadius; |
| |
| // Add any buffer scaling to the layer's children. |
| ui::Transform bufferScaleTransform = getBufferScaleTransform(); |
| for (const sp<Layer>& child : mDrawingChildren) { |
| child->computeBounds(getBoundsPreScaling(bufferScaleTransform), |
| getTransformWithScale(bufferScaleTransform), childShadowRadius); |
| } |
| } |
| |
| Rect Layer::getCroppedBufferSize(const State& s) const { |
| Rect size = getBufferSize(s); |
| Rect crop = getCrop(s); |
| if (!crop.isEmpty() && size.isValid()) { |
| size.intersect(crop, &size); |
| } else if (!crop.isEmpty()) { |
| size = crop; |
| } |
| return size; |
| } |
| |
| void Layer::setupRoundedCornersCropCoordinates(Rect win, |
| const FloatRect& roundedCornersCrop) const { |
| // Translate win by the rounded corners rect coordinates, to have all values in |
| // layer coordinate space. |
| win.left -= roundedCornersCrop.left; |
| win.right -= roundedCornersCrop.left; |
| win.top -= roundedCornersCrop.top; |
| win.bottom -= roundedCornersCrop.top; |
| } |
| |
| void Layer::prepareBasicGeometryCompositionState() { |
| const auto& drawingState{getDrawingState()}; |
| const uint32_t layerStack = getLayerStack(); |
| const auto alpha = static_cast<float>(getAlpha()); |
| const bool opaque = isOpaque(drawingState); |
| const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f; |
| |
| auto blendMode = Hwc2::IComposerClient::BlendMode::NONE; |
| if (!opaque || alpha != 1.0f) { |
| blendMode = mPremultipliedAlpha ? Hwc2::IComposerClient::BlendMode::PREMULTIPLIED |
| : Hwc2::IComposerClient::BlendMode::COVERAGE; |
| } |
| |
| auto* compositionState = editCompositionState(); |
| compositionState->layerStackId = |
| (layerStack != ~0u) ? std::make_optional(layerStack) : std::nullopt; |
| compositionState->internalOnly = getPrimaryDisplayOnly(); |
| compositionState->isVisible = isVisible(); |
| compositionState->isOpaque = opaque && !usesRoundedCorners && alpha == 1.f; |
| compositionState->shadowRadius = mEffectiveShadowRadius; |
| |
| compositionState->contentDirty = contentDirty; |
| contentDirty = false; |
| |
| compositionState->geomLayerBounds = mBounds; |
| compositionState->geomLayerTransform = getTransform(); |
| compositionState->geomInverseLayerTransform = compositionState->geomLayerTransform.inverse(); |
| compositionState->transparentRegionHint = getActiveTransparentRegion(drawingState); |
| |
| compositionState->blendMode = static_cast<Hwc2::IComposerClient::BlendMode>(blendMode); |
| compositionState->alpha = alpha; |
| compositionState->backgroundBlurRadius = drawingState.backgroundBlurRadius; |
| compositionState->blurRegions = drawingState.blurRegions; |
| compositionState->stretchEffect = getStretchEffect(); |
| } |
| |
| void Layer::prepareGeometryCompositionState() { |
| const auto& drawingState{getDrawingState()}; |
| |
| int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0); |
| int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0); |
| sp<Layer> parent = mDrawingParent.promote(); |
| if (parent.get()) { |
| auto& parentState = parent->getDrawingState(); |
| const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0); |
| const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0); |
| if (parentType > 0 && parentAppId > 0) { |
| type = parentType; |
| appId = parentAppId; |
| } |
| } |
| |
| auto* compositionState = editCompositionState(); |
| |
| compositionState->geomBufferSize = getBufferSize(drawingState); |
| compositionState->geomContentCrop = getBufferCrop(); |
| compositionState->geomCrop = getCrop(drawingState); |
| compositionState->geomBufferTransform = getBufferTransform(); |
| compositionState->geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse(); |
| compositionState->geomUsesSourceCrop = usesSourceCrop(); |
| compositionState->isSecure = isSecure(); |
| |
| compositionState->metadata.clear(); |
| const auto& supportedMetadata = mFlinger->getHwComposer().getSupportedLayerGenericMetadata(); |
| for (const auto& [key, mandatory] : supportedMetadata) { |
| const auto& genericLayerMetadataCompatibilityMap = |
| mFlinger->getGenericLayerMetadataKeyMap(); |
| auto compatIter = genericLayerMetadataCompatibilityMap.find(key); |
| if (compatIter == std::end(genericLayerMetadataCompatibilityMap)) { |
| continue; |
| } |
| const uint32_t id = compatIter->second; |
| |
| auto it = drawingState.metadata.mMap.find(id); |
| if (it == std::end(drawingState.metadata.mMap)) { |
| continue; |
| } |
| |
| compositionState->metadata |
| .emplace(key, compositionengine::GenericLayerMetadataEntry{mandatory, it->second}); |
| } |
| } |
| |
| void Layer::preparePerFrameCompositionState() { |
| const auto& drawingState{getDrawingState()}; |
| auto* compositionState = editCompositionState(); |
| |
| compositionState->forceClientComposition = false; |
| |
| compositionState->isColorspaceAgnostic = isColorSpaceAgnostic(); |
| compositionState->dataspace = getDataSpace(); |
| compositionState->colorTransform = getColorTransform(); |
| compositionState->colorTransformIsIdentity = !hasColorTransform(); |
| compositionState->surfaceDamage = surfaceDamageRegion; |
| compositionState->hasProtectedContent = isProtected(); |
| |
| const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f; |
| |
| compositionState->isOpaque = |
| isOpaque(drawingState) && !usesRoundedCorners && getAlpha() == 1.0_hf; |
| |
| // Force client composition for special cases known only to the front-end. |
| if (isHdrY410() || usesRoundedCorners || drawShadows() || drawingState.blurRegions.size() > 0 || |
| compositionState->stretchEffect.hasEffect()) { |
| compositionState->forceClientComposition = true; |
| } |
| } |
| |
| void Layer::prepareCursorCompositionState() { |
| const State& drawingState{getDrawingState()}; |
| auto* compositionState = editCompositionState(); |
| |
| // Apply the layer's transform, followed by the display's global transform |
| // Here we're guaranteed that the layer's transform preserves rects |
| Rect win = getCroppedBufferSize(drawingState); |
| // Subtract the transparent region and snap to the bounds |
| Rect bounds = reduce(win, getActiveTransparentRegion(drawingState)); |
| Rect frame(getTransform().transform(bounds)); |
| |
| compositionState->cursorFrame = frame; |
| } |
| |
| sp<compositionengine::LayerFE> Layer::asLayerFE() const { |
| return const_cast<compositionengine::LayerFE*>( |
| static_cast<const compositionengine::LayerFE*>(this)); |
| } |
| |
| sp<compositionengine::LayerFE> Layer::getCompositionEngineLayerFE() const { |
| return nullptr; |
| } |
| |
| compositionengine::LayerFECompositionState* Layer::editCompositionState() { |
| return nullptr; |
| } |
| |
| const compositionengine::LayerFECompositionState* Layer::getCompositionState() const { |
| return nullptr; |
| } |
| |
| bool Layer::onPreComposition(nsecs_t) { |
| return false; |
| } |
| |
| void Layer::prepareCompositionState(compositionengine::LayerFE::StateSubset subset) { |
| using StateSubset = compositionengine::LayerFE::StateSubset; |
| |
| switch (subset) { |
| case StateSubset::BasicGeometry: |
| prepareBasicGeometryCompositionState(); |
| break; |
| |
| case StateSubset::GeometryAndContent: |
| prepareBasicGeometryCompositionState(); |
| prepareGeometryCompositionState(); |
| preparePerFrameCompositionState(); |
| break; |
| |
| case StateSubset::Content: |
| preparePerFrameCompositionState(); |
| break; |
| |
| case StateSubset::Cursor: |
| prepareCursorCompositionState(); |
| break; |
| } |
| } |
| |
| const char* Layer::getDebugName() const { |
| return mName.c_str(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // drawing... |
| // --------------------------------------------------------------------------- |
| |
| std::optional<compositionengine::LayerFE::LayerSettings> Layer::prepareClientComposition( |
| compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) { |
| if (!getCompositionState()) { |
| return {}; |
| } |
| |
| FloatRect bounds = getBounds(); |
| half alpha = getAlpha(); |
| |
| compositionengine::LayerFE::LayerSettings layerSettings; |
| layerSettings.geometry.boundaries = bounds; |
| layerSettings.geometry.positionTransform = getTransform().asMatrix4(); |
| |
| if (hasColorTransform()) { |
| layerSettings.colorTransform = getColorTransform(); |
| } |
| |
| const auto roundedCornerState = getRoundedCornerState(); |
| layerSettings.geometry.roundedCornersRadius = roundedCornerState.radius; |
| layerSettings.geometry.roundedCornersCrop = roundedCornerState.cropRect; |
| |
| layerSettings.alpha = alpha; |
| layerSettings.sourceDataspace = getDataSpace(); |
| if (!targetSettings.disableBlurs) { |
| layerSettings.backgroundBlurRadius = getBackgroundBlurRadius(); |
| layerSettings.blurRegions = getBlurRegions(); |
| } |
| layerSettings.stretchEffect = getDrawingState().stretchEffect; |
| // Record the name of the layer for debugging further down the stack. |
| layerSettings.name = getName(); |
| return layerSettings; |
| } |
| |
| std::optional<compositionengine::LayerFE::LayerSettings> Layer::prepareShadowClientComposition( |
| const LayerFE::LayerSettings& casterLayerSettings, const Rect& layerStackRect, |
| ui::Dataspace outputDataspace) { |
| renderengine::ShadowSettings shadow = getShadowSettings(layerStackRect); |
| if (shadow.length <= 0.f) { |
| return {}; |
| } |
| |
| const float casterAlpha = casterLayerSettings.alpha; |
| const bool casterIsOpaque = ((casterLayerSettings.source.buffer.buffer != nullptr) && |
| casterLayerSettings.source.buffer.isOpaque); |
| |
| compositionengine::LayerFE::LayerSettings shadowLayer = casterLayerSettings; |
| |
| shadowLayer.shadow = shadow; |
| shadowLayer.geometry.boundaries = mBounds; // ignore transparent region |
| |
| // If the casting layer is translucent, we need to fill in the shadow underneath the layer. |
| // Otherwise the generated shadow will only be shown around the casting layer. |
| shadowLayer.shadow.casterIsTranslucent = !casterIsOpaque || (casterAlpha < 1.0f); |
| shadowLayer.shadow.ambientColor *= casterAlpha; |
| shadowLayer.shadow.spotColor *= casterAlpha; |
| shadowLayer.sourceDataspace = outputDataspace; |
| shadowLayer.source.buffer.buffer = nullptr; |
| shadowLayer.source.buffer.fence = nullptr; |
| shadowLayer.frameNumber = 0; |
| shadowLayer.bufferId = 0; |
| shadowLayer.name = getName(); |
| |
| if (shadowLayer.shadow.ambientColor.a <= 0.f && shadowLayer.shadow.spotColor.a <= 0.f) { |
| return {}; |
| } |
| |
| float casterCornerRadius = shadowLayer.geometry.roundedCornersRadius; |
| const FloatRect& cornerRadiusCropRect = shadowLayer.geometry.roundedCornersCrop; |
| const FloatRect& casterRect = shadowLayer.geometry.boundaries; |
| |
| // crop used to set the corner radius may be larger than the content rect. Adjust the corner |
| // radius accordingly. |
| if (casterCornerRadius > 0.f) { |
| float cropRectOffset = std::max(std::abs(cornerRadiusCropRect.top - casterRect.top), |
| std::abs(cornerRadiusCropRect.left - casterRect.left)); |
| if (cropRectOffset > casterCornerRadius) { |
| casterCornerRadius = 0; |
| } else { |
| casterCornerRadius -= cropRectOffset; |
| } |
| shadowLayer.geometry.roundedCornersRadius = casterCornerRadius; |
| } |
| |
| return shadowLayer; |
| } |
| |
| void Layer::prepareClearClientComposition(LayerFE::LayerSettings& layerSettings, |
| bool blackout) const { |
| layerSettings.source.buffer.buffer = nullptr; |
| layerSettings.source.solidColor = half3(0.0, 0.0, 0.0); |
| layerSettings.disableBlending = true; |
| layerSettings.bufferId = 0; |
| layerSettings.frameNumber = 0; |
| |
| // If layer is blacked out, force alpha to 1 so that we draw a black color layer. |
| layerSettings.alpha = blackout ? 1.0f : 0.0f; |
| layerSettings.name = getName(); |
| } |
| |
| std::vector<compositionengine::LayerFE::LayerSettings> Layer::prepareClientCompositionList( |
| compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) { |
| std::optional<compositionengine::LayerFE::LayerSettings> layerSettings = |
| prepareClientComposition(targetSettings); |
| // Nothing to render. |
| if (!layerSettings) { |
| return {}; |
| } |
| |
| // HWC requests to clear this layer. |
| if (targetSettings.clearContent) { |
| prepareClearClientComposition(*layerSettings, false /* blackout */); |
| return {*layerSettings}; |
| } |
| |
| std::optional<compositionengine::LayerFE::LayerSettings> shadowSettings = |
| prepareShadowClientComposition(*layerSettings, targetSettings.viewport, |
| targetSettings.dataspace); |
| // There are no shadows to render. |
| if (!shadowSettings) { |
| return {*layerSettings}; |
| } |
| |
| // If the layer casts a shadow but the content casting the shadow is occluded, skip |
| // composing the non-shadow content and only draw the shadows. |
| if (targetSettings.realContentIsVisible) { |
| return {*shadowSettings, *layerSettings}; |
| } |
| |
| return {*shadowSettings}; |
| } |
| |
| Hwc2::IComposerClient::Composition Layer::getCompositionType(const DisplayDevice& display) const { |
| const auto outputLayer = findOutputLayerForDisplay(&display); |
| if (outputLayer == nullptr) { |
| return Hwc2::IComposerClient::Composition::INVALID; |
| } |
| if (outputLayer->getState().hwc) { |
| return (*outputLayer->getState().hwc).hwcCompositionType; |
| } else { |
| return Hwc2::IComposerClient::Composition::CLIENT; |
| } |
| } |
| |
| bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) { |
| if (point->getFrameNumber() <= mCurrentFrameNumber) { |
| // Don't bother with a SyncPoint, since we've already latched the |
| // relevant frame |
| return false; |
| } |
| if (isRemovedFromCurrentState()) { |
| return false; |
| } |
| |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| mLocalSyncPoints.push_back(point); |
| return true; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // local state |
| // ---------------------------------------------------------------------------- |
| |
| bool Layer::isSecure() const { |
| const State& s(mDrawingState); |
| if (s.flags & layer_state_t::eLayerSecure) { |
| return true; |
| } |
| |
| const auto p = mDrawingParent.promote(); |
| return (p != nullptr) ? p->isSecure() : false; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // transaction |
| // ---------------------------------------------------------------------------- |
| |
| void Layer::pushPendingState() { |
| if (!mCurrentState.modified) { |
| return; |
| } |
| ATRACE_CALL(); |
| |
| // If this transaction is waiting on the receipt of a frame, generate a sync |
| // point and send it to the remote layer. |
| // We don't allow installing sync points after we are removed from the current state |
| // as we won't be able to signal our end. |
| if (mCurrentState.barrierLayer_legacy != nullptr && !isRemovedFromCurrentState()) { |
| sp<Layer> barrierLayer = mCurrentState.barrierLayer_legacy.promote(); |
| if (barrierLayer == nullptr) { |
| ALOGE("[%s] Unable to promote barrier Layer.", getDebugName()); |
| // If we can't promote the layer we are intended to wait on, |
| // then it is expired or otherwise invalid. Allow this transaction |
| // to be applied as per normal (no synchronization). |
| mCurrentState.barrierLayer_legacy = nullptr; |
| } else { |
| auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.barrierFrameNumber, this, |
| barrierLayer); |
| if (barrierLayer->addSyncPoint(syncPoint)) { |
| std::stringstream ss; |
| ss << "Adding sync point " << mCurrentState.barrierFrameNumber; |
| ATRACE_NAME(ss.str().c_str()); |
| mRemoteSyncPoints.push_back(std::move(syncPoint)); |
| } else { |
| // We already missed the frame we're supposed to synchronize |
| // on, so go ahead and apply the state update |
| mCurrentState.barrierLayer_legacy = nullptr; |
| } |
| } |
| |
| // Wake us up to check if the frame has been received |
| setTransactionFlags(eTransactionNeeded); |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| } |
| if (mCurrentState.bufferlessSurfaceFramesTX.size() >= State::kStateSurfaceFramesThreshold) { |
| // Ideally, the currentState would only contain one SurfaceFrame per transaction (assuming |
| // each Tx uses a different token). We don't expect the current state to hold a huge amount |
| // of SurfaceFrames. However, in the event it happens, this debug statement will leave a |
| // trail that can help in debugging. |
| ALOGW("Bufferless SurfaceFrames size on current state of layer %s is %" PRIu32 "", |
| mName.c_str(), static_cast<uint32_t>(mCurrentState.bufferlessSurfaceFramesTX.size())); |
| } |
| mPendingStates.push_back(mCurrentState); |
| // Since the current state along with the SurfaceFrames has been pushed into the pendingState, |
| // we no longer need to retain them. If multiple states are pushed and applied together, we have |
| // a merging logic to address the SurfaceFrames at mergeSurfaceFrames(). |
| mCurrentState.bufferlessSurfaceFramesTX.clear(); |
| ATRACE_INT(mTransactionName.c_str(), mPendingStates.size()); |
| } |
| |
| void Layer::mergeSurfaceFrames(State& source, State& target) { |
| // No need to merge BufferSurfaceFrame as the target's surfaceFrame, if it exists, will be used |
| // directly. Dropping of source's SurfaceFrame is taken care of at setBuffer(). |
| target.bufferlessSurfaceFramesTX.merge(source.bufferlessSurfaceFramesTX); |
| source.bufferlessSurfaceFramesTX.clear(); |
| } |
| |
| void Layer::popPendingState(State* stateToCommit) { |
| ATRACE_CALL(); |
| |
| mergeSurfaceFrames(*stateToCommit, mPendingStates[0]); |
| *stateToCommit = mPendingStates[0]; |
| mPendingStates.pop_front(); |
| ATRACE_INT(mTransactionName.c_str(), mPendingStates.size()); |
| } |
| |
| bool Layer::applyPendingStates(State* stateToCommit) { |
| bool stateUpdateAvailable = false; |
| while (!mPendingStates.empty()) { |
| if (mPendingStates[0].barrierLayer_legacy != nullptr) { |
| if (mRemoteSyncPoints.empty()) { |
| // If we don't have a sync point for this, apply it anyway. It |
| // will be visually wrong, but it should keep us from getting |
| // into too much trouble. |
| ALOGV("[%s] No local sync point found", getDebugName()); |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| continue; |
| } |
| |
| if (mRemoteSyncPoints.front()->getFrameNumber() != |
| mPendingStates[0].barrierFrameNumber) { |
| ALOGE("[%s] Unexpected sync point frame number found", getDebugName()); |
| |
| // Signal our end of the sync point and then dispose of it |
| mRemoteSyncPoints.front()->setTransactionApplied(); |
| mRemoteSyncPoints.pop_front(); |
| continue; |
| } |
| |
| if (mRemoteSyncPoints.front()->frameIsAvailable()) { |
| ATRACE_NAME("frameIsAvailable"); |
| // Apply the state update |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| |
| // Signal our end of the sync point and then dispose of it |
| mRemoteSyncPoints.front()->setTransactionApplied(); |
| mRemoteSyncPoints.pop_front(); |
| } else { |
| ATRACE_NAME("!frameIsAvailable"); |
| mRemoteSyncPoints.front()->checkTimeoutAndLog(); |
| break; |
| } |
| } else { |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| } |
| } |
| |
| // If we still have pending updates, we need to ensure SurfaceFlinger |
| // will keep calling doTransaction, and so we force a traversal. |
| // However, our pending states won't clear until a frame is available, |
| // and so there is no need to specifically trigger a wakeup. |
| if (!mPendingStates.empty()) { |
| setTransactionFlags(eTransactionNeeded); |
| mFlinger->setTraversalNeeded(); |
| } |
| |
| mCurrentState.modified = false; |
| return stateUpdateAvailable; |
| } |
| |
| uint32_t Layer::doTransactionResize(uint32_t flags, State* stateToCommit) { |
| const State& s(getDrawingState()); |
| |
| const bool sizeChanged = (stateToCommit->requested_legacy.w != s.requested_legacy.w) || |
| (stateToCommit->requested_legacy.h != s.requested_legacy.h); |
| |
| if (sizeChanged) { |
| // the size changed, we need to ask our client to request a new buffer |
| ALOGD_IF(DEBUG_RESIZE, |
| "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" |
| " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" |
| " requested={ wh={%4u,%4u} }}\n" |
| " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" |
| " requested={ wh={%4u,%4u} }}\n", |
| this, getName().c_str(), getBufferTransform(), getEffectiveScalingMode(), |
| stateToCommit->active_legacy.w, stateToCommit->active_legacy.h, |
| stateToCommit->crop.left, stateToCommit->crop.top, stateToCommit->crop.right, |
| stateToCommit->crop.bottom, stateToCommit->crop.getWidth(), |
| stateToCommit->crop.getHeight(), stateToCommit->requested_legacy.w, |
| stateToCommit->requested_legacy.h, s.active_legacy.w, s.active_legacy.h, |
| s.crop.left, s.crop.top, s.crop.right, s.crop.bottom, s.crop.getWidth(), |
| s.crop.getHeight(), s.requested_legacy.w, s.requested_legacy.h); |
| } |
| |
| // Don't let Layer::doTransaction update the drawing state |
| // if we have a pending resize, unless we are in fixed-size mode. |
| // the drawing state will be updated only once we receive a buffer |
| // with the correct size. |
| // |
| // In particular, we want to make sure the clip (which is part |
| // of the geometry state) is latched together with the size but is |
| // latched immediately when no resizing is involved. |
| // |
| // If a sideband stream is attached, however, we want to skip this |
| // optimization so that transactions aren't missed when a buffer |
| // never arrives |
| // |
| // In the case that we don't have a buffer we ignore other factors |
| // and avoid entering the resizePending state. At a high level the |
| // resizePending state is to avoid applying the state of the new buffer |
| // to the old buffer. However in the state where we don't have an old buffer |
| // there is no such concern but we may still be being used as a parent layer. |
| const bool resizePending = |
| ((stateToCommit->requested_legacy.w != stateToCommit->active_legacy.w) || |
| (stateToCommit->requested_legacy.h != stateToCommit->active_legacy.h)) && |
| (getBuffer() != nullptr); |
| if (!isFixedSize()) { |
| if (resizePending && mSidebandStream == nullptr) { |
| flags |= eDontUpdateGeometryState; |
| } |
| } |
| |
| // Here we apply various requested geometry states, depending on our |
| // latching configuration. See Layer.h for a detailed discussion of |
| // how geometry latching is controlled. |
| if (!(flags & eDontUpdateGeometryState)) { |
| State& editCurrentState(getCurrentState()); |
| |
| // There is an awkward asymmetry in the handling of the crop states in the position |
| // states, as can be seen below. Largely this arises from position and transform |
| // being stored in the same data structure while having different latching rules. |
| // b/38182305 |
| // |
| // Careful that "stateToCommit" and editCurrentState may not begin as equivalent due to |
| // applyPendingStates in the presence of deferred transactions. |
| editCurrentState.active_legacy = editCurrentState.requested_legacy; |
| stateToCommit->active_legacy = stateToCommit->requested_legacy; |
| } |
| |
| return flags; |
| } |
| |
| uint32_t Layer::doTransaction(uint32_t flags) { |
| ATRACE_CALL(); |
| |
| if (mChildrenChanged) { |
| flags |= eVisibleRegion; |
| mChildrenChanged = false; |
| } |
| |
| pushPendingState(); |
| State c = getCurrentState(); |
| if (!applyPendingStates(&c)) { |
| return flags; |
| } |
| |
| flags = doTransactionResize(flags, &c); |
| |
| const State& s(getDrawingState()); |
| |
| if (getActiveGeometry(c) != getActiveGeometry(s)) { |
| // invalidate and recompute the visible regions if needed |
| flags |= Layer::eVisibleRegion; |
| } |
| |
| if (c.sequence != s.sequence) { |
| // invalidate and recompute the visible regions if needed |
| flags |= eVisibleRegion; |
| this->contentDirty = true; |
| |
| // we may use linear filtering, if the matrix scales us |
| mNeedsFiltering = getActiveTransform(c).needsBilinearFiltering(); |
| } |
| |
| if (mCurrentState.inputInfoChanged) { |
| flags |= eInputInfoChanged; |
| mCurrentState.inputInfoChanged = false; |
| } |
| |
| // Add the callbacks from the drawing state into the current state. This is so when the current |
| // state gets copied to drawing, we don't lose the callback handles that are still in drawing. |
| for (auto& handle : s.callbackHandles) { |
| c.callbackHandles.push_back(handle); |
| } |
| |
| // Allow BufferStateLayer to release any unlatched buffers in drawing state. |
| bufferMayChange(c.buffer); |
| |
| // Commit the transaction |
| commitTransaction(c); |
| mPendingStatesSnapshot = mPendingStates; |
| mCurrentState.callbackHandles = {}; |
| |
| return flags; |
| } |
| |
| void Layer::commitTransaction(State& stateToCommit) { |
| if (auto& bufferSurfaceFrame = mDrawingState.bufferSurfaceFrameTX; |
| mDrawingState.buffer != stateToCommit.buffer && bufferSurfaceFrame != nullptr && |
| bufferSurfaceFrame->getPresentState() != PresentState::Presented) { |
| // If the previous buffer was committed but not latched (refreshPending - happens during |
| // back to back invalidates), it gets silently dropped here. Mark the corresponding |
| // SurfaceFrame as dropped to prevent it from getting stuck in the pending classification |
| // list. |
| addSurfaceFrameDroppedForBuffer(bufferSurfaceFrame); |
| } |
| mDrawingState = stateToCommit; |
| |
| // Set the present state for all bufferlessSurfaceFramesTX to Presented. The |
| // bufferSurfaceFrameTX will be presented in latchBuffer. |
| for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) { |
| if (surfaceFrame->getPresentState() != PresentState::Presented) { |
| // With applyPendingStates, we could end up having presented surfaceframes from previous |
| // states |
| surfaceFrame->setPresentState(PresentState::Presented); |
| mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame); |
| } |
| } |
| // Clear the surfaceFrames from the old state now that it has been copied into DrawingState. |
| stateToCommit.bufferSurfaceFrameTX.reset(); |
| stateToCommit.bufferlessSurfaceFramesTX.clear(); |
| } |
| |
| uint32_t Layer::getTransactionFlags(uint32_t flags) { |
| return mTransactionFlags.fetch_and(~flags) & flags; |
| } |
| |
| uint32_t Layer::setTransactionFlags(uint32_t flags) { |
| return mTransactionFlags.fetch_or(flags); |
| } |
| |
| bool Layer::setPosition(float x, float y) { |
| if (mCurrentState.requested_legacy.transform.tx() == x && |
| mCurrentState.requested_legacy.transform.ty() == y) |
| return false; |
| mCurrentState.sequence++; |
| |
| // We update the requested and active position simultaneously because |
| // we want to apply the position portion of the transform matrix immediately, |
| // but still delay scaling when resizing a SCALING_MODE_FREEZE layer. |
| mCurrentState.requested_legacy.transform.set(x, y); |
| // Here we directly update the active state |
| // unlike other setters, because we store it within |
| // the transform, but use different latching rules. |
| // b/38182305 |
| mCurrentState.active_legacy.transform.set(x, y); |
| |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) { |
| ssize_t idx = mCurrentChildren.indexOf(childLayer); |
| if (idx < 0) { |
| return false; |
| } |
| if (childLayer->setLayer(z)) { |
| mCurrentChildren.removeAt(idx); |
| mCurrentChildren.add(childLayer); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer, |
| const sp<IBinder>& relativeToHandle, int32_t relativeZ) { |
| ssize_t idx = mCurrentChildren.indexOf(childLayer); |
| if (idx < 0) { |
| return false; |
| } |
| if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) { |
| mCurrentChildren.removeAt(idx); |
| mCurrentChildren.add(childLayer); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Layer::setLayer(int32_t z) { |
| if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false; |
| mCurrentState.sequence++; |
| mCurrentState.z = z; |
| mCurrentState.modified = true; |
| |
| // Discard all relative layering. |
| if (mCurrentState.zOrderRelativeOf != nullptr) { |
| sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); |
| if (strongRelative != nullptr) { |
| strongRelative->removeZOrderRelative(this); |
| } |
| setZOrderRelativeOf(nullptr); |
| } |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| void Layer::removeZOrderRelative(const wp<Layer>& relative) { |
| mCurrentState.zOrderRelatives.remove(relative); |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| void Layer::addZOrderRelative(const wp<Layer>& relative) { |
| mCurrentState.zOrderRelatives.add(relative); |
| mCurrentState.modified = true; |
| mCurrentState.sequence++; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| void Layer::setZOrderRelativeOf(const wp<Layer>& relativeOf) { |
| mCurrentState.zOrderRelativeOf = relativeOf; |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| mCurrentState.isRelativeOf = relativeOf != nullptr; |
| |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) { |
| sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get()); |
| if (handle == nullptr) { |
| return false; |
| } |
| sp<Layer> relative = handle->owner.promote(); |
| if (relative == nullptr) { |
| return false; |
| } |
| |
| if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) && |
| mCurrentState.zOrderRelativeOf == relative) { |
| return false; |
| } |
| |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| mCurrentState.z = relativeZ; |
| |
| auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote(); |
| if (oldZOrderRelativeOf != nullptr) { |
| oldZOrderRelativeOf->removeZOrderRelative(this); |
| } |
| setZOrderRelativeOf(relative); |
| relative->addZOrderRelative(this); |
| |
| setTransactionFlags(eTransactionNeeded); |
| |
| return true; |
| } |
| |
| bool Layer::setSize(uint32_t w, uint32_t h) { |
| if (mCurrentState.requested_legacy.w == w && mCurrentState.requested_legacy.h == h) |
| return false; |
| mCurrentState.requested_legacy.w = w; |
| mCurrentState.requested_legacy.h = h; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| |
| // record the new size, from this point on, when the client request |
| // a buffer, it'll get the new size. |
| setDefaultBufferSize(mCurrentState.requested_legacy.w, mCurrentState.requested_legacy.h); |
| return true; |
| } |
| bool Layer::setAlpha(float alpha) { |
| if (mCurrentState.color.a == alpha) return false; |
| mCurrentState.sequence++; |
| mCurrentState.color.a = alpha; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) { |
| if (!mCurrentState.bgColorLayer && alpha == 0) { |
| return false; |
| } |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| |
| if (!mCurrentState.bgColorLayer && alpha != 0) { |
| // create background color layer if one does not yet exist |
| uint32_t flags = ISurfaceComposerClient::eFXSurfaceEffect; |
| std::string name = mName + "BackgroundColorLayer"; |
| mCurrentState.bgColorLayer = mFlinger->getFactory().createEffectLayer( |
| LayerCreationArgs(mFlinger.get(), nullptr, std::move(name), 0, 0, flags, |
| LayerMetadata())); |
| |
| // add to child list |
| addChild(mCurrentState.bgColorLayer); |
| mFlinger->mLayersAdded = true; |
| // set up SF to handle added color layer |
| if (isRemovedFromCurrentState()) { |
| mCurrentState.bgColorLayer->onRemovedFromCurrentState(); |
| } |
| mFlinger->setTransactionFlags(eTransactionNeeded); |
| } else if (mCurrentState.bgColorLayer && alpha == 0) { |
| mCurrentState.bgColorLayer->reparent(nullptr); |
| mCurrentState.bgColorLayer = nullptr; |
| return true; |
| } |
| |
| mCurrentState.bgColorLayer->setColor(color); |
| mCurrentState.bgColorLayer->setLayer(std::numeric_limits<int32_t>::min()); |
| mCurrentState.bgColorLayer->setAlpha(alpha); |
| mCurrentState.bgColorLayer->setDataspace(dataspace); |
| |
| return true; |
| } |
| |
| bool Layer::setCornerRadius(float cornerRadius) { |
| if (mCurrentState.cornerRadius == cornerRadius) return false; |
| |
| mCurrentState.sequence++; |
| mCurrentState.cornerRadius = cornerRadius; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setBackgroundBlurRadius(int backgroundBlurRadius) { |
| if (mCurrentState.backgroundBlurRadius == backgroundBlurRadius) return false; |
| |
| mCurrentState.sequence++; |
| mCurrentState.backgroundBlurRadius = backgroundBlurRadius; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix, |
| bool allowNonRectPreservingTransforms) { |
| ui::Transform t; |
| t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); |
| |
| if (!allowNonRectPreservingTransforms && !t.preserveRects()) { |
| ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER nor " |
| "ROTATE_SURFACE_FLINGER ignored"); |
| return false; |
| } |
| mCurrentState.sequence++; |
| mCurrentState.requested_legacy.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, |
| matrix.dsdy); |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setTransparentRegionHint(const Region& transparent) { |
| mCurrentState.requestedTransparentRegion_legacy = transparent; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setBlurRegions(const std::vector<BlurRegion>& blurRegions) { |
| mCurrentState.sequence++; |
| mCurrentState.blurRegions = blurRegions; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setFlags(uint32_t flags, uint32_t mask) { |
| const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); |
| if (mCurrentState.flags == newFlags) return false; |
| mCurrentState.sequence++; |
| mCurrentState.flags = newFlags; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setCrop(const Rect& crop) { |
| if (mCurrentState.requestedCrop == crop) return false; |
| mCurrentState.sequence++; |
| mCurrentState.requestedCrop = crop; |
| mCurrentState.crop = crop; |
| |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setMetadata(const LayerMetadata& data) { |
| if (!mCurrentState.metadata.merge(data, true /* eraseEmpty */)) return false; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setLayerStack(uint32_t layerStack) { |
| if (mCurrentState.layerStack == layerStack) return false; |
| mCurrentState.sequence++; |
| mCurrentState.layerStack = layerStack; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setColorSpaceAgnostic(const bool agnostic) { |
| if (mCurrentState.colorSpaceAgnostic == agnostic) { |
| return false; |
| } |
| mCurrentState.sequence++; |
| mCurrentState.colorSpaceAgnostic = agnostic; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setFrameRateSelectionPriority(int32_t priority) { |
| if (mCurrentState.frameRateSelectionPriority == priority) return false; |
| mCurrentState.frameRateSelectionPriority = priority; |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| int32_t Layer::getFrameRateSelectionPriority() const { |
| // Check if layer has priority set. |
| if (mDrawingState.frameRateSelectionPriority != PRIORITY_UNSET) { |
| return mDrawingState.frameRateSelectionPriority; |
| } |
| // If not, search whether its parents have it set. |
| sp<Layer> parent = getParent(); |
| if (parent != nullptr) { |
| return parent->getFrameRateSelectionPriority(); |
| } |
| |
| return Layer::PRIORITY_UNSET; |
| } |
| |
| bool Layer::isLayerFocusedBasedOnPriority(int32_t priority) { |
| return priority == PRIORITY_FOCUSED_WITH_MODE || priority == PRIORITY_FOCUSED_WITHOUT_MODE; |
| }; |
| |
| uint32_t Layer::getLayerStack() const { |
| auto p = mDrawingParent.promote(); |
| if (p == nullptr) { |
| return getDrawingState().layerStack; |
| } |
| return p->getLayerStack(); |
| } |
| |
| bool Layer::setShadowRadius(float shadowRadius) { |
| if (mCurrentState.shadowRadius == shadowRadius) { |
| return false; |
| } |
| |
| mCurrentState.sequence++; |
| mCurrentState.shadowRadius = shadowRadius; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint) { |
| if (mCurrentState.fixedTransformHint == fixedTransformHint) { |
| return false; |
| } |
| |
| mCurrentState.sequence++; |
| mCurrentState.fixedTransformHint = fixedTransformHint; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setStretchEffect(const StretchEffect& effect) { |
| StretchEffect temp = effect; |
| temp.sanitize(); |
| if (mCurrentState.stretchEffect == temp) { |
| return false; |
| } |
| mCurrentState.sequence++; |
| mCurrentState.stretchEffect = temp; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| StretchEffect Layer::getStretchEffect() const { |
| if (mDrawingState.stretchEffect.hasEffect()) { |
| return mDrawingState.stretchEffect; |
| } |
| |
| sp<Layer> parent = getParent(); |
| if (parent != nullptr) { |
| auto effect = parent->getStretchEffect(); |
| if (effect.hasEffect()) { |
| // TODO(b/179047472): Map it? Or do we make the effect be in global space? |
| return effect; |
| } |
| } |
| return StretchEffect{}; |
| } |
| |
| void Layer::updateTreeHasFrameRateVote() { |
| const auto traverseTree = [&](const LayerVector::Visitor& visitor) { |
| auto parent = getParent(); |
| while (parent) { |
| visitor(parent.get()); |
| parent = parent->getParent(); |
| } |
| |
| traverse(LayerVector::StateSet::Current, visitor); |
| }; |
| |
| // update parents and children about the vote |
| // First traverse the tree and count how many layers has votes. In addition |
| // activate the layers in Scheduler's LayerHistory for it to check for changes |
| int layersWithVote = 0; |
| traverseTree([&layersWithVote](Layer* layer) { |
| const auto layerVotedWithDefaultCompatibility = |
| layer->mCurrentState.frameRate.rate.isValid() && |
| layer->mCurrentState.frameRate.type == FrameRateCompatibility::Default; |
| const auto layerVotedWithNoVote = |
| layer->mCurrentState.frameRate.type == FrameRateCompatibility::NoVote; |
| const auto layerVotedWithExactCompatibility = |
| layer->mCurrentState.frameRate.type == FrameRateCompatibility::Exact; |
| |
| // We do not count layers that are ExactOrMultiple for the same reason |
| // we are allowing touch boost for those layers. See |
| // RefreshRateConfigs::getBestRefreshRate for more details. |
| if (layerVotedWithDefaultCompatibility || layerVotedWithNoVote || |
| layerVotedWithExactCompatibility) { |
| layersWithVote++; |
| } |
| }); |
| |
| // Now update the other layers |
| bool transactionNeeded = false; |
| traverseTree([layersWithVote, &transactionNeeded, this](Layer* layer) { |
| const bool treeHasFrameRateVote = layersWithVote > 0; |
| if (layer->mCurrentState.treeHasFrameRateVote != treeHasFrameRateVote) { |
| layer->mCurrentState.sequence++; |
| layer->mCurrentState.treeHasFrameRateVote = treeHasFrameRateVote; |
| layer->mCurrentState.modified = true; |
| layer->setTransactionFlags(eTransactionNeeded); |
| transactionNeeded = true; |
| |
| mFlinger->mScheduler->recordLayerHistory(layer, systemTime(), |
| LayerHistory::LayerUpdateType::SetFrameRate); |
| } |
| }); |
| |
| if (transactionNeeded) { |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| } |
| } |
| |
| bool Layer::setFrameRate(FrameRate frameRate) { |
| if (!mFlinger->useFrameRateApi) { |
| return false; |
| } |
| if (mCurrentState.frameRate == frameRate) { |
| return false; |
| } |
| |
| mCurrentState.sequence++; |
| mCurrentState.frameRate = frameRate; |
| mCurrentState.modified = true; |
| |
| updateTreeHasFrameRateVote(); |
| |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| void Layer::setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info, |
| nsecs_t postTime) { |
| mCurrentState.postTime = postTime; |
| |
| // Check if one of the bufferlessSurfaceFramesTX contains the same vsyncId. This can happen if |
| // there are two transactions with the same token, the first one without a buffer and the |
| // second one with a buffer. We promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX |
| // in that case. |
| auto it = mCurrentState.bufferlessSurfaceFramesTX.find(info.vsyncId); |
| if (it != mCurrentState.bufferlessSurfaceFramesTX.end()) { |
| // Promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX |
| mCurrentState.bufferSurfaceFrameTX = it->second; |
| mCurrentState.bufferlessSurfaceFramesTX.erase(it); |
| mCurrentState.bufferSurfaceFrameTX->promoteToBuffer(); |
| mCurrentState.bufferSurfaceFrameTX->setActualQueueTime(postTime); |
| } else { |
| mCurrentState.bufferSurfaceFrameTX = |
| createSurfaceFrameForBuffer(info, postTime, mTransactionName); |
| } |
| } |
| |
| void Layer::setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info, |
| nsecs_t postTime) { |
| mCurrentState.frameTimelineInfo = info; |
| mCurrentState.postTime = postTime; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| |
| if (const auto& bufferSurfaceFrameTX = mCurrentState.bufferSurfaceFrameTX; |
| bufferSurfaceFrameTX != nullptr) { |
| if (bufferSurfaceFrameTX->getToken() == info.vsyncId) { |
| // BufferSurfaceFrame takes precedence over BufferlessSurfaceFrame. If the same token is |
| // being used for BufferSurfaceFrame, don't create a new one. |
| return; |
| } |
| } |
| // For Transactions without a buffer, we create only one SurfaceFrame per vsyncId. If multiple |
| // transactions use the same vsyncId, we just treat them as one SurfaceFrame (unless they are |
| // targeting different vsyncs). |
| auto it = mCurrentState.bufferlessSurfaceFramesTX.find(info.vsyncId); |
| if (it == mCurrentState.bufferlessSurfaceFramesTX.end()) { |
| auto surfaceFrame = createSurfaceFrameForTransaction(info, postTime); |
| mCurrentState.bufferlessSurfaceFramesTX[info.vsyncId] = surfaceFrame; |
| } else { |
| if (it->second->getPresentState() == PresentState::Presented) { |
| // If the SurfaceFrame was already presented, its safe to overwrite it since it must |
| // have been from previous vsync. |
| it->second = createSurfaceFrameForTransaction(info, postTime); |
| } |
| } |
| } |
| |
| void Layer::addSurfaceFrameDroppedForBuffer( |
| std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame) { |
| surfaceFrame->setDropTime(systemTime()); |
| surfaceFrame->setPresentState(PresentState::Dropped); |
| mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame); |
| } |
| |
| void Layer::addSurfaceFramePresentedForBuffer( |
| std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t acquireFenceTime, |
| nsecs_t currentLatchTime) { |
| surfaceFrame->setAcquireFenceTime(acquireFenceTime); |
| surfaceFrame->setPresentState(PresentState::Presented, mLastLatchTime); |
| mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame); |
| mLastLatchTime = currentLatchTime; |
| } |
| |
| std::shared_ptr<frametimeline::SurfaceFrame> Layer::createSurfaceFrameForTransaction( |
| const FrameTimelineInfo& info, nsecs_t postTime) { |
| auto surfaceFrame = |
| mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid, |
| getSequence(), mName, |
| mTransactionName, |
| /*isBuffer*/ false); |
| // For Transactions, the post time is considered to be both queue and acquire fence time. |
| surfaceFrame->setActualQueueTime(postTime); |
| surfaceFrame->setAcquireFenceTime(postTime); |
| const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid()); |
| if (fps) { |
| surfaceFrame->setRenderRate(*fps); |
| } |
| onSurfaceFrameCreated(surfaceFrame); |
| return surfaceFrame; |
| } |
| |
| std::shared_ptr<frametimeline::SurfaceFrame> Layer::createSurfaceFrameForBuffer( |
| const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName) { |
| auto surfaceFrame = |
| mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid, |
| getSequence(), mName, debugName, |
| /*isBuffer*/ true); |
| // For buffers, acquire fence time will set during latch. |
| surfaceFrame->setActualQueueTime(queueTime); |
| const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid()); |
| if (fps) { |
| surfaceFrame->setRenderRate(*fps); |
| } |
| // TODO(b/178542907): Implement onSurfaceFrameCreated for BQLayer as well. |
| onSurfaceFrameCreated(surfaceFrame); |
| return surfaceFrame; |
| } |
| |
| Layer::FrameRate Layer::getFrameRateForLayerTree() const { |
| const auto frameRate = getDrawingState().frameRate; |
| if (frameRate.rate.isValid() || frameRate.type == FrameRateCompatibility::NoVote) { |
| return frameRate; |
| } |
| |
| // This layer doesn't have a frame rate. Check if its ancestors have a vote |
| if (sp<Layer> parent = getParent(); parent) { |
| if (const auto parentFrameRate = parent->getFrameRateForLayerTree(); |
| parentFrameRate.rate.isValid()) { |
| return parentFrameRate; |
| } |
| } |
| |
| // This layer and its ancestors don't have a frame rate. If one of successors |
| // has a vote, return a NoVote for successors to set the vote |
| if (getDrawingState().treeHasFrameRateVote) { |
| return {Fps(0.0f), FrameRateCompatibility::NoVote}; |
| } |
| |
| return frameRate; |
| } |
| |
| void Layer::deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber) { |
| ATRACE_CALL(); |
| |
| mCurrentState.barrierLayer_legacy = barrierLayer; |
| mCurrentState.barrierFrameNumber = frameNumber; |
| // We don't set eTransactionNeeded, because just receiving a deferral |
| // request without any other state updates shouldn't actually induce a delay |
| mCurrentState.modified = true; |
| pushPendingState(); |
| mCurrentState.barrierLayer_legacy = nullptr; |
| mCurrentState.barrierFrameNumber = 0; |
| mCurrentState.modified = false; |
| } |
| |
| void Layer::deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, uint64_t frameNumber) { |
| sp<Handle> handle = static_cast<Handle*>(barrierHandle.get()); |
| deferTransactionUntil_legacy(handle->owner.promote(), frameNumber); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // pageflip handling... |
| // ---------------------------------------------------------------------------- |
| |
| bool Layer::isHiddenByPolicy() const { |
| const State& s(mDrawingState); |
| const auto& parent = mDrawingParent.promote(); |
| if (parent != nullptr && parent->isHiddenByPolicy()) { |
| return true; |
| } |
| if (usingRelativeZ(LayerVector::StateSet::Drawing)) { |
| auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote(); |
| if (zOrderRelativeOf != nullptr) { |
| if (zOrderRelativeOf->isHiddenByPolicy()) { |
| return true; |
| } |
| } |
| } |
| return s.flags & layer_state_t::eLayerHidden; |
| } |
| |
| uint32_t Layer::getEffectiveUsage(uint32_t usage) const { |
| // TODO: should we do something special if mSecure is set? |
| if (mProtectedByApp) { |
| // need a hardware-protected path to external video sink |
| usage |= GraphicBuffer::USAGE_PROTECTED; |
| } |
| if (mPotentialCursor) { |
| usage |= GraphicBuffer::USAGE_CURSOR; |
| } |
| usage |= GraphicBuffer::USAGE_HW_COMPOSER; |
| return usage; |
| } |
| |
| void Layer::updateTransformHint(ui::Transform::RotationFlags transformHint) { |
| if (mFlinger->mDebugDisableTransformHint || transformHint & ui::Transform::ROT_INVALID) { |
| transformHint = ui::Transform::ROT_0; |
| } |
| |
| setTransformHint(transformHint); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // debugging |
| // ---------------------------------------------------------------------------- |
| |
| // TODO(marissaw): add new layer state info to layer debugging |
| LayerDebugInfo Layer::getLayerDebugInfo(const DisplayDevice* display) const { |
| using namespace std::string_literals; |
| |
| LayerDebugInfo info; |
| const State& ds = getDrawingState(); |
| info.mName = getName(); |
| sp<Layer> parent = mDrawingParent.promote(); |
| info.mParentName = parent ? parent->getName() : "none"s; |
| info.mType = getType(); |
| info.mTransparentRegion = ds.activeTransparentRegion_legacy; |
| |
| info.mVisibleRegion = getVisibleRegion(display); |
| info.mSurfaceDamageRegion = surfaceDamageRegion; |
| info.mLayerStack = getLayerStack(); |
| info.mX = ds.active_legacy.transform.tx(); |
| info.mY = ds.active_legacy.transform.ty(); |
| info.mZ = ds.z; |
| info.mWidth = ds.active_legacy.w; |
| info.mHeight = ds.active_legacy.h; |
| info.mCrop = ds.crop; |
| info.mColor = ds.color; |
| info.mFlags = ds.flags; |
| info.mPixelFormat = getPixelFormat(); |
| info.mDataSpace = static_cast<android_dataspace>(getDataSpace()); |
| info.mMatrix[0][0] = ds.active_legacy.transform[0][0]; |
| info.mMatrix[0][1] = ds.active_legacy.transform[0][1]; |
| info.mMatrix[1][0] = ds.active_legacy.transform[1][0]; |
| info.mMatrix[1][1] = ds.active_legacy.transform[1][1]; |
| { |
| sp<const GraphicBuffer> buffer = getBuffer(); |
| if (buffer != 0) { |
| info.mActiveBufferWidth = buffer->getWidth(); |
| info.mActiveBufferHeight = buffer->getHeight(); |
| info.mActiveBufferStride = buffer->getStride(); |
| info.mActiveBufferFormat = buffer->format; |
| } else { |
| info.mActiveBufferWidth = 0; |
| info.mActiveBufferHeight = 0; |
| info.mActiveBufferStride = 0; |
| info.mActiveBufferFormat = 0; |
| } |
| } |
| info.mNumQueuedFrames = getQueuedFrameCount(); |
| info.mRefreshPending = isBufferLatched(); |
| info.mIsOpaque = isOpaque(ds); |
| info.mContentDirty = contentDirty; |
| info.mStretchEffect = getStretchEffect(); |
| return info; |
| } |
| |
| void Layer::miniDumpHeader(std::string& result) { |
| result.append(kDumpTableRowLength, '-'); |
| result.append("\n"); |
| result.append(" Layer name\n"); |
| result.append(" Z | "); |
| result.append(" Window Type | "); |
| result.append(" Comp Type | "); |
| result.append(" Transform | "); |
| result.append(" Disp Frame (LTRB) | "); |
| result.append(" Source Crop (LTRB) | "); |
| result.append(" Frame Rate (Explicit) (Seamlessness) [Focused]\n"); |
| result.append(kDumpTableRowLength, '-'); |
| result.append("\n"); |
| } |
| |
| std::string Layer::frameRateCompatibilityString(Layer::FrameRateCompatibility compatibility) { |
| switch (compatibility) { |
| case FrameRateCompatibility::Default: |
| return "Default"; |
| case FrameRateCompatibility::ExactOrMultiple: |
| return "ExactOrMultiple"; |
| case FrameRateCompatibility::NoVote: |
| return "NoVote"; |
| case FrameRateCompatibility::Exact: |
| return "Exact"; |
| } |
| } |
| |
| void Layer::miniDump(std::string& result, const DisplayDevice& display) const { |
| const auto outputLayer = findOutputLayerForDisplay(&display); |
| if (!outputLayer) { |
| return; |
| } |
| |
| std::string name; |
| if (mName.length() > 77) { |
| std::string shortened; |
| shortened.append(mName, 0, 36); |
| shortened.append("[...]"); |
| shortened.append(mName, mName.length() - 36); |
| name = std::move(shortened); |
| } else { |
| name = mName; |
| } |
| |
| StringAppendF(&result, " %s\n", name.c_str()); |
| |
| const State& layerState(getDrawingState()); |
| const auto& outputLayerState = outputLayer->getState(); |
| |
| if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) { |
| StringAppendF(&result, " rel %6d | ", layerState.z); |
| } else { |
| StringAppendF(&result, " %10d | ", layerState.z); |
| } |
| StringAppendF(&result, " %10d | ", mWindowType); |
| StringAppendF(&result, "%10s | ", toString(getCompositionType(display)).c_str()); |
| StringAppendF(&result, "%10s | ", toString(outputLayerState.bufferTransform).c_str()); |
| const Rect& frame = outputLayerState.displayFrame; |
| StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom); |
| const FloatRect& crop = outputLayerState.sourceCrop; |
| StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f | ", crop.left, crop.top, crop.right, |
| crop.bottom); |
| const auto frameRate = getFrameRateForLayerTree(); |
| if (frameRate.rate.isValid() || frameRate.type != FrameRateCompatibility::Default) { |
| StringAppendF(&result, "%s %15s %17s", to_string(frameRate.rate).c_str(), |
| frameRateCompatibilityString(frameRate.type).c_str(), |
| toString(frameRate.seamlessness).c_str()); |
| } else { |
| result.append(41, ' '); |
| } |
| |
| const auto focused = isLayerFocusedBasedOnPriority(getFrameRateSelectionPriority()); |
| StringAppendF(&result, " [%s]\n", focused ? "*" : " "); |
| |
| result.append(kDumpTableRowLength, '-'); |
| result.append("\n"); |
| } |
| |
| void Layer::dumpFrameStats(std::string& result) const { |
| mFrameTracker.dumpStats(result); |
| } |
| |
| void Layer::clearFrameStats() { |
| mFrameTracker.clearStats(); |
| } |
| |
| void Layer::logFrameStats() { |
| mFrameTracker.logAndResetStats(mName); |
| } |
| |
| void Layer::getFrameStats(FrameStats* outStats) const { |
| mFrameTracker.getStats(outStats); |
| } |
| |
| void Layer::dumpFrameEvents(std::string& result) { |
| StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().c_str(), getType(), this); |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.checkFencesForCompletion(); |
| mFrameEventHistory.dump(result); |
| } |
| |
| void Layer::dumpCallingUidPid(std::string& result) const { |
| StringAppendF(&result, "Layer %s (%s) callingPid:%d callingUid:%d ownerUid:%d\n", |
| getName().c_str(), getType(), mCallingPid, mCallingUid, mOwnerUid); |
| } |
| |
| void Layer::onDisconnect() { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.onDisconnect(); |
| const int32_t layerId = getSequence(); |
| mFlinger->mTimeStats->onDestroy(layerId); |
| mFlinger->mFrameTracer->onDestroy(layerId); |
| } |
| |
| void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps, |
| FrameEventHistoryDelta* outDelta) { |
| if (newTimestamps) { |
| mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber, |
| getName().c_str(), mOwnerUid, newTimestamps->postedTime); |
| mFlinger->mTimeStats->setAcquireFence(getSequence(), newTimestamps->frameNumber, |
| newTimestamps->acquireFence); |
| } |
| |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| if (newTimestamps) { |
| // If there are any unsignaled fences in the aquire timeline at this |
| // point, the previously queued frame hasn't been latched yet. Go ahead |
| // and try to get the signal time here so the syscall is taken out of |
| // the main thread's critical path. |
| mAcquireTimeline.updateSignalTimes(); |
| // Push the new fence after updating since it's likely still pending. |
| mAcquireTimeline.push(newTimestamps->acquireFence); |
| mFrameEventHistory.addQueue(*newTimestamps); |
| } |
| |
| if (outDelta) { |
| mFrameEventHistory.getAndResetDelta(outDelta); |
| } |
| } |
| |
| size_t Layer::getChildrenCount() const { |
| size_t count = 0; |
| for (const sp<Layer>& child : mCurrentChildren) { |
| count += 1 + child->getChildrenCount(); |
| } |
| return count; |
| } |
| |
| void Layer::addChild(const sp<Layer>& layer) { |
| mChildrenChanged = true; |
| setTransactionFlags(eTransactionNeeded); |
| |
| mCurrentChildren.add(layer); |
| layer->setParent(this); |
| updateTreeHasFrameRateVote(); |
| } |
| |
| ssize_t Layer::removeChild(const sp<Layer>& layer) { |
| mChildrenChanged = true; |
| setTransactionFlags(eTransactionNeeded); |
| |
| layer->setParent(nullptr); |
| const auto removeResult = mCurrentChildren.remove(layer); |
| |
| updateTreeHasFrameRateVote(); |
| layer->updateTreeHasFrameRateVote(); |
| |
| return removeResult; |
| } |
| |
| void Layer::reparentChildren(const sp<Layer>& newParent) { |
| for (const sp<Layer>& child : mCurrentChildren) { |
| newParent->addChild(child); |
| } |
| mCurrentChildren.clear(); |
| updateTreeHasFrameRateVote(); |
| } |
| |
| bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) { |
| sp<Handle> handle = nullptr; |
| sp<Layer> newParent = nullptr; |
| if (newParentHandle == nullptr) { |
| return false; |
| } |
| handle = static_cast<Handle*>(newParentHandle.get()); |
| newParent = handle->owner.promote(); |
| if (newParent == nullptr) { |
| ALOGE("Unable to promote Layer handle"); |
| return false; |
| } |
| |
| reparentChildren(newParent); |
| |
| return true; |
| } |
| |
| void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) { |
| for (const sp<Layer>& child : mDrawingChildren) { |
| child->mDrawingParent = newParent; |
| child->computeBounds(newParent->mBounds, |
| newParent->getTransformWithScale(newParent->getBufferScaleTransform()), |
| newParent->mEffectiveShadowRadius); |
| } |
| } |
| |
| bool Layer::reparent(const sp<IBinder>& newParentHandle) { |
| sp<Layer> newParent; |
| if (newParentHandle != nullptr) { |
| auto handle = static_cast<Handle*>(newParentHandle.get()); |
| newParent = handle->owner.promote(); |
| if (newParent == nullptr) { |
| ALOGE("Unable to promote Layer handle"); |
| return false; |
| } |
| if (newParent == this) { |
| ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str()); |
| return false; |
| } |
| } |
| |
| sp<Layer> parent = getParent(); |
| if (parent != nullptr) { |
| parent->removeChild(this); |
| } |
| |
| if (newParentHandle != nullptr) { |
| newParent->addChild(this); |
| if (!newParent->isRemovedFromCurrentState()) { |
| addToCurrentState(); |
| } else { |
| onRemovedFromCurrentState(); |
| } |
| } else { |
| onRemovedFromCurrentState(); |
| } |
| |
| return true; |
| } |
| |
| bool Layer::setColorTransform(const mat4& matrix) { |
| static const mat4 identityMatrix = mat4(); |
| |
| if (mCurrentState.colorTransform == matrix) { |
| return false; |
| } |
| ++mCurrentState.sequence; |
| mCurrentState.colorTransform = matrix; |
| mCurrentState.hasColorTransform = matrix != identityMatrix; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| mat4 Layer::getColorTransform() const { |
| mat4 colorTransform = mat4(getDrawingState().colorTransform); |
| if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) { |
| colorTransform = parent->getColorTransform() * colorTransform; |
| } |
| return colorTransform; |
| } |
| |
| bool Layer::hasColorTransform() const { |
| bool hasColorTransform = getDrawingState().hasColorTransform; |
| if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) { |
| hasColorTransform = hasColorTransform || parent->hasColorTransform(); |
| } |
| return hasColorTransform; |
| } |
| |
| bool Layer::isLegacyDataSpace() const { |
| // return true when no higher bits are set |
| return !(getDataSpace() & |
| (ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK | |
| ui::Dataspace::RANGE_MASK)); |
| } |
| |
| void Layer::setParent(const sp<Layer>& layer) { |
| mCurrentParent = layer; |
| } |
| |
| int32_t Layer::getZ(LayerVector::StateSet stateSet) const { |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| return state.z; |
| } |
| |
| bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const { |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| return state.isRelativeOf; |
| } |
| |
| __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList( |
| LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) { |
| LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, |
| "makeTraversalList received invalid stateSet"); |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| |
| if (state.zOrderRelatives.size() == 0) { |
| *outSkipRelativeZUsers = true; |
| return children; |
| } |
| |
| LayerVector traverse(stateSet); |
| for (const wp<Layer>& weakRelative : state.zOrderRelatives) { |
| sp<Layer> strongRelative = weakRelative.promote(); |
| if (strongRelative != nullptr) { |
| traverse.add(strongRelative); |
| } |
| } |
| |
| for (const sp<Layer>& child : children) { |
| if (child->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| traverse.add(child); |
| } |
| |
| return traverse; |
| } |
| |
| /** |
| * Negatively signed relatives are before 'this' in Z-order. |
| */ |
| void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { |
| // In the case we have other layers who are using a relative Z to us, makeTraversalList will |
| // produce a new list for traversing, including our relatives, and not including our children |
| // who are relatives of another surface. In the case that there are no relative Z, |
| // makeTraversalList returns our children directly to avoid significant overhead. |
| // However in this case we need to take the responsibility for filtering children which |
| // are relatives of another surface here. |
| bool skipRelativeZUsers = false; |
| const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); |
| |
| size_t i = 0; |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| |
| if (relative->getZ(stateSet) >= 0) { |
| break; |
| } |
| relative->traverseInZOrder(stateSet, visitor); |
| } |
| |
| visitor(this); |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| |
| if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| relative->traverseInZOrder(stateSet, visitor); |
| } |
| } |
| |
| /** |
| * Positively signed relatives are before 'this' in reverse Z-order. |
| */ |
| void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor) { |
| // See traverseInZOrder for documentation. |
| bool skipRelativeZUsers = false; |
| LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); |
| |
| int32_t i = 0; |
| for (i = int32_t(list.size()) - 1; i >= 0; i--) { |
| const auto& relative = list[i]; |
| |
| if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| |
| if (relative->getZ(stateSet) < 0) { |
| break; |
| } |
| relative->traverseInReverseZOrder(stateSet, visitor); |
| } |
| visitor(this); |
| for (; i >= 0; i--) { |
| const auto& relative = list[i]; |
| |
| if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| |
| relative->traverseInReverseZOrder(stateSet, visitor); |
| } |
| } |
| |
| void Layer::traverse(LayerVector::StateSet state, const LayerVector::Visitor& visitor) { |
| visitor(this); |
| const LayerVector& children = |
| state == LayerVector::StateSet::Drawing ? mDrawingChildren : mCurrentChildren; |
| for (const sp<Layer>& child : children) { |
| child->traverse(state, visitor); |
| } |
| } |
| |
| LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet, |
| const std::vector<Layer*>& layersInTree) { |
| LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, |
| "makeTraversalList received invalid stateSet"); |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| |
| LayerVector traverse(stateSet); |
| for (const wp<Layer>& weakRelative : state.zOrderRelatives) { |
| sp<Layer> strongRelative = weakRelative.promote(); |
| // Only add relative layers that are also descendents of the top most parent of the tree. |
| // If a relative layer is not a descendent, then it should be ignored. |
| if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { |
| traverse.add(strongRelative); |
| } |
| } |
| |
| for (const sp<Layer>& child : children) { |
| const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; |
| // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a |
| // descendent of the top most parent of the tree. If it's not a descendent, then just add |
| // the child here since it won't be added later as a relative. |
| if (std::binary_search(layersInTree.begin(), layersInTree.end(), |
| childState.zOrderRelativeOf.promote().get())) { |
| continue; |
| } |
| traverse.add(child); |
| } |
| |
| return traverse; |
| } |
| |
| void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, |
| LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor) { |
| const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree); |
| |
| size_t i = 0; |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| if (relative->getZ(stateSet) >= 0) { |
| break; |
| } |
| relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); |
| } |
| |
| visitor(this); |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); |
| } |
| } |
| |
| std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) { |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| |
| std::vector<Layer*> layersInTree = {this}; |
| for (size_t i = 0; i < children.size(); i++) { |
| const auto& child = children[i]; |
| std::vector<Layer*> childLayers = child->getLayersInTree(stateSet); |
| layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend()); |
| } |
| |
| return layersInTree; |
| } |
| |
| void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor) { |
| std::vector<Layer*> layersInTree = getLayersInTree(stateSet); |
| std::sort(layersInTree.begin(), layersInTree.end()); |
| traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); |
| } |
| |
| ui::Transform Layer::getTransform() const { |
| return mEffectiveTransform; |
| } |
| |
| half Layer::getAlpha() const { |
| const auto& p = mDrawingParent.promote(); |
| |
| half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf; |
| return parentAlpha * getDrawingState().color.a; |
| } |
| |
| ui::Transform::RotationFlags Layer::getFixedTransformHint() const { |
| ui::Transform::RotationFlags fixedTransformHint = mCurrentState.fixedTransformHint; |
| if (fixedTransformHint != ui::Transform::ROT_INVALID) { |
| return fixedTransformHint; |
| } |
| const auto& p = mCurrentParent.promote(); |
| if (!p) return fixedTransformHint; |
| return p->getFixedTransformHint(); |
| } |
| |
| half4 Layer::getColor() const { |
| const half4 color(getDrawingState().color); |
| return half4(color.r, color.g, color.b, getAlpha()); |
| } |
| |
| int32_t Layer::getBackgroundBlurRadius() const { |
| const auto& p = mDrawingParent.promote(); |
| |
| half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf; |
| return parentAlpha * getDrawingState().backgroundBlurRadius; |
| } |
| |
| const std::vector<BlurRegion>& Layer::getBlurRegions() const { |
| return getDrawingState().blurRegions; |
| } |
| |
| Layer::RoundedCornerState Layer::getRoundedCornerState() const { |
| const auto& p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| RoundedCornerState parentState = p->getRoundedCornerState(); |
| if (parentState.radius > 0) { |
| ui::Transform t = getActiveTransform(getDrawingState()); |
| t = t.inverse(); |
| parentState.cropRect = t.transform(parentState.cropRect); |
| // The rounded corners shader only accepts 1 corner radius for performance reasons, |
| // but a transform matrix can define horizontal and vertical scales. |
| // Let's take the average between both of them and pass into the shader, practically we |
| // never do this type of transformation on windows anyway. |
| auto scaleX = sqrtf(t[0][0] * t[0][0] + t[0][1] * t[0][1]); |
| auto scaleY = sqrtf(t[1][0] * t[1][0] + t[1][1] * t[1][1]); |
| parentState.radius *= (scaleX + scaleY) / 2.0f; |
| return parentState; |
| } |
| } |
| const float radius = getDrawingState().cornerRadius; |
| return radius > 0 && getCroppedBufferSize(getDrawingState()).isValid() |
| ? RoundedCornerState(getCroppedBufferSize(getDrawingState()).toFloatRect(), radius) |
| : RoundedCornerState(); |
| } |
| |
| renderengine::ShadowSettings Layer::getShadowSettings(const Rect& layerStackRect) const { |
| renderengine::ShadowSettings state = mFlinger->mDrawingState.globalShadowSettings; |
| |
| // Shift the spot light x-position to the middle of the display and then |
| // offset it by casting layer's screen pos. |
| state.lightPos.x = (layerStackRect.width() / 2.f) - mScreenBounds.left; |
| state.lightPos.y -= mScreenBounds.top; |
| |
| state.length = mEffectiveShadowRadius; |
| return state; |
| } |
| |
| void Layer::commitChildList() { |
| for (size_t i = 0; i < mCurrentChildren.size(); i++) { |
| const auto& child = mCurrentChildren[i]; |
| child->commitChildList(); |
| } |
| mDrawingChildren = mCurrentChildren; |
| mDrawingParent = mCurrentParent; |
| } |
| |
| static wp<Layer> extractLayerFromBinder(const wp<IBinder>& weakBinderHandle) { |
| if (weakBinderHandle == nullptr) { |
| return nullptr; |
| } |
| sp<IBinder> binderHandle = weakBinderHandle.promote(); |
| if (binderHandle == nullptr) { |
| return nullptr; |
| } |
| sp<Layer::Handle> handle = static_cast<Layer::Handle*>(binderHandle.get()); |
| if (handle == nullptr) { |
| return nullptr; |
| } |
| return handle->owner; |
| } |
| |
| void Layer::setInputInfo(const InputWindowInfo& info) { |
| mCurrentState.inputInfo = info; |
| mCurrentState.touchableRegionCrop = extractLayerFromBinder(info.touchableRegionCropHandle); |
| mCurrentState.modified = true; |
| mCurrentState.inputInfoChanged = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| LayerProto* Layer::writeToProto(LayersProto& layersProto, uint32_t traceFlags, |
| const DisplayDevice* display) { |
| LayerProto* layerProto = layersProto.add_layers(); |
| writeToProtoDrawingState(layerProto, traceFlags, display); |
| writeToProtoCommonState(layerProto, LayerVector::StateSet::Drawing, traceFlags); |
| |
| if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) { |
| // Only populate for the primary display. |
| if (display) { |
| const Hwc2::IComposerClient::Composition compositionType = getCompositionType(*display); |
| layerProto->set_hwc_composition_type(static_cast<HwcCompositionType>(compositionType)); |
| } |
| } |
| |
| for (const sp<Layer>& layer : mDrawingChildren) { |
| layer->writeToProto(layersProto, traceFlags, display); |
| } |
| |
| return layerProto; |
| } |
| |
| void Layer::writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags, |
| const DisplayDevice* display) { |
| const ui::Transform transform = getTransform(); |
| |
| if (traceFlags & SurfaceTracing::TRACE_CRITICAL) { |
| for (const auto& pendingState : mPendingStatesSnapshot) { |
| auto barrierLayer = pendingState.barrierLayer_legacy.promote(); |
| if (barrierLayer != nullptr) { |
| BarrierLayerProto* barrierLayerProto = layerInfo->add_barrier_layer(); |
| barrierLayerProto->set_id(barrierLayer->sequence); |
| barrierLayerProto->set_frame_number(pendingState.barrierFrameNumber); |
| } |
| } |
| |
| auto buffer = getBuffer(); |
| if (buffer != nullptr) { |
| LayerProtoHelper::writeToProto(buffer, |
| [&]() { return layerInfo->mutable_active_buffer(); }); |
| LayerProtoHelper::writeToProto(ui::Transform(getBufferTransform()), |
| layerInfo->mutable_buffer_transform()); |
| } |
| layerInfo->set_invalidate(contentDirty); |
| layerInfo->set_is_protected(isProtected()); |
| layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(getDataSpace()))); |
| layerInfo->set_queued_frames(getQueuedFrameCount()); |
| layerInfo->set_refresh_pending(isBufferLatched()); |
| layerInfo->set_curr_frame(mCurrentFrameNumber); |
| layerInfo->set_effective_scaling_mode(getEffectiveScalingMode()); |
| |
| layerInfo->set_corner_radius(getRoundedCornerState().radius); |
| layerInfo->set_background_blur_radius(getBackgroundBlurRadius()); |
| LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform()); |
| LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(), |
| [&]() { return layerInfo->mutable_position(); }); |
| LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); }); |
| if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) { |
| LayerProtoHelper::writeToProto(getVisibleRegion(display), |
| [&]() { return layerInfo->mutable_visible_region(); }); |
| } |
| LayerProtoHelper::writeToProto(surfaceDamageRegion, |
| [&]() { return layerInfo->mutable_damage_region(); }); |
| |
| if (hasColorTransform()) { |
| LayerProtoHelper::writeToProto(getColorTransform(), |
| layerInfo->mutable_color_transform()); |
| } |
| } |
| |
| LayerProtoHelper::writeToProto(mSourceBounds, |
| [&]() { return layerInfo->mutable_source_bounds(); }); |
| LayerProtoHelper::writeToProto(mScreenBounds, |
| [&]() { return layerInfo->mutable_screen_bounds(); }); |
| LayerProtoHelper::writeToProto(getRoundedCornerState().cropRect, |
| [&]() { return layerInfo->mutable_corner_radius_crop(); }); |
| layerInfo->set_shadow_radius(mEffectiveShadowRadius); |
| } |
| |
| void Layer::writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet, |
| uint32_t traceFlags) { |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| |
| ui::Transform requestedTransform = state.transform; |
| |
| if (traceFlags & SurfaceTracing::TRACE_CRITICAL) { |
| layerInfo->set_id(sequence); |
| layerInfo->set_name(getName().c_str()); |
| layerInfo->set_type(getType()); |
| |
| for (const auto& child : children) { |
| layerInfo->add_children(child->sequence); |
| } |
| |
| for (const wp<Layer>& weakRelative : state.zOrderRelatives) { |
| sp<Layer> strongRelative = weakRelative.promote(); |
| if (strongRelative != nullptr) { |
| layerInfo->add_relatives(strongRelative->sequence); |
| } |
| } |
| |
| LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy, |
| [&]() { return layerInfo->mutable_transparent_region(); }); |
| |
| layerInfo->set_layer_stack(getLayerStack()); |
| layerInfo->set_z(state.z); |
| |
| LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(), |
| [&]() { |
| return layerInfo->mutable_requested_position(); |
| }); |
| |
| LayerProtoHelper::writeSizeToProto(state.width, state.height, |
| [&]() { return layerInfo->mutable_size(); }); |
| |
| LayerProtoHelper::writeToProto(state.crop, [&]() { return layerInfo->mutable_crop(); }); |
| |
| layerInfo->set_is_opaque(isOpaque(state)); |
| |
| |
| layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat())); |
| LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); }); |
| LayerProtoHelper::writeToProto(state.color, |
| [&]() { return layerInfo->mutable_requested_color(); }); |
| layerInfo->set_flags(state.flags); |
| |
| LayerProtoHelper::writeToProto(requestedTransform, |
| layerInfo->mutable_requested_transform()); |
| |
| auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote(); |
| if (parent != nullptr) { |
| layerInfo->set_parent(parent->sequence); |
| } else { |
| layerInfo->set_parent(-1); |
| } |
| |
| auto zOrderRelativeOf = state.zOrderRelativeOf.promote(); |
| if (zOrderRelativeOf != nullptr) { |
| layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence); |
| } else { |
| layerInfo->set_z_order_relative_of(-1); |
| } |
| |
| layerInfo->set_is_relative_of(state.isRelativeOf); |
| |
| layerInfo->set_owner_uid(mOwnerUid); |
| } |
| |
| if (traceFlags & SurfaceTracing::TRACE_INPUT) { |
| InputWindowInfo info; |
| if (useDrawing) { |
| info = fillInputInfo({nullptr}); |
| } else { |
| info = state.inputInfo; |
| } |
| |
| LayerProtoHelper::writeToProto(info, state.touchableRegionCrop, |
| [&]() { return layerInfo->mutable_input_window_info(); }); |
| } |
| |
| if (traceFlags & SurfaceTracing::TRACE_EXTRA) { |
| auto protoMap = layerInfo->mutable_metadata(); |
| for (const auto& entry : state.metadata.mMap) { |
| (*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend()); |
| } |
| } |
| } |
| |
| bool Layer::isRemovedFromCurrentState() const { |
| return mRemovedFromCurrentState; |
| } |
| |
| ui::Transform Layer::getInputTransform() const { |
| return getTransform(); |
| } |
| |
| Rect Layer::getInputBounds() const { |
| return getCroppedBufferSize(getDrawingState()); |
| } |
| |
| void Layer::fillInputFrameInfo(InputWindowInfo& info, const ui::Transform& toPhysicalDisplay) { |
| // Transform layer size to screen space and inset it by surface insets. |
| // If this is a portal window, set the touchableRegion to the layerBounds. |
| Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE |
| ? getInputBounds() |
| : info.touchableRegion.getBounds(); |
| if (!layerBounds.isValid()) { |
| layerBounds = getInputBounds(); |
| } |
| |
| if (!layerBounds.isValid()) { |
| // If the layer bounds is empty, set the frame to empty and clear the transform |
| info.frameLeft = 0; |
| info.frameTop = 0; |
| info.frameRight = 0; |
| info.frameBottom = 0; |
| info.transform.reset(); |
| return; |
| } |
| |
| ui::Transform layerToDisplay = getInputTransform(); |
| // Transform that takes window coordinates to unrotated display coordinates |
| ui::Transform t = toPhysicalDisplay * layerToDisplay; |
| int32_t xSurfaceInset = info.surfaceInset; |
| int32_t ySurfaceInset = info.surfaceInset; |
| // Bring screenBounds into unrotated space |
| Rect screenBounds = toPhysicalDisplay.transform(Rect{mScreenBounds}); |
| |
| const float xScale = t.getScaleX(); |
| const float yScale = t.getScaleY(); |
| if (xScale != 1.0f || yScale != 1.0f) { |
| xSurfaceInset = std::round(xSurfaceInset * xScale); |
| ySurfaceInset = std::round(ySurfaceInset * yScale); |
| } |
| |
| // Transform the layer bounds from layer coordinate space to display coordinate space. |
| Rect transformedLayerBounds = t.transform(layerBounds); |
| |
| // clamp inset to layer bounds |
| xSurfaceInset = (xSurfaceInset >= 0) |
| ? std::min(xSurfaceInset, transformedLayerBounds.getWidth() / 2) |
| : 0; |
| ySurfaceInset = (ySurfaceInset >= 0) |
| ? std::min(ySurfaceInset, transformedLayerBounds.getHeight() / 2) |
| : 0; |
| |
| // inset while protecting from overflow TODO(b/161235021): What is going wrong |
| // in the overflow scenario? |
| { |
| int32_t tmp; |
| if (!__builtin_add_overflow(transformedLayerBounds.left, xSurfaceInset, &tmp)) |
| transformedLayerBounds.left = tmp; |
| if (!__builtin_sub_overflow(transformedLayerBounds.right, xSurfaceInset, &tmp)) |
| transformedLayerBounds.right = tmp; |
| if (!__builtin_add_overflow(transformedLayerBounds.top, ySurfaceInset, &tmp)) |
| transformedLayerBounds.top = tmp; |
| if (!__builtin_sub_overflow(transformedLayerBounds.bottom, ySurfaceInset, &tmp)) |
| transformedLayerBounds.bottom = tmp; |
| } |
| |
| // Compute the correct transform to send to input. This will allow it to transform the |
| // input coordinates from display space into window space. Therefore, it needs to use the |
| // final layer frame to create the inverse transform. Since surface insets are added later, |
| // along with the overflow, the best way to ensure we get the correct transform is to use |
| // the final frame calculated. |
| // 1. Take the original transform set on the window and get the inverse transform. This is |
| // used to get the final bounds in display space (ignorning the transform). Apply the |
| // inverse transform on the layerBounds to get the untransformed frame (in layer space) |
| // 2. Take the top and left of the untransformed frame to get the real position on screen. |
| // Apply the layer transform on top/left so it includes any scale or rotation. These will |
| // be the new translation values for the transform. |
| // 3. Update the translation of the original transform to the new translation values. |
| // 4. Send the inverse transform to input so the coordinates can be transformed back into |
| // window space. |
| ui::Transform inverseTransform = t.inverse(); |
| Rect nonTransformedBounds = inverseTransform.transform(transformedLayerBounds); |
| vec2 translation = t.transform(nonTransformedBounds.left, nonTransformedBounds.top); |
| ui::Transform inputTransform(t); |
| inputTransform.set(translation.x, translation.y); |
| info.transform = inputTransform.inverse(); |
| |
| // We need to send the layer bounds cropped to the screenbounds since the layer can be cropped. |
| // The frame should be the area the user sees on screen since it's used for occlusion |
| // detection. |
| transformedLayerBounds.intersect(screenBounds, &transformedLayerBounds); |
| info.frameLeft = transformedLayerBounds.left; |
| info.frameTop = transformedLayerBounds.top; |
| info.frameRight = transformedLayerBounds.right; |
| info.frameBottom = transformedLayerBounds.bottom; |
| |
| // Position the touchable region relative to frame screen location and restrict it to frame |
| // bounds. |
| info.touchableRegion = inputTransform.transform(info.touchableRegion); |
| } |
| |
| InputWindowInfo Layer::fillInputInfo(const sp<DisplayDevice>& display) { |
| if (!hasInputInfo()) { |
| mDrawingState.inputInfo.name = getName(); |
| mDrawingState.inputInfo.ownerUid = mOwnerUid; |
| mDrawingState.inputInfo.ownerPid = mOwnerPid; |
| mDrawingState.inputInfo.inputFeatures = InputWindowInfo::Feature::NO_INPUT_CHANNEL; |
| mDrawingState.inputInfo.flags = InputWindowInfo::Flag::NOT_TOUCH_MODAL; |
| mDrawingState.inputInfo.displayId = getLayerStack(); |
| } |
| |
| InputWindowInfo info = mDrawingState.inputInfo; |
| info.id = sequence; |
| |
| if (info.displayId == ADISPLAY_ID_NONE) { |
| info.displayId = getLayerStack(); |
| } |
| |
| // Transform that goes from "logical(rotated)" display to physical/unrotated display. |
| // This is for when inputflinger operates in physical display-space. |
| ui::Transform toPhysicalDisplay; |
| if (display) { |
| toPhysicalDisplay = display->getTransform(); |
| } |
| fillInputFrameInfo(info, toPhysicalDisplay); |
| |
| // For compatibility reasons we let layers which can receive input |
| // receive input before they have actually submitted a buffer. Because |
| // of this we use canReceiveInput instead of isVisible to check the |
| // policy-visibility, ignoring the buffer state. However for layers with |
| // hasInputInfo()==false we can use the real visibility state. |
| // We are just using these layers for occlusion detection in |
| // InputDispatcher, and obviously if they aren't visible they can't occlude |
| // anything. |
| info.visible = hasInputInfo() ? canReceiveInput() : isVisible(); |
| info.alpha = getAlpha(); |
| |
| auto cropLayer = mDrawingState.touchableRegionCrop.promote(); |
| if (info.replaceTouchableRegionWithCrop) { |
| if (cropLayer == nullptr) { |
| info.touchableRegion = Region(toPhysicalDisplay.transform(Rect{mScreenBounds})); |
| } else { |
| info.touchableRegion = |
| Region(toPhysicalDisplay.transform(Rect{cropLayer->mScreenBounds})); |
| } |
| } else if (cropLayer != nullptr) { |
| info.touchableRegion = info.touchableRegion.intersect( |
| toPhysicalDisplay.transform(Rect{cropLayer->mScreenBounds})); |
| } |
| |
| // If the layer is a clone, we need to crop the input region to cloned root to prevent |
| // touches from going outside the cloned area. |
| if (isClone()) { |
| sp<Layer> clonedRoot = getClonedRoot(); |
| if (clonedRoot != nullptr) { |
| Rect rect = toPhysicalDisplay.transform(Rect{clonedRoot->mScreenBounds}); |
| info.touchableRegion = info.touchableRegion.intersect(rect); |
| } |
| } |
| |
| return info; |
| } |
| |
| sp<Layer> Layer::getClonedRoot() { |
| if (mClonedChild != nullptr) { |
| return this; |
| } |
| if (mDrawingParent == nullptr || mDrawingParent.promote() == nullptr) { |
| return nullptr; |
| } |
| return mDrawingParent.promote()->getClonedRoot(); |
| } |
| |
| bool Layer::hasInputInfo() const { |
| return mDrawingState.inputInfo.token != nullptr; |
| } |
| |
| bool Layer::canReceiveInput() const { |
| return !isHiddenByPolicy(); |
| } |
| |
| compositionengine::OutputLayer* Layer::findOutputLayerForDisplay( |
| const DisplayDevice* display) const { |
| if (!display) return nullptr; |
| return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionEngineLayerFE()); |
| } |
| |
| Region Layer::getVisibleRegion(const DisplayDevice* display) const { |
| const auto outputLayer = findOutputLayerForDisplay(display); |
| return outputLayer ? outputLayer->getState().visibleRegion : Region(); |
| } |
| |
| void Layer::setInitialValuesForClone(const sp<Layer>& clonedFrom) { |
| // copy drawing state from cloned layer |
| mDrawingState = clonedFrom->mDrawingState; |
| mClonedFrom = clonedFrom; |
| } |
| |
| void Layer::updateMirrorInfo() { |
| if (mClonedChild == nullptr || !mClonedChild->isClonedFromAlive()) { |
| // If mClonedChild is null, there is nothing to mirror. If isClonedFromAlive returns false, |
| // it means that there is a clone, but the layer it was cloned from has been destroyed. In |
| // that case, we want to delete the reference to the clone since we want it to get |
| // destroyed. The root, this layer, will still be around since the client can continue |
| // to hold a reference, but no cloned layers will be displayed. |
| mClonedChild = nullptr; |
| return; |
| } |
| |
| std::map<sp<Layer>, sp<Layer>> clonedLayersMap; |
| // If the real layer exists and is in current state, add the clone as a child of the root. |
| // There's no need to remove from drawingState when the layer is offscreen since currentState is |
| // copied to drawingState for the root layer. So the clonedChild is always removed from |
| // drawingState and then needs to be added back each traversal. |
| if (!mClonedChild->getClonedFrom()->isRemovedFromCurrentState()) { |
| addChildToDrawing(mClonedChild); |
| } |
| |
| mClonedChild->updateClonedDrawingState(clonedLayersMap); |
| mClonedChild->updateClonedChildren(this, clonedLayersMap); |
| mClonedChild->updateClonedRelatives(clonedLayersMap); |
| } |
| |
| void Layer::updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) { |
| // If the layer the clone was cloned from is alive, copy the content of the drawingState |
| // to the clone. If the real layer is no longer alive, continue traversing the children |
| // since we may be able to pull out other children that are still alive. |
| if (isClonedFromAlive()) { |
| sp<Layer> clonedFrom = getClonedFrom(); |
| mDrawingState = clonedFrom->mDrawingState; |
| clonedLayersMap.emplace(clonedFrom, this); |
| } |
| |
| // The clone layer may have children in drawingState since they may have been created and |
| // added from a previous request to updateMirorInfo. This is to ensure we don't recreate clones |
| // that already exist, since we can just re-use them. |
| // The drawingChildren will not get overwritten by the currentChildren since the clones are |
| // not updated in the regular traversal. They are skipped since the root will lose the |
| // reference to them when it copies its currentChildren to drawing. |
| for (sp<Layer>& child : mDrawingChildren) { |
| child->updateClonedDrawingState(clonedLayersMap); |
| } |
| } |
| |
| void Layer::updateClonedChildren(const sp<Layer>& mirrorRoot, |
| std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) { |
| mDrawingChildren.clear(); |
| |
| if (!isClonedFromAlive()) { |
| return; |
| } |
| |
| sp<Layer> clonedFrom = getClonedFrom(); |
| for (sp<Layer>& child : clonedFrom->mDrawingChildren) { |
| if (child == mirrorRoot) { |
| // This is to avoid cyclical mirroring. |
| continue; |
| } |
| sp<Layer> clonedChild = clonedLayersMap[child]; |
| if (clonedChild == nullptr) { |
| clonedChild = child->createClone(); |
| clonedLayersMap[child] = clonedChild; |
| } |
| addChildToDrawing(clonedChild); |
| clonedChild->updateClonedChildren(mirrorRoot, clonedLayersMap); |
| } |
| } |
| |
| void Layer::updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) { |
| auto cropLayer = mDrawingState.touchableRegionCrop.promote(); |
| if (cropLayer != nullptr) { |
| if (clonedLayersMap.count(cropLayer) == 0) { |
| // Real layer had a crop layer but it's not in the cloned hierarchy. Just set to |
| // self as crop layer to avoid going outside bounds. |
| mDrawingState.touchableRegionCrop = this; |
| } else { |
| const sp<Layer>& clonedCropLayer = clonedLayersMap.at(cropLayer); |
| mDrawingState.touchableRegionCrop = clonedCropLayer; |
| } |
| } |
| // Cloned layers shouldn't handle watch outside since their z order is not determined by |
| // WM or the client. |
| mDrawingState.inputInfo.flags &= ~InputWindowInfo::Flag::WATCH_OUTSIDE_TOUCH; |
| } |
| |
| void Layer::updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) { |
| mDrawingState.zOrderRelativeOf = nullptr; |
| mDrawingState.zOrderRelatives.clear(); |
| |
| if (!isClonedFromAlive()) { |
| return; |
| } |
| |
| const sp<Layer>& clonedFrom = getClonedFrom(); |
| for (wp<Layer>& relativeWeak : clonedFrom->mDrawingState.zOrderRelatives) { |
| const sp<Layer>& relative = relativeWeak.promote(); |
| if (clonedLayersMap.count(relative) > 0) { |
| auto& clonedRelative = clonedLayersMap.at(relative); |
| mDrawingState.zOrderRelatives.add(clonedRelative); |
| } |
| } |
| |
| // Check if the relativeLayer for the real layer is part of the cloned hierarchy. |
| // It's possible that the layer it's relative to is outside the requested cloned hierarchy. |
| // In that case, we treat the layer as if the relativeOf has been removed. This way, it will |
| // still traverse the children, but the layer with the missing relativeOf will not be shown |
| // on screen. |
| const sp<Layer>& relativeOf = clonedFrom->mDrawingState.zOrderRelativeOf.promote(); |
| if (clonedLayersMap.count(relativeOf) > 0) { |
| const sp<Layer>& clonedRelativeOf = clonedLayersMap.at(relativeOf); |
| mDrawingState.zOrderRelativeOf = clonedRelativeOf; |
| } |
| |
| updateClonedInputInfo(clonedLayersMap); |
| |
| for (sp<Layer>& child : mDrawingChildren) { |
| child->updateClonedRelatives(clonedLayersMap); |
| } |
| } |
| |
| void Layer::addChildToDrawing(const sp<Layer>& layer) { |
| mDrawingChildren.add(layer); |
| layer->mDrawingParent = this; |
| } |
| |
| Layer::FrameRateCompatibility Layer::FrameRate::convertCompatibility(int8_t compatibility) { |
| switch (compatibility) { |
| case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT: |
| return FrameRateCompatibility::Default; |
| case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE: |
| return FrameRateCompatibility::ExactOrMultiple; |
| case ANATIVEWINDOW_FRAME_RATE_EXACT: |
| return FrameRateCompatibility::Exact; |
| default: |
| LOG_ALWAYS_FATAL("Invalid frame rate compatibility value %d", compatibility); |
| return FrameRateCompatibility::Default; |
| } |
| } |
| |
| scheduler::Seamlessness Layer::FrameRate::convertChangeFrameRateStrategy(int8_t strategy) { |
| switch (strategy) { |
| case ANATIVEWINDOW_CHANGE_FRAME_RATE_ONLY_IF_SEAMLESS: |
| return Seamlessness::OnlySeamless; |
| case ANATIVEWINDOW_CHANGE_FRAME_RATE_ALWAYS: |
| return Seamlessness::SeamedAndSeamless; |
| default: |
| LOG_ALWAYS_FATAL("Invalid change frame sate strategy value %d", strategy); |
| return Seamlessness::Default; |
| } |
| } |
| |
| bool Layer::getPrimaryDisplayOnly() const { |
| const State& s(mDrawingState); |
| if (s.flags & layer_state_t::eLayerSkipScreenshot) { |
| return true; |
| } |
| |
| sp<Layer> parent = mDrawingParent.promote(); |
| return parent == nullptr ? false : parent->getPrimaryDisplayOnly(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate) { |
| return stream << "{rate=" << rate.rate |
| << " type=" << Layer::frameRateCompatibilityString(rate.type) |
| << " seamlessness=" << toString(rate.seamlessness) << "}"; |
| } |
| |
| }; // namespace android |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |
| |
| #if defined(__gl2_h_) |
| #error "don't include gl2/gl2.h in this file" |
| #endif |
| |
| // TODO(b/129481165): remove the #pragma below and fix conversion issues |
| #pragma clang diagnostic pop // ignored "-Wconversion" |