blob: 80d2ea849f0723b1cc26f7b3b32bb59efd8c513f [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "Layer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Layer.h"
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android/native_window.h>
#include <binder/IPCThreadState.h>
#include <compositionengine/Display.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <gui/BufferItem.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <math.h>
#include <private/android_filesystem_config.h>
#include <renderengine/RenderEngine.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <ui/DebugUtils.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <algorithm>
#include <mutex>
#include <sstream>
#include "BufferLayer.h"
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "DisplayHardware/HWComposer.h"
#include "EffectLayer.h"
#include "FrameTimeline.h"
#include "FrameTracer/FrameTracer.h"
#include "LayerProtoHelper.h"
#include "LayerRejecter.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "TimeStats/TimeStats.h"
#include "input/InputWindow.h"
#define DEBUG_RESIZE 0
namespace android {
namespace {
constexpr int kDumpTableRowLength = 159;
} // namespace
using base::StringAppendF;
using namespace android::flag_operators;
using PresentState = frametimeline::SurfaceFrame::PresentState;
std::atomic<int32_t> Layer::sSequence{1};
Layer::Layer(const LayerCreationArgs& args)
: mFlinger(args.flinger),
mName(args.name),
mClientRef(args.client),
mWindowType(static_cast<InputWindowInfo::Type>(
args.metadata.getInt32(METADATA_WINDOW_TYPE, 0))) {
uint32_t layerFlags = 0;
if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden;
if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque;
if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure;
if (args.flags & ISurfaceComposerClient::eSkipScreenshot)
layerFlags |= layer_state_t::eLayerSkipScreenshot;
mCurrentState.active_legacy.w = args.w;
mCurrentState.active_legacy.h = args.h;
mCurrentState.flags = layerFlags;
mCurrentState.active_legacy.transform.set(0, 0);
mCurrentState.crop.makeInvalid();
mCurrentState.requestedCrop = mCurrentState.crop;
mCurrentState.z = 0;
mCurrentState.color.a = 1.0f;
mCurrentState.layerStack = 0;
mCurrentState.sequence = 0;
mCurrentState.requested_legacy = mCurrentState.active_legacy;
mCurrentState.width = UINT32_MAX;
mCurrentState.height = UINT32_MAX;
mCurrentState.transform.set(0, 0);
mCurrentState.frameNumber = 0;
mCurrentState.bufferTransform = 0;
mCurrentState.transformToDisplayInverse = false;
mCurrentState.crop.makeInvalid();
mCurrentState.acquireFence = sp<Fence>::make(-1);
mCurrentState.acquireFenceTime = std::make_shared<FenceTime>(mCurrentState.acquireFence);
mCurrentState.dataspace = ui::Dataspace::UNKNOWN;
mCurrentState.hdrMetadata.validTypes = 0;
mCurrentState.surfaceDamageRegion = Region::INVALID_REGION;
mCurrentState.cornerRadius = 0.0f;
mCurrentState.backgroundBlurRadius = 0;
mCurrentState.api = -1;
mCurrentState.hasColorTransform = false;
mCurrentState.colorSpaceAgnostic = false;
mCurrentState.frameRateSelectionPriority = PRIORITY_UNSET;
mCurrentState.metadata = args.metadata;
mCurrentState.shadowRadius = 0.f;
mCurrentState.treeHasFrameRateVote = false;
mCurrentState.fixedTransformHint = ui::Transform::ROT_INVALID;
mCurrentState.frameTimelineInfo = {};
mCurrentState.postTime = -1;
if (args.flags & ISurfaceComposerClient::eNoColorFill) {
// Set an invalid color so there is no color fill.
mCurrentState.color.r = -1.0_hf;
mCurrentState.color.g = -1.0_hf;
mCurrentState.color.b = -1.0_hf;
}
// drawing state & current state are identical
mDrawingState = mCurrentState;
CompositorTiming compositorTiming;
args.flinger->getCompositorTiming(&compositorTiming);
mFrameEventHistory.initializeCompositorTiming(compositorTiming);
mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval);
mCallingPid = args.callingPid;
mCallingUid = args.callingUid;
if (mCallingUid == AID_GRAPHICS || mCallingUid == AID_SYSTEM) {
// If the system didn't send an ownerUid, use the callingUid for the ownerUid.
mOwnerUid = args.metadata.getInt32(METADATA_OWNER_UID, mCallingUid);
mOwnerPid = args.metadata.getInt32(METADATA_OWNER_PID, mCallingPid);
} else {
// A create layer request from a non system request cannot specify the owner uid
mOwnerUid = mCallingUid;
mOwnerPid = mCallingPid;
}
}
void Layer::onFirstRef() {
mFlinger->onLayerFirstRef(this);
}
Layer::~Layer() {
sp<Client> c(mClientRef.promote());
if (c != 0) {
c->detachLayer(this);
}
mFrameTracker.logAndResetStats(mName);
mFlinger->onLayerDestroyed(this);
}
LayerCreationArgs::LayerCreationArgs(SurfaceFlinger* flinger, sp<Client> client, std::string name,
uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata)
: flinger(flinger),
client(std::move(client)),
name(std::move(name)),
w(w),
h(h),
flags(flags),
metadata(std::move(metadata)) {
IPCThreadState* ipc = IPCThreadState::self();
callingPid = ipc->getCallingPid();
callingUid = ipc->getCallingUid();
}
// ---------------------------------------------------------------------------
// callbacks
// ---------------------------------------------------------------------------
/*
* onLayerDisplayed is only meaningful for BufferLayer, but, is called through
* Layer. So, the implementation is done in BufferLayer. When called on a
* EffectLayer object, it's essentially a NOP.
*/
void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {}
void Layer::removeRemoteSyncPoints() {
for (auto& point : mRemoteSyncPoints) {
point->setTransactionApplied();
}
mRemoteSyncPoints.clear();
{
for (State pendingState : mPendingStates) {
pendingState.barrierLayer_legacy = nullptr;
}
}
}
void Layer::removeRelativeZ(const std::vector<Layer*>& layersInTree) {
if (mCurrentState.zOrderRelativeOf == nullptr) {
return;
}
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative == nullptr) {
setZOrderRelativeOf(nullptr);
return;
}
if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
strongRelative->removeZOrderRelative(this);
mFlinger->setTransactionFlags(eTraversalNeeded);
setZOrderRelativeOf(nullptr);
}
}
void Layer::removeFromCurrentState() {
mRemovedFromCurrentState = true;
// Since we are no longer reachable from CurrentState SurfaceFlinger
// will no longer invoke doTransaction for us, and so we will
// never finish applying transactions. We signal the sync point
// now so that another layer will not become indefinitely
// blocked.
removeRemoteSyncPoints();
{
Mutex::Autolock syncLock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
point->setFrameAvailable();
}
mLocalSyncPoints.clear();
}
mFlinger->markLayerPendingRemovalLocked(this);
}
sp<Layer> Layer::getRootLayer() {
sp<Layer> parent = getParent();
if (parent == nullptr) {
return this;
}
return parent->getRootLayer();
}
void Layer::onRemovedFromCurrentState() {
// Use the root layer since we want to maintain the hierarchy for the entire subtree.
auto layersInTree = getRootLayer()->getLayersInTree(LayerVector::StateSet::Current);
std::sort(layersInTree.begin(), layersInTree.end());
traverse(LayerVector::StateSet::Current, [&](Layer* layer) {
layer->removeFromCurrentState();
layer->removeRelativeZ(layersInTree);
});
}
void Layer::addToCurrentState() {
mRemovedFromCurrentState = false;
for (const auto& child : mCurrentChildren) {
child->addToCurrentState();
}
}
// ---------------------------------------------------------------------------
// set-up
// ---------------------------------------------------------------------------
bool Layer::getPremultipledAlpha() const {
return mPremultipliedAlpha;
}
sp<IBinder> Layer::getHandle() {
Mutex::Autolock _l(mLock);
if (mGetHandleCalled) {
ALOGE("Get handle called twice" );
return nullptr;
}
mGetHandleCalled = true;
return new Handle(mFlinger, this);
}
// ---------------------------------------------------------------------------
// h/w composer set-up
// ---------------------------------------------------------------------------
static Rect reduce(const Rect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
if (exclude.isRect()) {
return win.reduce(exclude.getBounds());
}
return Region(win).subtract(exclude).getBounds();
}
static FloatRect reduce(const FloatRect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
// Convert through Rect (by rounding) for lack of FloatRegion
return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
}
Rect Layer::getScreenBounds(bool reduceTransparentRegion) const {
if (!reduceTransparentRegion) {
return Rect{mScreenBounds};
}
FloatRect bounds = getBounds();
ui::Transform t = getTransform();
// Transform to screen space.
bounds = t.transform(bounds);
return Rect{bounds};
}
FloatRect Layer::getBounds() const {
const State& s(getDrawingState());
return getBounds(getActiveTransparentRegion(s));
}
FloatRect Layer::getBounds(const Region& activeTransparentRegion) const {
// Subtract the transparent region and snap to the bounds.
return reduce(mBounds, activeTransparentRegion);
}
ui::Transform Layer::getBufferScaleTransform() const {
// If the layer is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g.
// it isFixedSize) then there may be additional scaling not accounted
// for in the layer transform.
if (!isFixedSize() || getBuffer() == nullptr) {
return {};
}
// If the layer is a buffer state layer, the active width and height
// could be infinite. In that case, return the effective transform.
const uint32_t activeWidth = getActiveWidth(getDrawingState());
const uint32_t activeHeight = getActiveHeight(getDrawingState());
if (activeWidth >= UINT32_MAX && activeHeight >= UINT32_MAX) {
return {};
}
int bufferWidth = getBuffer()->getWidth();
int bufferHeight = getBuffer()->getHeight();
if (getBufferTransform() & NATIVE_WINDOW_TRANSFORM_ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
float sx = activeWidth / static_cast<float>(bufferWidth);
float sy = activeHeight / static_cast<float>(bufferHeight);
ui::Transform extraParentScaling;
extraParentScaling.set(sx, 0, 0, sy);
return extraParentScaling;
}
ui::Transform Layer::getTransformWithScale(const ui::Transform& bufferScaleTransform) const {
// We need to mirror this scaling to child surfaces or we will break the contract where WM can
// treat child surfaces as pixels in the parent surface.
if (!isFixedSize() || getBuffer() == nullptr) {
return mEffectiveTransform;
}
return mEffectiveTransform * bufferScaleTransform;
}
FloatRect Layer::getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const {
// We need the pre scaled layer bounds when computing child bounds to make sure the child is
// cropped to its parent layer after any buffer transform scaling is applied.
if (!isFixedSize() || getBuffer() == nullptr) {
return mBounds;
}
return bufferScaleTransform.inverse().transform(mBounds);
}
void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform,
float parentShadowRadius) {
const State& s(getDrawingState());
// Calculate effective layer transform
mEffectiveTransform = parentTransform * getActiveTransform(s);
// Transform parent bounds to layer space
parentBounds = getActiveTransform(s).inverse().transform(parentBounds);
// Calculate source bounds
mSourceBounds = computeSourceBounds(parentBounds);
// Calculate bounds by croping diplay frame with layer crop and parent bounds
FloatRect bounds = mSourceBounds;
const Rect layerCrop = getCrop(s);
if (!layerCrop.isEmpty()) {
bounds = mSourceBounds.intersect(layerCrop.toFloatRect());
}
bounds = bounds.intersect(parentBounds);
mBounds = bounds;
mScreenBounds = mEffectiveTransform.transform(mBounds);
// Use the layer's own shadow radius if set. Otherwise get the radius from
// parent.
if (s.shadowRadius > 0.f) {
mEffectiveShadowRadius = s.shadowRadius;
} else {
mEffectiveShadowRadius = parentShadowRadius;
}
// Shadow radius is passed down to only one layer so if the layer can draw shadows,
// don't pass it to its children.
const float childShadowRadius = canDrawShadows() ? 0.f : mEffectiveShadowRadius;
// Add any buffer scaling to the layer's children.
ui::Transform bufferScaleTransform = getBufferScaleTransform();
for (const sp<Layer>& child : mDrawingChildren) {
child->computeBounds(getBoundsPreScaling(bufferScaleTransform),
getTransformWithScale(bufferScaleTransform), childShadowRadius);
}
}
Rect Layer::getCroppedBufferSize(const State& s) const {
Rect size = getBufferSize(s);
Rect crop = getCrop(s);
if (!crop.isEmpty() && size.isValid()) {
size.intersect(crop, &size);
} else if (!crop.isEmpty()) {
size = crop;
}
return size;
}
void Layer::setupRoundedCornersCropCoordinates(Rect win,
const FloatRect& roundedCornersCrop) const {
// Translate win by the rounded corners rect coordinates, to have all values in
// layer coordinate space.
win.left -= roundedCornersCrop.left;
win.right -= roundedCornersCrop.left;
win.top -= roundedCornersCrop.top;
win.bottom -= roundedCornersCrop.top;
}
void Layer::prepareBasicGeometryCompositionState() {
const auto& drawingState{getDrawingState()};
const uint32_t layerStack = getLayerStack();
const auto alpha = static_cast<float>(getAlpha());
const bool opaque = isOpaque(drawingState);
const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f;
auto blendMode = Hwc2::IComposerClient::BlendMode::NONE;
if (!opaque || alpha != 1.0f) {
blendMode = mPremultipliedAlpha ? Hwc2::IComposerClient::BlendMode::PREMULTIPLIED
: Hwc2::IComposerClient::BlendMode::COVERAGE;
}
auto* compositionState = editCompositionState();
compositionState->layerStackId =
(layerStack != ~0u) ? std::make_optional(layerStack) : std::nullopt;
compositionState->internalOnly = getPrimaryDisplayOnly();
compositionState->isVisible = isVisible();
compositionState->isOpaque = opaque && !usesRoundedCorners && alpha == 1.f;
compositionState->shadowRadius = mEffectiveShadowRadius;
compositionState->contentDirty = contentDirty;
contentDirty = false;
compositionState->geomLayerBounds = mBounds;
compositionState->geomLayerTransform = getTransform();
compositionState->geomInverseLayerTransform = compositionState->geomLayerTransform.inverse();
compositionState->transparentRegionHint = getActiveTransparentRegion(drawingState);
compositionState->blendMode = static_cast<Hwc2::IComposerClient::BlendMode>(blendMode);
compositionState->alpha = alpha;
compositionState->backgroundBlurRadius = drawingState.backgroundBlurRadius;
compositionState->blurRegions = drawingState.blurRegions;
compositionState->stretchEffect = getStretchEffect();
}
void Layer::prepareGeometryCompositionState() {
const auto& drawingState{getDrawingState()};
int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0);
sp<Layer> parent = mDrawingParent.promote();
if (parent.get()) {
auto& parentState = parent->getDrawingState();
const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0);
if (parentType > 0 && parentAppId > 0) {
type = parentType;
appId = parentAppId;
}
}
auto* compositionState = editCompositionState();
compositionState->geomBufferSize = getBufferSize(drawingState);
compositionState->geomContentCrop = getBufferCrop();
compositionState->geomCrop = getCrop(drawingState);
compositionState->geomBufferTransform = getBufferTransform();
compositionState->geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse();
compositionState->geomUsesSourceCrop = usesSourceCrop();
compositionState->isSecure = isSecure();
compositionState->metadata.clear();
const auto& supportedMetadata = mFlinger->getHwComposer().getSupportedLayerGenericMetadata();
for (const auto& [key, mandatory] : supportedMetadata) {
const auto& genericLayerMetadataCompatibilityMap =
mFlinger->getGenericLayerMetadataKeyMap();
auto compatIter = genericLayerMetadataCompatibilityMap.find(key);
if (compatIter == std::end(genericLayerMetadataCompatibilityMap)) {
continue;
}
const uint32_t id = compatIter->second;
auto it = drawingState.metadata.mMap.find(id);
if (it == std::end(drawingState.metadata.mMap)) {
continue;
}
compositionState->metadata
.emplace(key, compositionengine::GenericLayerMetadataEntry{mandatory, it->second});
}
}
void Layer::preparePerFrameCompositionState() {
const auto& drawingState{getDrawingState()};
auto* compositionState = editCompositionState();
compositionState->forceClientComposition = false;
compositionState->isColorspaceAgnostic = isColorSpaceAgnostic();
compositionState->dataspace = getDataSpace();
compositionState->colorTransform = getColorTransform();
compositionState->colorTransformIsIdentity = !hasColorTransform();
compositionState->surfaceDamage = surfaceDamageRegion;
compositionState->hasProtectedContent = isProtected();
const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f;
compositionState->isOpaque =
isOpaque(drawingState) && !usesRoundedCorners && getAlpha() == 1.0_hf;
// Force client composition for special cases known only to the front-end.
if (isHdrY410() || usesRoundedCorners || drawShadows() || drawingState.blurRegions.size() > 0 ||
compositionState->stretchEffect.hasEffect()) {
compositionState->forceClientComposition = true;
}
}
void Layer::prepareCursorCompositionState() {
const State& drawingState{getDrawingState()};
auto* compositionState = editCompositionState();
// Apply the layer's transform, followed by the display's global transform
// Here we're guaranteed that the layer's transform preserves rects
Rect win = getCroppedBufferSize(drawingState);
// Subtract the transparent region and snap to the bounds
Rect bounds = reduce(win, getActiveTransparentRegion(drawingState));
Rect frame(getTransform().transform(bounds));
compositionState->cursorFrame = frame;
}
sp<compositionengine::LayerFE> Layer::asLayerFE() const {
return const_cast<compositionengine::LayerFE*>(
static_cast<const compositionengine::LayerFE*>(this));
}
sp<compositionengine::LayerFE> Layer::getCompositionEngineLayerFE() const {
return nullptr;
}
compositionengine::LayerFECompositionState* Layer::editCompositionState() {
return nullptr;
}
const compositionengine::LayerFECompositionState* Layer::getCompositionState() const {
return nullptr;
}
bool Layer::onPreComposition(nsecs_t) {
return false;
}
void Layer::prepareCompositionState(compositionengine::LayerFE::StateSubset subset) {
using StateSubset = compositionengine::LayerFE::StateSubset;
switch (subset) {
case StateSubset::BasicGeometry:
prepareBasicGeometryCompositionState();
break;
case StateSubset::GeometryAndContent:
prepareBasicGeometryCompositionState();
prepareGeometryCompositionState();
preparePerFrameCompositionState();
break;
case StateSubset::Content:
preparePerFrameCompositionState();
break;
case StateSubset::Cursor:
prepareCursorCompositionState();
break;
}
}
const char* Layer::getDebugName() const {
return mName.c_str();
}
// ---------------------------------------------------------------------------
// drawing...
// ---------------------------------------------------------------------------
std::optional<compositionengine::LayerFE::LayerSettings> Layer::prepareClientComposition(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
if (!getCompositionState()) {
return {};
}
FloatRect bounds = getBounds();
half alpha = getAlpha();
compositionengine::LayerFE::LayerSettings layerSettings;
layerSettings.geometry.boundaries = bounds;
layerSettings.geometry.positionTransform = getTransform().asMatrix4();
if (hasColorTransform()) {
layerSettings.colorTransform = getColorTransform();
}
const auto roundedCornerState = getRoundedCornerState();
layerSettings.geometry.roundedCornersRadius = roundedCornerState.radius;
layerSettings.geometry.roundedCornersCrop = roundedCornerState.cropRect;
layerSettings.alpha = alpha;
layerSettings.sourceDataspace = getDataSpace();
if (!targetSettings.disableBlurs) {
layerSettings.backgroundBlurRadius = getBackgroundBlurRadius();
layerSettings.blurRegions = getBlurRegions();
}
layerSettings.stretchEffect = getDrawingState().stretchEffect;
// Record the name of the layer for debugging further down the stack.
layerSettings.name = getName();
return layerSettings;
}
std::optional<compositionengine::LayerFE::LayerSettings> Layer::prepareShadowClientComposition(
const LayerFE::LayerSettings& casterLayerSettings, const Rect& layerStackRect,
ui::Dataspace outputDataspace) {
renderengine::ShadowSettings shadow = getShadowSettings(layerStackRect);
if (shadow.length <= 0.f) {
return {};
}
const float casterAlpha = casterLayerSettings.alpha;
const bool casterIsOpaque = ((casterLayerSettings.source.buffer.buffer != nullptr) &&
casterLayerSettings.source.buffer.isOpaque);
compositionengine::LayerFE::LayerSettings shadowLayer = casterLayerSettings;
shadowLayer.shadow = shadow;
shadowLayer.geometry.boundaries = mBounds; // ignore transparent region
// If the casting layer is translucent, we need to fill in the shadow underneath the layer.
// Otherwise the generated shadow will only be shown around the casting layer.
shadowLayer.shadow.casterIsTranslucent = !casterIsOpaque || (casterAlpha < 1.0f);
shadowLayer.shadow.ambientColor *= casterAlpha;
shadowLayer.shadow.spotColor *= casterAlpha;
shadowLayer.sourceDataspace = outputDataspace;
shadowLayer.source.buffer.buffer = nullptr;
shadowLayer.source.buffer.fence = nullptr;
shadowLayer.frameNumber = 0;
shadowLayer.bufferId = 0;
shadowLayer.name = getName();
if (shadowLayer.shadow.ambientColor.a <= 0.f && shadowLayer.shadow.spotColor.a <= 0.f) {
return {};
}
float casterCornerRadius = shadowLayer.geometry.roundedCornersRadius;
const FloatRect& cornerRadiusCropRect = shadowLayer.geometry.roundedCornersCrop;
const FloatRect& casterRect = shadowLayer.geometry.boundaries;
// crop used to set the corner radius may be larger than the content rect. Adjust the corner
// radius accordingly.
if (casterCornerRadius > 0.f) {
float cropRectOffset = std::max(std::abs(cornerRadiusCropRect.top - casterRect.top),
std::abs(cornerRadiusCropRect.left - casterRect.left));
if (cropRectOffset > casterCornerRadius) {
casterCornerRadius = 0;
} else {
casterCornerRadius -= cropRectOffset;
}
shadowLayer.geometry.roundedCornersRadius = casterCornerRadius;
}
return shadowLayer;
}
void Layer::prepareClearClientComposition(LayerFE::LayerSettings& layerSettings,
bool blackout) const {
layerSettings.source.buffer.buffer = nullptr;
layerSettings.source.solidColor = half3(0.0, 0.0, 0.0);
layerSettings.disableBlending = true;
layerSettings.bufferId = 0;
layerSettings.frameNumber = 0;
// If layer is blacked out, force alpha to 1 so that we draw a black color layer.
layerSettings.alpha = blackout ? 1.0f : 0.0f;
layerSettings.name = getName();
}
std::vector<compositionengine::LayerFE::LayerSettings> Layer::prepareClientCompositionList(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
std::optional<compositionengine::LayerFE::LayerSettings> layerSettings =
prepareClientComposition(targetSettings);
// Nothing to render.
if (!layerSettings) {
return {};
}
// HWC requests to clear this layer.
if (targetSettings.clearContent) {
prepareClearClientComposition(*layerSettings, false /* blackout */);
return {*layerSettings};
}
std::optional<compositionengine::LayerFE::LayerSettings> shadowSettings =
prepareShadowClientComposition(*layerSettings, targetSettings.viewport,
targetSettings.dataspace);
// There are no shadows to render.
if (!shadowSettings) {
return {*layerSettings};
}
// If the layer casts a shadow but the content casting the shadow is occluded, skip
// composing the non-shadow content and only draw the shadows.
if (targetSettings.realContentIsVisible) {
return {*shadowSettings, *layerSettings};
}
return {*shadowSettings};
}
Hwc2::IComposerClient::Composition Layer::getCompositionType(const DisplayDevice& display) const {
const auto outputLayer = findOutputLayerForDisplay(&display);
if (outputLayer == nullptr) {
return Hwc2::IComposerClient::Composition::INVALID;
}
if (outputLayer->getState().hwc) {
return (*outputLayer->getState().hwc).hwcCompositionType;
} else {
return Hwc2::IComposerClient::Composition::CLIENT;
}
}
bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
if (point->getFrameNumber() <= mCurrentFrameNumber) {
// Don't bother with a SyncPoint, since we've already latched the
// relevant frame
return false;
}
if (isRemovedFromCurrentState()) {
return false;
}
Mutex::Autolock lock(mLocalSyncPointMutex);
mLocalSyncPoints.push_back(point);
return true;
}
// ----------------------------------------------------------------------------
// local state
// ----------------------------------------------------------------------------
bool Layer::isSecure() const {
const State& s(mDrawingState);
if (s.flags & layer_state_t::eLayerSecure) {
return true;
}
const auto p = mDrawingParent.promote();
return (p != nullptr) ? p->isSecure() : false;
}
// ----------------------------------------------------------------------------
// transaction
// ----------------------------------------------------------------------------
void Layer::pushPendingState() {
if (!mCurrentState.modified) {
return;
}
ATRACE_CALL();
// If this transaction is waiting on the receipt of a frame, generate a sync
// point and send it to the remote layer.
// We don't allow installing sync points after we are removed from the current state
// as we won't be able to signal our end.
if (mCurrentState.barrierLayer_legacy != nullptr && !isRemovedFromCurrentState()) {
sp<Layer> barrierLayer = mCurrentState.barrierLayer_legacy.promote();
if (barrierLayer == nullptr) {
ALOGE("[%s] Unable to promote barrier Layer.", getDebugName());
// If we can't promote the layer we are intended to wait on,
// then it is expired or otherwise invalid. Allow this transaction
// to be applied as per normal (no synchronization).
mCurrentState.barrierLayer_legacy = nullptr;
} else {
auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.barrierFrameNumber, this,
barrierLayer);
if (barrierLayer->addSyncPoint(syncPoint)) {
std::stringstream ss;
ss << "Adding sync point " << mCurrentState.barrierFrameNumber;
ATRACE_NAME(ss.str().c_str());
mRemoteSyncPoints.push_back(std::move(syncPoint));
} else {
// We already missed the frame we're supposed to synchronize
// on, so go ahead and apply the state update
mCurrentState.barrierLayer_legacy = nullptr;
}
}
// Wake us up to check if the frame has been received
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
if (mCurrentState.bufferlessSurfaceFramesTX.size() >= State::kStateSurfaceFramesThreshold) {
// Ideally, the currentState would only contain one SurfaceFrame per transaction (assuming
// each Tx uses a different token). We don't expect the current state to hold a huge amount
// of SurfaceFrames. However, in the event it happens, this debug statement will leave a
// trail that can help in debugging.
ALOGW("Bufferless SurfaceFrames size on current state of layer %s is %" PRIu32 "",
mName.c_str(), static_cast<uint32_t>(mCurrentState.bufferlessSurfaceFramesTX.size()));
}
mPendingStates.push_back(mCurrentState);
// Since the current state along with the SurfaceFrames has been pushed into the pendingState,
// we no longer need to retain them. If multiple states are pushed and applied together, we have
// a merging logic to address the SurfaceFrames at mergeSurfaceFrames().
mCurrentState.bufferlessSurfaceFramesTX.clear();
ATRACE_INT(mTransactionName.c_str(), mPendingStates.size());
}
void Layer::mergeSurfaceFrames(State& source, State& target) {
// No need to merge BufferSurfaceFrame as the target's surfaceFrame, if it exists, will be used
// directly. Dropping of source's SurfaceFrame is taken care of at setBuffer().
target.bufferlessSurfaceFramesTX.merge(source.bufferlessSurfaceFramesTX);
source.bufferlessSurfaceFramesTX.clear();
}
void Layer::popPendingState(State* stateToCommit) {
ATRACE_CALL();
mergeSurfaceFrames(*stateToCommit, mPendingStates[0]);
*stateToCommit = mPendingStates[0];
mPendingStates.pop_front();
ATRACE_INT(mTransactionName.c_str(), mPendingStates.size());
}
bool Layer::applyPendingStates(State* stateToCommit) {
bool stateUpdateAvailable = false;
while (!mPendingStates.empty()) {
if (mPendingStates[0].barrierLayer_legacy != nullptr) {
if (mRemoteSyncPoints.empty()) {
// If we don't have a sync point for this, apply it anyway. It
// will be visually wrong, but it should keep us from getting
// into too much trouble.
ALOGV("[%s] No local sync point found", getDebugName());
popPendingState(stateToCommit);
stateUpdateAvailable = true;
continue;
}
if (mRemoteSyncPoints.front()->getFrameNumber() !=
mPendingStates[0].barrierFrameNumber) {
ALOGE("[%s] Unexpected sync point frame number found", getDebugName());
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
mRemoteSyncPoints.pop_front();
continue;
}
if (mRemoteSyncPoints.front()->frameIsAvailable()) {
ATRACE_NAME("frameIsAvailable");
// Apply the state update
popPendingState(stateToCommit);
stateUpdateAvailable = true;
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
mRemoteSyncPoints.pop_front();
} else {
ATRACE_NAME("!frameIsAvailable");
mRemoteSyncPoints.front()->checkTimeoutAndLog();
break;
}
} else {
popPendingState(stateToCommit);
stateUpdateAvailable = true;
}
}
// If we still have pending updates, we need to ensure SurfaceFlinger
// will keep calling doTransaction, and so we force a traversal.
// However, our pending states won't clear until a frame is available,
// and so there is no need to specifically trigger a wakeup.
if (!mPendingStates.empty()) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTraversalNeeded();
}
mCurrentState.modified = false;
return stateUpdateAvailable;
}
uint32_t Layer::doTransactionResize(uint32_t flags, State* stateToCommit) {
const State& s(getDrawingState());
const bool sizeChanged = (stateToCommit->requested_legacy.w != s.requested_legacy.w) ||
(stateToCommit->requested_legacy.h != s.requested_legacy.h);
if (sizeChanged) {
// the size changed, we need to ask our client to request a new buffer
ALOGD_IF(DEBUG_RESIZE,
"doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
" current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} }}\n"
" drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} }}\n",
this, getName().c_str(), getBufferTransform(), getEffectiveScalingMode(),
stateToCommit->active_legacy.w, stateToCommit->active_legacy.h,
stateToCommit->crop.left, stateToCommit->crop.top, stateToCommit->crop.right,
stateToCommit->crop.bottom, stateToCommit->crop.getWidth(),
stateToCommit->crop.getHeight(), stateToCommit->requested_legacy.w,
stateToCommit->requested_legacy.h, s.active_legacy.w, s.active_legacy.h,
s.crop.left, s.crop.top, s.crop.right, s.crop.bottom, s.crop.getWidth(),
s.crop.getHeight(), s.requested_legacy.w, s.requested_legacy.h);
}
// Don't let Layer::doTransaction update the drawing state
// if we have a pending resize, unless we are in fixed-size mode.
// the drawing state will be updated only once we receive a buffer
// with the correct size.
//
// In particular, we want to make sure the clip (which is part
// of the geometry state) is latched together with the size but is
// latched immediately when no resizing is involved.
//
// If a sideband stream is attached, however, we want to skip this
// optimization so that transactions aren't missed when a buffer
// never arrives
//
// In the case that we don't have a buffer we ignore other factors
// and avoid entering the resizePending state. At a high level the
// resizePending state is to avoid applying the state of the new buffer
// to the old buffer. However in the state where we don't have an old buffer
// there is no such concern but we may still be being used as a parent layer.
const bool resizePending =
((stateToCommit->requested_legacy.w != stateToCommit->active_legacy.w) ||
(stateToCommit->requested_legacy.h != stateToCommit->active_legacy.h)) &&
(getBuffer() != nullptr);
if (!isFixedSize()) {
if (resizePending && mSidebandStream == nullptr) {
flags |= eDontUpdateGeometryState;
}
}
// Here we apply various requested geometry states, depending on our
// latching configuration. See Layer.h for a detailed discussion of
// how geometry latching is controlled.
if (!(flags & eDontUpdateGeometryState)) {
State& editCurrentState(getCurrentState());
// There is an awkward asymmetry in the handling of the crop states in the position
// states, as can be seen below. Largely this arises from position and transform
// being stored in the same data structure while having different latching rules.
// b/38182305
//
// Careful that "stateToCommit" and editCurrentState may not begin as equivalent due to
// applyPendingStates in the presence of deferred transactions.
editCurrentState.active_legacy = editCurrentState.requested_legacy;
stateToCommit->active_legacy = stateToCommit->requested_legacy;
}
return flags;
}
uint32_t Layer::doTransaction(uint32_t flags) {
ATRACE_CALL();
if (mChildrenChanged) {
flags |= eVisibleRegion;
mChildrenChanged = false;
}
pushPendingState();
State c = getCurrentState();
if (!applyPendingStates(&c)) {
return flags;
}
flags = doTransactionResize(flags, &c);
const State& s(getDrawingState());
if (getActiveGeometry(c) != getActiveGeometry(s)) {
// invalidate and recompute the visible regions if needed
flags |= Layer::eVisibleRegion;
}
if (c.sequence != s.sequence) {
// invalidate and recompute the visible regions if needed
flags |= eVisibleRegion;
this->contentDirty = true;
// we may use linear filtering, if the matrix scales us
mNeedsFiltering = getActiveTransform(c).needsBilinearFiltering();
}
if (mCurrentState.inputInfoChanged) {
flags |= eInputInfoChanged;
mCurrentState.inputInfoChanged = false;
}
// Add the callbacks from the drawing state into the current state. This is so when the current
// state gets copied to drawing, we don't lose the callback handles that are still in drawing.
for (auto& handle : s.callbackHandles) {
c.callbackHandles.push_back(handle);
}
// Allow BufferStateLayer to release any unlatched buffers in drawing state.
bufferMayChange(c.buffer);
// Commit the transaction
commitTransaction(c);
mPendingStatesSnapshot = mPendingStates;
mCurrentState.callbackHandles = {};
return flags;
}
void Layer::commitTransaction(State& stateToCommit) {
if (auto& bufferSurfaceFrame = mDrawingState.bufferSurfaceFrameTX;
mDrawingState.buffer != stateToCommit.buffer && bufferSurfaceFrame != nullptr &&
bufferSurfaceFrame->getPresentState() != PresentState::Presented) {
// If the previous buffer was committed but not latched (refreshPending - happens during
// back to back invalidates), it gets silently dropped here. Mark the corresponding
// SurfaceFrame as dropped to prevent it from getting stuck in the pending classification
// list.
addSurfaceFrameDroppedForBuffer(bufferSurfaceFrame);
}
mDrawingState = stateToCommit;
// Set the present state for all bufferlessSurfaceFramesTX to Presented. The
// bufferSurfaceFrameTX will be presented in latchBuffer.
for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
if (surfaceFrame->getPresentState() != PresentState::Presented) {
// With applyPendingStates, we could end up having presented surfaceframes from previous
// states
surfaceFrame->setPresentState(PresentState::Presented);
mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
}
}
// Clear the surfaceFrames from the old state now that it has been copied into DrawingState.
stateToCommit.bufferSurfaceFrameTX.reset();
stateToCommit.bufferlessSurfaceFramesTX.clear();
}
uint32_t Layer::getTransactionFlags(uint32_t flags) {
return mTransactionFlags.fetch_and(~flags) & flags;
}
uint32_t Layer::setTransactionFlags(uint32_t flags) {
return mTransactionFlags.fetch_or(flags);
}
bool Layer::setPosition(float x, float y) {
if (mCurrentState.requested_legacy.transform.tx() == x &&
mCurrentState.requested_legacy.transform.ty() == y)
return false;
mCurrentState.sequence++;
// We update the requested and active position simultaneously because
// we want to apply the position portion of the transform matrix immediately,
// but still delay scaling when resizing a SCALING_MODE_FREEZE layer.
mCurrentState.requested_legacy.transform.set(x, y);
// Here we directly update the active state
// unlike other setters, because we store it within
// the transform, but use different latching rules.
// b/38182305
mCurrentState.active_legacy.transform.set(x, y);
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setLayer(z)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
return true;
}
return false;
}
bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer,
const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
return true;
}
return false;
}
bool Layer::setLayer(int32_t z) {
if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false;
mCurrentState.sequence++;
mCurrentState.z = z;
mCurrentState.modified = true;
// Discard all relative layering.
if (mCurrentState.zOrderRelativeOf != nullptr) {
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative != nullptr) {
strongRelative->removeZOrderRelative(this);
}
setZOrderRelativeOf(nullptr);
}
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::removeZOrderRelative(const wp<Layer>& relative) {
mCurrentState.zOrderRelatives.remove(relative);
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
}
void Layer::addZOrderRelative(const wp<Layer>& relative) {
mCurrentState.zOrderRelatives.add(relative);
mCurrentState.modified = true;
mCurrentState.sequence++;
setTransactionFlags(eTransactionNeeded);
}
void Layer::setZOrderRelativeOf(const wp<Layer>& relativeOf) {
mCurrentState.zOrderRelativeOf = relativeOf;
mCurrentState.sequence++;
mCurrentState.modified = true;
mCurrentState.isRelativeOf = relativeOf != nullptr;
setTransactionFlags(eTransactionNeeded);
}
bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get());
if (handle == nullptr) {
return false;
}
sp<Layer> relative = handle->owner.promote();
if (relative == nullptr) {
return false;
}
if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) &&
mCurrentState.zOrderRelativeOf == relative) {
return false;
}
mCurrentState.sequence++;
mCurrentState.modified = true;
mCurrentState.z = relativeZ;
auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote();
if (oldZOrderRelativeOf != nullptr) {
oldZOrderRelativeOf->removeZOrderRelative(this);
}
setZOrderRelativeOf(relative);
relative->addZOrderRelative(this);
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setSize(uint32_t w, uint32_t h) {
if (mCurrentState.requested_legacy.w == w && mCurrentState.requested_legacy.h == h)
return false;
mCurrentState.requested_legacy.w = w;
mCurrentState.requested_legacy.h = h;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
// record the new size, from this point on, when the client request
// a buffer, it'll get the new size.
setDefaultBufferSize(mCurrentState.requested_legacy.w, mCurrentState.requested_legacy.h);
return true;
}
bool Layer::setAlpha(float alpha) {
if (mCurrentState.color.a == alpha) return false;
mCurrentState.sequence++;
mCurrentState.color.a = alpha;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) {
if (!mCurrentState.bgColorLayer && alpha == 0) {
return false;
}
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
if (!mCurrentState.bgColorLayer && alpha != 0) {
// create background color layer if one does not yet exist
uint32_t flags = ISurfaceComposerClient::eFXSurfaceEffect;
std::string name = mName + "BackgroundColorLayer";
mCurrentState.bgColorLayer = mFlinger->getFactory().createEffectLayer(
LayerCreationArgs(mFlinger.get(), nullptr, std::move(name), 0, 0, flags,
LayerMetadata()));
// add to child list
addChild(mCurrentState.bgColorLayer);
mFlinger->mLayersAdded = true;
// set up SF to handle added color layer
if (isRemovedFromCurrentState()) {
mCurrentState.bgColorLayer->onRemovedFromCurrentState();
}
mFlinger->setTransactionFlags(eTransactionNeeded);
} else if (mCurrentState.bgColorLayer && alpha == 0) {
mCurrentState.bgColorLayer->reparent(nullptr);
mCurrentState.bgColorLayer = nullptr;
return true;
}
mCurrentState.bgColorLayer->setColor(color);
mCurrentState.bgColorLayer->setLayer(std::numeric_limits<int32_t>::min());
mCurrentState.bgColorLayer->setAlpha(alpha);
mCurrentState.bgColorLayer->setDataspace(dataspace);
return true;
}
bool Layer::setCornerRadius(float cornerRadius) {
if (mCurrentState.cornerRadius == cornerRadius) return false;
mCurrentState.sequence++;
mCurrentState.cornerRadius = cornerRadius;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setBackgroundBlurRadius(int backgroundBlurRadius) {
if (mCurrentState.backgroundBlurRadius == backgroundBlurRadius) return false;
mCurrentState.sequence++;
mCurrentState.backgroundBlurRadius = backgroundBlurRadius;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix,
bool allowNonRectPreservingTransforms) {
ui::Transform t;
t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
if (!allowNonRectPreservingTransforms && !t.preserveRects()) {
ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER nor "
"ROTATE_SURFACE_FLINGER ignored");
return false;
}
mCurrentState.sequence++;
mCurrentState.requested_legacy.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx,
matrix.dsdy);
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setTransparentRegionHint(const Region& transparent) {
mCurrentState.requestedTransparentRegion_legacy = transparent;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setBlurRegions(const std::vector<BlurRegion>& blurRegions) {
mCurrentState.sequence++;
mCurrentState.blurRegions = blurRegions;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFlags(uint32_t flags, uint32_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
if (mCurrentState.flags == newFlags) return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setCrop(const Rect& crop) {
if (mCurrentState.requestedCrop == crop) return false;
mCurrentState.sequence++;
mCurrentState.requestedCrop = crop;
mCurrentState.crop = crop;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setMetadata(const LayerMetadata& data) {
if (!mCurrentState.metadata.merge(data, true /* eraseEmpty */)) return false;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setLayerStack(uint32_t layerStack) {
if (mCurrentState.layerStack == layerStack) return false;
mCurrentState.sequence++;
mCurrentState.layerStack = layerStack;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setColorSpaceAgnostic(const bool agnostic) {
if (mCurrentState.colorSpaceAgnostic == agnostic) {
return false;
}
mCurrentState.sequence++;
mCurrentState.colorSpaceAgnostic = agnostic;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFrameRateSelectionPriority(int32_t priority) {
if (mCurrentState.frameRateSelectionPriority == priority) return false;
mCurrentState.frameRateSelectionPriority = priority;
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
int32_t Layer::getFrameRateSelectionPriority() const {
// Check if layer has priority set.
if (mDrawingState.frameRateSelectionPriority != PRIORITY_UNSET) {
return mDrawingState.frameRateSelectionPriority;
}
// If not, search whether its parents have it set.
sp<Layer> parent = getParent();
if (parent != nullptr) {
return parent->getFrameRateSelectionPriority();
}
return Layer::PRIORITY_UNSET;
}
bool Layer::isLayerFocusedBasedOnPriority(int32_t priority) {
return priority == PRIORITY_FOCUSED_WITH_MODE || priority == PRIORITY_FOCUSED_WITHOUT_MODE;
};
uint32_t Layer::getLayerStack() const {
auto p = mDrawingParent.promote();
if (p == nullptr) {
return getDrawingState().layerStack;
}
return p->getLayerStack();
}
bool Layer::setShadowRadius(float shadowRadius) {
if (mCurrentState.shadowRadius == shadowRadius) {
return false;
}
mCurrentState.sequence++;
mCurrentState.shadowRadius = shadowRadius;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint) {
if (mCurrentState.fixedTransformHint == fixedTransformHint) {
return false;
}
mCurrentState.sequence++;
mCurrentState.fixedTransformHint = fixedTransformHint;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setStretchEffect(const StretchEffect& effect) {
StretchEffect temp = effect;
temp.sanitize();
if (mCurrentState.stretchEffect == temp) {
return false;
}
mCurrentState.sequence++;
mCurrentState.stretchEffect = temp;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
StretchEffect Layer::getStretchEffect() const {
if (mDrawingState.stretchEffect.hasEffect()) {
return mDrawingState.stretchEffect;
}
sp<Layer> parent = getParent();
if (parent != nullptr) {
auto effect = parent->getStretchEffect();
if (effect.hasEffect()) {
// TODO(b/179047472): Map it? Or do we make the effect be in global space?
return effect;
}
}
return StretchEffect{};
}
void Layer::updateTreeHasFrameRateVote() {
const auto traverseTree = [&](const LayerVector::Visitor& visitor) {
auto parent = getParent();
while (parent) {
visitor(parent.get());
parent = parent->getParent();
}
traverse(LayerVector::StateSet::Current, visitor);
};
// update parents and children about the vote
// First traverse the tree and count how many layers has votes. In addition
// activate the layers in Scheduler's LayerHistory for it to check for changes
int layersWithVote = 0;
traverseTree([&layersWithVote](Layer* layer) {
const auto layerVotedWithDefaultCompatibility =
layer->mCurrentState.frameRate.rate.isValid() &&
layer->mCurrentState.frameRate.type == FrameRateCompatibility::Default;
const auto layerVotedWithNoVote =
layer->mCurrentState.frameRate.type == FrameRateCompatibility::NoVote;
const auto layerVotedWithExactCompatibility =
layer->mCurrentState.frameRate.type == FrameRateCompatibility::Exact;
// We do not count layers that are ExactOrMultiple for the same reason
// we are allowing touch boost for those layers. See
// RefreshRateConfigs::getBestRefreshRate for more details.
if (layerVotedWithDefaultCompatibility || layerVotedWithNoVote ||
layerVotedWithExactCompatibility) {
layersWithVote++;
}
});
// Now update the other layers
bool transactionNeeded = false;
traverseTree([layersWithVote, &transactionNeeded, this](Layer* layer) {
const bool treeHasFrameRateVote = layersWithVote > 0;
if (layer->mCurrentState.treeHasFrameRateVote != treeHasFrameRateVote) {
layer->mCurrentState.sequence++;
layer->mCurrentState.treeHasFrameRateVote = treeHasFrameRateVote;
layer->mCurrentState.modified = true;
layer->setTransactionFlags(eTransactionNeeded);
transactionNeeded = true;
mFlinger->mScheduler->recordLayerHistory(layer, systemTime(),
LayerHistory::LayerUpdateType::SetFrameRate);
}
});
if (transactionNeeded) {
mFlinger->setTransactionFlags(eTraversalNeeded);
}
}
bool Layer::setFrameRate(FrameRate frameRate) {
if (!mFlinger->useFrameRateApi) {
return false;
}
if (mCurrentState.frameRate == frameRate) {
return false;
}
mCurrentState.sequence++;
mCurrentState.frameRate = frameRate;
mCurrentState.modified = true;
updateTreeHasFrameRateVote();
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info,
nsecs_t postTime) {
mCurrentState.postTime = postTime;
// Check if one of the bufferlessSurfaceFramesTX contains the same vsyncId. This can happen if
// there are two transactions with the same token, the first one without a buffer and the
// second one with a buffer. We promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX
// in that case.
auto it = mCurrentState.bufferlessSurfaceFramesTX.find(info.vsyncId);
if (it != mCurrentState.bufferlessSurfaceFramesTX.end()) {
// Promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX
mCurrentState.bufferSurfaceFrameTX = it->second;
mCurrentState.bufferlessSurfaceFramesTX.erase(it);
mCurrentState.bufferSurfaceFrameTX->promoteToBuffer();
mCurrentState.bufferSurfaceFrameTX->setActualQueueTime(postTime);
} else {
mCurrentState.bufferSurfaceFrameTX =
createSurfaceFrameForBuffer(info, postTime, mTransactionName);
}
}
void Layer::setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info,
nsecs_t postTime) {
mCurrentState.frameTimelineInfo = info;
mCurrentState.postTime = postTime;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
if (const auto& bufferSurfaceFrameTX = mCurrentState.bufferSurfaceFrameTX;
bufferSurfaceFrameTX != nullptr) {
if (bufferSurfaceFrameTX->getToken() == info.vsyncId) {
// BufferSurfaceFrame takes precedence over BufferlessSurfaceFrame. If the same token is
// being used for BufferSurfaceFrame, don't create a new one.
return;
}
}
// For Transactions without a buffer, we create only one SurfaceFrame per vsyncId. If multiple
// transactions use the same vsyncId, we just treat them as one SurfaceFrame (unless they are
// targeting different vsyncs).
auto it = mCurrentState.bufferlessSurfaceFramesTX.find(info.vsyncId);
if (it == mCurrentState.bufferlessSurfaceFramesTX.end()) {
auto surfaceFrame = createSurfaceFrameForTransaction(info, postTime);
mCurrentState.bufferlessSurfaceFramesTX[info.vsyncId] = surfaceFrame;
} else {
if (it->second->getPresentState() == PresentState::Presented) {
// If the SurfaceFrame was already presented, its safe to overwrite it since it must
// have been from previous vsync.
it->second = createSurfaceFrameForTransaction(info, postTime);
}
}
}
void Layer::addSurfaceFrameDroppedForBuffer(
std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame) {
surfaceFrame->setDropTime(systemTime());
surfaceFrame->setPresentState(PresentState::Dropped);
mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
}
void Layer::addSurfaceFramePresentedForBuffer(
std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t acquireFenceTime,
nsecs_t currentLatchTime) {
surfaceFrame->setAcquireFenceTime(acquireFenceTime);
surfaceFrame->setPresentState(PresentState::Presented, mLastLatchTime);
mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
mLastLatchTime = currentLatchTime;
}
std::shared_ptr<frametimeline::SurfaceFrame> Layer::createSurfaceFrameForTransaction(
const FrameTimelineInfo& info, nsecs_t postTime) {
auto surfaceFrame =
mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid,
getSequence(), mName,
mTransactionName,
/*isBuffer*/ false);
// For Transactions, the post time is considered to be both queue and acquire fence time.
surfaceFrame->setActualQueueTime(postTime);
surfaceFrame->setAcquireFenceTime(postTime);
const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
if (fps) {
surfaceFrame->setRenderRate(*fps);
}
onSurfaceFrameCreated(surfaceFrame);
return surfaceFrame;
}
std::shared_ptr<frametimeline::SurfaceFrame> Layer::createSurfaceFrameForBuffer(
const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName) {
auto surfaceFrame =
mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid,
getSequence(), mName, debugName,
/*isBuffer*/ true);
// For buffers, acquire fence time will set during latch.
surfaceFrame->setActualQueueTime(queueTime);
const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
if (fps) {
surfaceFrame->setRenderRate(*fps);
}
// TODO(b/178542907): Implement onSurfaceFrameCreated for BQLayer as well.
onSurfaceFrameCreated(surfaceFrame);
return surfaceFrame;
}
Layer::FrameRate Layer::getFrameRateForLayerTree() const {
const auto frameRate = getDrawingState().frameRate;
if (frameRate.rate.isValid() || frameRate.type == FrameRateCompatibility::NoVote) {
return frameRate;
}
// This layer doesn't have a frame rate. Check if its ancestors have a vote
if (sp<Layer> parent = getParent(); parent) {
if (const auto parentFrameRate = parent->getFrameRateForLayerTree();
parentFrameRate.rate.isValid()) {
return parentFrameRate;
}
}
// This layer and its ancestors don't have a frame rate. If one of successors
// has a vote, return a NoVote for successors to set the vote
if (getDrawingState().treeHasFrameRateVote) {
return {Fps(0.0f), FrameRateCompatibility::NoVote};
}
return frameRate;
}
void Layer::deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber) {
ATRACE_CALL();
mCurrentState.barrierLayer_legacy = barrierLayer;
mCurrentState.barrierFrameNumber = frameNumber;
// We don't set eTransactionNeeded, because just receiving a deferral
// request without any other state updates shouldn't actually induce a delay
mCurrentState.modified = true;
pushPendingState();
mCurrentState.barrierLayer_legacy = nullptr;
mCurrentState.barrierFrameNumber = 0;
mCurrentState.modified = false;
}
void Layer::deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, uint64_t frameNumber) {
sp<Handle> handle = static_cast<Handle*>(barrierHandle.get());
deferTransactionUntil_legacy(handle->owner.promote(), frameNumber);
}
// ----------------------------------------------------------------------------
// pageflip handling...
// ----------------------------------------------------------------------------
bool Layer::isHiddenByPolicy() const {
const State& s(mDrawingState);
const auto& parent = mDrawingParent.promote();
if (parent != nullptr && parent->isHiddenByPolicy()) {
return true;
}
if (usingRelativeZ(LayerVector::StateSet::Drawing)) {
auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
if (zOrderRelativeOf != nullptr) {
if (zOrderRelativeOf->isHiddenByPolicy()) {
return true;
}
}
}
return s.flags & layer_state_t::eLayerHidden;
}
uint32_t Layer::getEffectiveUsage(uint32_t usage) const {
// TODO: should we do something special if mSecure is set?
if (mProtectedByApp) {
// need a hardware-protected path to external video sink
usage |= GraphicBuffer::USAGE_PROTECTED;
}
if (mPotentialCursor) {
usage |= GraphicBuffer::USAGE_CURSOR;
}
usage |= GraphicBuffer::USAGE_HW_COMPOSER;
return usage;
}
void Layer::updateTransformHint(ui::Transform::RotationFlags transformHint) {
if (mFlinger->mDebugDisableTransformHint || transformHint & ui::Transform::ROT_INVALID) {
transformHint = ui::Transform::ROT_0;
}
setTransformHint(transformHint);
}
// ----------------------------------------------------------------------------
// debugging
// ----------------------------------------------------------------------------
// TODO(marissaw): add new layer state info to layer debugging
LayerDebugInfo Layer::getLayerDebugInfo(const DisplayDevice* display) const {
using namespace std::string_literals;
LayerDebugInfo info;
const State& ds = getDrawingState();
info.mName = getName();
sp<Layer> parent = mDrawingParent.promote();
info.mParentName = parent ? parent->getName() : "none"s;
info.mType = getType();
info.mTransparentRegion = ds.activeTransparentRegion_legacy;
info.mVisibleRegion = getVisibleRegion(display);
info.mSurfaceDamageRegion = surfaceDamageRegion;
info.mLayerStack = getLayerStack();
info.mX = ds.active_legacy.transform.tx();
info.mY = ds.active_legacy.transform.ty();
info.mZ = ds.z;
info.mWidth = ds.active_legacy.w;
info.mHeight = ds.active_legacy.h;
info.mCrop = ds.crop;
info.mColor = ds.color;
info.mFlags = ds.flags;
info.mPixelFormat = getPixelFormat();
info.mDataSpace = static_cast<android_dataspace>(getDataSpace());
info.mMatrix[0][0] = ds.active_legacy.transform[0][0];
info.mMatrix[0][1] = ds.active_legacy.transform[0][1];
info.mMatrix[1][0] = ds.active_legacy.transform[1][0];
info.mMatrix[1][1] = ds.active_legacy.transform[1][1];
{
sp<const GraphicBuffer> buffer = getBuffer();
if (buffer != 0) {
info.mActiveBufferWidth = buffer->getWidth();
info.mActiveBufferHeight = buffer->getHeight();
info.mActiveBufferStride = buffer->getStride();
info.mActiveBufferFormat = buffer->format;
} else {
info.mActiveBufferWidth = 0;
info.mActiveBufferHeight = 0;
info.mActiveBufferStride = 0;
info.mActiveBufferFormat = 0;
}
}
info.mNumQueuedFrames = getQueuedFrameCount();
info.mRefreshPending = isBufferLatched();
info.mIsOpaque = isOpaque(ds);
info.mContentDirty = contentDirty;
info.mStretchEffect = getStretchEffect();
return info;
}
void Layer::miniDumpHeader(std::string& result) {
result.append(kDumpTableRowLength, '-');
result.append("\n");
result.append(" Layer name\n");
result.append(" Z | ");
result.append(" Window Type | ");
result.append(" Comp Type | ");
result.append(" Transform | ");
result.append(" Disp Frame (LTRB) | ");
result.append(" Source Crop (LTRB) | ");
result.append(" Frame Rate (Explicit) (Seamlessness) [Focused]\n");
result.append(kDumpTableRowLength, '-');
result.append("\n");
}
std::string Layer::frameRateCompatibilityString(Layer::FrameRateCompatibility compatibility) {
switch (compatibility) {
case FrameRateCompatibility::Default:
return "Default";
case FrameRateCompatibility::ExactOrMultiple:
return "ExactOrMultiple";
case FrameRateCompatibility::NoVote:
return "NoVote";
case FrameRateCompatibility::Exact:
return "Exact";
}
}
void Layer::miniDump(std::string& result, const DisplayDevice& display) const {
const auto outputLayer = findOutputLayerForDisplay(&display);
if (!outputLayer) {
return;
}
std::string name;
if (mName.length() > 77) {
std::string shortened;
shortened.append(mName, 0, 36);
shortened.append("[...]");
shortened.append(mName, mName.length() - 36);
name = std::move(shortened);
} else {
name = mName;
}
StringAppendF(&result, " %s\n", name.c_str());
const State& layerState(getDrawingState());
const auto& outputLayerState = outputLayer->getState();
if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) {
StringAppendF(&result, " rel %6d | ", layerState.z);
} else {
StringAppendF(&result, " %10d | ", layerState.z);
}
StringAppendF(&result, " %10d | ", mWindowType);
StringAppendF(&result, "%10s | ", toString(getCompositionType(display)).c_str());
StringAppendF(&result, "%10s | ", toString(outputLayerState.bufferTransform).c_str());
const Rect& frame = outputLayerState.displayFrame;
StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
const FloatRect& crop = outputLayerState.sourceCrop;
StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f | ", crop.left, crop.top, crop.right,
crop.bottom);
const auto frameRate = getFrameRateForLayerTree();
if (frameRate.rate.isValid() || frameRate.type != FrameRateCompatibility::Default) {
StringAppendF(&result, "%s %15s %17s", to_string(frameRate.rate).c_str(),
frameRateCompatibilityString(frameRate.type).c_str(),
toString(frameRate.seamlessness).c_str());
} else {
result.append(41, ' ');
}
const auto focused = isLayerFocusedBasedOnPriority(getFrameRateSelectionPriority());
StringAppendF(&result, " [%s]\n", focused ? "*" : " ");
result.append(kDumpTableRowLength, '-');
result.append("\n");
}
void Layer::dumpFrameStats(std::string& result) const {
mFrameTracker.dumpStats(result);
}
void Layer::clearFrameStats() {
mFrameTracker.clearStats();
}
void Layer::logFrameStats() {
mFrameTracker.logAndResetStats(mName);
}
void Layer::getFrameStats(FrameStats* outStats) const {
mFrameTracker.getStats(outStats);
}
void Layer::dumpFrameEvents(std::string& result) {
StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().c_str(), getType(), this);
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.checkFencesForCompletion();
mFrameEventHistory.dump(result);
}
void Layer::dumpCallingUidPid(std::string& result) const {
StringAppendF(&result, "Layer %s (%s) callingPid:%d callingUid:%d ownerUid:%d\n",
getName().c_str(), getType(), mCallingPid, mCallingUid, mOwnerUid);
}
void Layer::onDisconnect() {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.onDisconnect();
const int32_t layerId = getSequence();
mFlinger->mTimeStats->onDestroy(layerId);
mFlinger->mFrameTracer->onDestroy(layerId);
}
void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
FrameEventHistoryDelta* outDelta) {
if (newTimestamps) {
mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber,
getName().c_str(), mOwnerUid, newTimestamps->postedTime);
mFlinger->mTimeStats->setAcquireFence(getSequence(), newTimestamps->frameNumber,
newTimestamps->acquireFence);
}
Mutex::Autolock lock(mFrameEventHistoryMutex);
if (newTimestamps) {
// If there are any unsignaled fences in the aquire timeline at this
// point, the previously queued frame hasn't been latched yet. Go ahead
// and try to get the signal time here so the syscall is taken out of
// the main thread's critical path.
mAcquireTimeline.updateSignalTimes();
// Push the new fence after updating since it's likely still pending.
mAcquireTimeline.push(newTimestamps->acquireFence);
mFrameEventHistory.addQueue(*newTimestamps);
}
if (outDelta) {
mFrameEventHistory.getAndResetDelta(outDelta);
}
}
size_t Layer::getChildrenCount() const {
size_t count = 0;
for (const sp<Layer>& child : mCurrentChildren) {
count += 1 + child->getChildrenCount();
}
return count;
}
void Layer::addChild(const sp<Layer>& layer) {
mChildrenChanged = true;
setTransactionFlags(eTransactionNeeded);
mCurrentChildren.add(layer);
layer->setParent(this);
updateTreeHasFrameRateVote();
}
ssize_t Layer::removeChild(const sp<Layer>& layer) {
mChildrenChanged = true;
setTransactionFlags(eTransactionNeeded);
layer->setParent(nullptr);
const auto removeResult = mCurrentChildren.remove(layer);
updateTreeHasFrameRateVote();
layer->updateTreeHasFrameRateVote();
return removeResult;
}
void Layer::reparentChildren(const sp<Layer>& newParent) {
for (const sp<Layer>& child : mCurrentChildren) {
newParent->addChild(child);
}
mCurrentChildren.clear();
updateTreeHasFrameRateVote();
}
bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) {
sp<Handle> handle = nullptr;
sp<Layer> newParent = nullptr;
if (newParentHandle == nullptr) {
return false;
}
handle = static_cast<Handle*>(newParentHandle.get());
newParent = handle->owner.promote();
if (newParent == nullptr) {
ALOGE("Unable to promote Layer handle");
return false;
}
reparentChildren(newParent);
return true;
}
void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) {
for (const sp<Layer>& child : mDrawingChildren) {
child->mDrawingParent = newParent;
child->computeBounds(newParent->mBounds,
newParent->getTransformWithScale(newParent->getBufferScaleTransform()),
newParent->mEffectiveShadowRadius);
}
}
bool Layer::reparent(const sp<IBinder>& newParentHandle) {
sp<Layer> newParent;
if (newParentHandle != nullptr) {
auto handle = static_cast<Handle*>(newParentHandle.get());
newParent = handle->owner.promote();
if (newParent == nullptr) {
ALOGE("Unable to promote Layer handle");
return false;
}
if (newParent == this) {
ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str());
return false;
}
}
sp<Layer> parent = getParent();
if (parent != nullptr) {
parent->removeChild(this);
}
if (newParentHandle != nullptr) {
newParent->addChild(this);
if (!newParent->isRemovedFromCurrentState()) {
addToCurrentState();
} else {
onRemovedFromCurrentState();
}
} else {
onRemovedFromCurrentState();
}
return true;
}
bool Layer::setColorTransform(const mat4& matrix) {
static const mat4 identityMatrix = mat4();
if (mCurrentState.colorTransform == matrix) {
return false;
}
++mCurrentState.sequence;
mCurrentState.colorTransform = matrix;
mCurrentState.hasColorTransform = matrix != identityMatrix;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
mat4 Layer::getColorTransform() const {
mat4 colorTransform = mat4(getDrawingState().colorTransform);
if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
colorTransform = parent->getColorTransform() * colorTransform;
}
return colorTransform;
}
bool Layer::hasColorTransform() const {
bool hasColorTransform = getDrawingState().hasColorTransform;
if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
hasColorTransform = hasColorTransform || parent->hasColorTransform();
}
return hasColorTransform;
}
bool Layer::isLegacyDataSpace() const {
// return true when no higher bits are set
return !(getDataSpace() &
(ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK |
ui::Dataspace::RANGE_MASK));
}
void Layer::setParent(const sp<Layer>& layer) {
mCurrentParent = layer;
}
int32_t Layer::getZ(LayerVector::StateSet stateSet) const {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const State& state = useDrawing ? mDrawingState : mCurrentState;
return state.z;
}
bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const State& state = useDrawing ? mDrawingState : mCurrentState;
return state.isRelativeOf;
}
__attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList(
LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
if (state.zOrderRelatives.size() == 0) {
*outSkipRelativeZUsers = true;
return children;
}
LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
if (child->usingRelativeZ(stateSet)) {
continue;
}
traverse.add(child);
}
return traverse;
}
/**
* Negatively signed relatives are before 'this' in Z-order.
*/
void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
// In the case we have other layers who are using a relative Z to us, makeTraversalList will
// produce a new list for traversing, including our relatives, and not including our children
// who are relatives of another surface. In the case that there are no relative Z,
// makeTraversalList returns our children directly to avoid significant overhead.
// However in this case we need to take the responsibility for filtering children which
// are relatives of another surface here.
bool skipRelativeZUsers = false;
const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
if (relative->getZ(stateSet) >= 0) {
break;
}
relative->traverseInZOrder(stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
relative->traverseInZOrder(stateSet, visitor);
}
}
/**
* Positively signed relatives are before 'this' in reverse Z-order.
*/
void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
// See traverseInZOrder for documentation.
bool skipRelativeZUsers = false;
LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
int32_t i = 0;
for (i = int32_t(list.size()) - 1; i >= 0; i--) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
if (relative->getZ(stateSet) < 0) {
break;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
visitor(this);
for (; i >= 0; i--) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
}
void Layer::traverse(LayerVector::StateSet state, const LayerVector::Visitor& visitor) {
visitor(this);
const LayerVector& children =
state == LayerVector::StateSet::Drawing ? mDrawingChildren : mCurrentChildren;
for (const sp<Layer>& child : children) {
child->traverse(state, visitor);
}
}
LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet,
const std::vector<Layer*>& layersInTree) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
// Only add relative layers that are also descendents of the top most parent of the tree.
// If a relative layer is not a descendent, then it should be ignored.
if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
// If a layer has a relativeOf layer, only ignore if the layer it's relative to is a
// descendent of the top most parent of the tree. If it's not a descendent, then just add
// the child here since it won't be added later as a relative.
if (std::binary_search(layersInTree.begin(), layersInTree.end(),
childState.zOrderRelativeOf.promote().get())) {
continue;
}
traverse.add(child);
}
return traverse;
}
void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (relative->getZ(stateSet) >= 0) {
break;
}
relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
}
std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
std::vector<Layer*> layersInTree = {this};
for (size_t i = 0; i < children.size(); i++) {
const auto& child = children[i];
std::vector<Layer*> childLayers = child->getLayersInTree(stateSet);
layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend());
}
return layersInTree;
}
void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
std::vector<Layer*> layersInTree = getLayersInTree(stateSet);
std::sort(layersInTree.begin(), layersInTree.end());
traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
ui::Transform Layer::getTransform() const {
return mEffectiveTransform;
}
half Layer::getAlpha() const {
const auto& p = mDrawingParent.promote();
half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
return parentAlpha * getDrawingState().color.a;
}
ui::Transform::RotationFlags Layer::getFixedTransformHint() const {
ui::Transform::RotationFlags fixedTransformHint = mCurrentState.fixedTransformHint;
if (fixedTransformHint != ui::Transform::ROT_INVALID) {
return fixedTransformHint;
}
const auto& p = mCurrentParent.promote();
if (!p) return fixedTransformHint;
return p->getFixedTransformHint();
}
half4 Layer::getColor() const {
const half4 color(getDrawingState().color);
return half4(color.r, color.g, color.b, getAlpha());
}
int32_t Layer::getBackgroundBlurRadius() const {
const auto& p = mDrawingParent.promote();
half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
return parentAlpha * getDrawingState().backgroundBlurRadius;
}
const std::vector<BlurRegion>& Layer::getBlurRegions() const {
return getDrawingState().blurRegions;
}
Layer::RoundedCornerState Layer::getRoundedCornerState() const {
const auto& p = mDrawingParent.promote();
if (p != nullptr) {
RoundedCornerState parentState = p->getRoundedCornerState();
if (parentState.radius > 0) {
ui::Transform t = getActiveTransform(getDrawingState());
t = t.inverse();
parentState.cropRect = t.transform(parentState.cropRect);
// The rounded corners shader only accepts 1 corner radius for performance reasons,
// but a transform matrix can define horizontal and vertical scales.
// Let's take the average between both of them and pass into the shader, practically we
// never do this type of transformation on windows anyway.
auto scaleX = sqrtf(t[0][0] * t[0][0] + t[0][1] * t[0][1]);
auto scaleY = sqrtf(t[1][0] * t[1][0] + t[1][1] * t[1][1]);
parentState.radius *= (scaleX + scaleY) / 2.0f;
return parentState;
}
}
const float radius = getDrawingState().cornerRadius;
return radius > 0 && getCroppedBufferSize(getDrawingState()).isValid()
? RoundedCornerState(getCroppedBufferSize(getDrawingState()).toFloatRect(), radius)
: RoundedCornerState();
}
renderengine::ShadowSettings Layer::getShadowSettings(const Rect& layerStackRect) const {
renderengine::ShadowSettings state = mFlinger->mDrawingState.globalShadowSettings;
// Shift the spot light x-position to the middle of the display and then
// offset it by casting layer's screen pos.
state.lightPos.x = (layerStackRect.width() / 2.f) - mScreenBounds.left;
state.lightPos.y -= mScreenBounds.top;
state.length = mEffectiveShadowRadius;
return state;
}
void Layer::commitChildList() {
for (size_t i = 0; i < mCurrentChildren.size(); i++) {
const auto& child = mCurrentChildren[i];
child->commitChildList();
}
mDrawingChildren = mCurrentChildren;
mDrawingParent = mCurrentParent;
}
static wp<Layer> extractLayerFromBinder(const wp<IBinder>& weakBinderHandle) {
if (weakBinderHandle == nullptr) {
return nullptr;
}
sp<IBinder> binderHandle = weakBinderHandle.promote();
if (binderHandle == nullptr) {
return nullptr;
}
sp<Layer::Handle> handle = static_cast<Layer::Handle*>(binderHandle.get());
if (handle == nullptr) {
return nullptr;
}
return handle->owner;
}
void Layer::setInputInfo(const InputWindowInfo& info) {
mCurrentState.inputInfo = info;
mCurrentState.touchableRegionCrop = extractLayerFromBinder(info.touchableRegionCropHandle);
mCurrentState.modified = true;
mCurrentState.inputInfoChanged = true;
setTransactionFlags(eTransactionNeeded);
}
LayerProto* Layer::writeToProto(LayersProto& layersProto, uint32_t traceFlags,
const DisplayDevice* display) {
LayerProto* layerProto = layersProto.add_layers();
writeToProtoDrawingState(layerProto, traceFlags, display);
writeToProtoCommonState(layerProto, LayerVector::StateSet::Drawing, traceFlags);
if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) {
// Only populate for the primary display.
if (display) {
const Hwc2::IComposerClient::Composition compositionType = getCompositionType(*display);
layerProto->set_hwc_composition_type(static_cast<HwcCompositionType>(compositionType));
}
}
for (const sp<Layer>& layer : mDrawingChildren) {
layer->writeToProto(layersProto, traceFlags, display);
}
return layerProto;
}
void Layer::writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags,
const DisplayDevice* display) {
const ui::Transform transform = getTransform();
if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
for (const auto& pendingState : mPendingStatesSnapshot) {
auto barrierLayer = pendingState.barrierLayer_legacy.promote();
if (barrierLayer != nullptr) {
BarrierLayerProto* barrierLayerProto = layerInfo->add_barrier_layer();
barrierLayerProto->set_id(barrierLayer->sequence);
barrierLayerProto->set_frame_number(pendingState.barrierFrameNumber);
}
}
auto buffer = getBuffer();
if (buffer != nullptr) {
LayerProtoHelper::writeToProto(buffer,
[&]() { return layerInfo->mutable_active_buffer(); });
LayerProtoHelper::writeToProto(ui::Transform(getBufferTransform()),
layerInfo->mutable_buffer_transform());
}
layerInfo->set_invalidate(contentDirty);
layerInfo->set_is_protected(isProtected());
layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(getDataSpace())));
layerInfo->set_queued_frames(getQueuedFrameCount());
layerInfo->set_refresh_pending(isBufferLatched());
layerInfo->set_curr_frame(mCurrentFrameNumber);
layerInfo->set_effective_scaling_mode(getEffectiveScalingMode());
layerInfo->set_corner_radius(getRoundedCornerState().radius);
layerInfo->set_background_blur_radius(getBackgroundBlurRadius());
LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform());
LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(),
[&]() { return layerInfo->mutable_position(); });
LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); });
if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) {
LayerProtoHelper::writeToProto(getVisibleRegion(display),
[&]() { return layerInfo->mutable_visible_region(); });
}
LayerProtoHelper::writeToProto(surfaceDamageRegion,
[&]() { return layerInfo->mutable_damage_region(); });
if (hasColorTransform()) {
LayerProtoHelper::writeToProto(getColorTransform(),
layerInfo->mutable_color_transform());
}
}
LayerProtoHelper::writeToProto(mSourceBounds,
[&]() { return layerInfo->mutable_source_bounds(); });
LayerProtoHelper::writeToProto(mScreenBounds,
[&]() { return layerInfo->mutable_screen_bounds(); });
LayerProtoHelper::writeToProto(getRoundedCornerState().cropRect,
[&]() { return layerInfo->mutable_corner_radius_crop(); });
layerInfo->set_shadow_radius(mEffectiveShadowRadius);
}
void Layer::writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet,
uint32_t traceFlags) {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
ui::Transform requestedTransform = state.transform;
if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
layerInfo->set_id(sequence);
layerInfo->set_name(getName().c_str());
layerInfo->set_type(getType());
for (const auto& child : children) {
layerInfo->add_children(child->sequence);
}
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
layerInfo->add_relatives(strongRelative->sequence);
}
}
LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy,
[&]() { return layerInfo->mutable_transparent_region(); });
layerInfo->set_layer_stack(getLayerStack());
layerInfo->set_z(state.z);
LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(),
[&]() {
return layerInfo->mutable_requested_position();
});
LayerProtoHelper::writeSizeToProto(state.width, state.height,
[&]() { return layerInfo->mutable_size(); });
LayerProtoHelper::writeToProto(state.crop, [&]() { return layerInfo->mutable_crop(); });
layerInfo->set_is_opaque(isOpaque(state));
layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat()));
LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); });
LayerProtoHelper::writeToProto(state.color,
[&]() { return layerInfo->mutable_requested_color(); });
layerInfo->set_flags(state.flags);
LayerProtoHelper::writeToProto(requestedTransform,
layerInfo->mutable_requested_transform());
auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
if (parent != nullptr) {
layerInfo->set_parent(parent->sequence);
} else {
layerInfo->set_parent(-1);
}
auto zOrderRelativeOf = state.zOrderRelativeOf.promote();
if (zOrderRelativeOf != nullptr) {
layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence);
} else {
layerInfo->set_z_order_relative_of(-1);
}
layerInfo->set_is_relative_of(state.isRelativeOf);
layerInfo->set_owner_uid(mOwnerUid);
}
if (traceFlags & SurfaceTracing::TRACE_INPUT) {
InputWindowInfo info;
if (useDrawing) {
info = fillInputInfo({nullptr});
} else {
info = state.inputInfo;
}
LayerProtoHelper::writeToProto(info, state.touchableRegionCrop,
[&]() { return layerInfo->mutable_input_window_info(); });
}
if (traceFlags & SurfaceTracing::TRACE_EXTRA) {
auto protoMap = layerInfo->mutable_metadata();
for (const auto& entry : state.metadata.mMap) {
(*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend());
}
}
}
bool Layer::isRemovedFromCurrentState() const {
return mRemovedFromCurrentState;
}
ui::Transform Layer::getInputTransform() const {
return getTransform();
}
Rect Layer::getInputBounds() const {
return getCroppedBufferSize(getDrawingState());
}
void Layer::fillInputFrameInfo(InputWindowInfo& info, const ui::Transform& toPhysicalDisplay) {
// Transform layer size to screen space and inset it by surface insets.
// If this is a portal window, set the touchableRegion to the layerBounds.
Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE
? getInputBounds()
: info.touchableRegion.getBounds();
if (!layerBounds.isValid()) {
layerBounds = getInputBounds();
}
if (!layerBounds.isValid()) {
// If the layer bounds is empty, set the frame to empty and clear the transform
info.frameLeft = 0;
info.frameTop = 0;
info.frameRight = 0;
info.frameBottom = 0;
info.transform.reset();
return;
}
ui::Transform layerToDisplay = getInputTransform();
// Transform that takes window coordinates to unrotated display coordinates
ui::Transform t = toPhysicalDisplay * layerToDisplay;
int32_t xSurfaceInset = info.surfaceInset;
int32_t ySurfaceInset = info.surfaceInset;
// Bring screenBounds into unrotated space
Rect screenBounds = toPhysicalDisplay.transform(Rect{mScreenBounds});
const float xScale = t.getScaleX();
const float yScale = t.getScaleY();
if (xScale != 1.0f || yScale != 1.0f) {
xSurfaceInset = std::round(xSurfaceInset * xScale);
ySurfaceInset = std::round(ySurfaceInset * yScale);
}
// Transform the layer bounds from layer coordinate space to display coordinate space.
Rect transformedLayerBounds = t.transform(layerBounds);
// clamp inset to layer bounds
xSurfaceInset = (xSurfaceInset >= 0)
? std::min(xSurfaceInset, transformedLayerBounds.getWidth() / 2)
: 0;
ySurfaceInset = (ySurfaceInset >= 0)
? std::min(ySurfaceInset, transformedLayerBounds.getHeight() / 2)
: 0;
// inset while protecting from overflow TODO(b/161235021): What is going wrong
// in the overflow scenario?
{
int32_t tmp;
if (!__builtin_add_overflow(transformedLayerBounds.left, xSurfaceInset, &tmp))
transformedLayerBounds.left = tmp;
if (!__builtin_sub_overflow(transformedLayerBounds.right, xSurfaceInset, &tmp))
transformedLayerBounds.right = tmp;
if (!__builtin_add_overflow(transformedLayerBounds.top, ySurfaceInset, &tmp))
transformedLayerBounds.top = tmp;
if (!__builtin_sub_overflow(transformedLayerBounds.bottom, ySurfaceInset, &tmp))
transformedLayerBounds.bottom = tmp;
}
// Compute the correct transform to send to input. This will allow it to transform the
// input coordinates from display space into window space. Therefore, it needs to use the
// final layer frame to create the inverse transform. Since surface insets are added later,
// along with the overflow, the best way to ensure we get the correct transform is to use
// the final frame calculated.
// 1. Take the original transform set on the window and get the inverse transform. This is
// used to get the final bounds in display space (ignorning the transform). Apply the
// inverse transform on the layerBounds to get the untransformed frame (in layer space)
// 2. Take the top and left of the untransformed frame to get the real position on screen.
// Apply the layer transform on top/left so it includes any scale or rotation. These will
// be the new translation values for the transform.
// 3. Update the translation of the original transform to the new translation values.
// 4. Send the inverse transform to input so the coordinates can be transformed back into
// window space.
ui::Transform inverseTransform = t.inverse();
Rect nonTransformedBounds = inverseTransform.transform(transformedLayerBounds);
vec2 translation = t.transform(nonTransformedBounds.left, nonTransformedBounds.top);
ui::Transform inputTransform(t);
inputTransform.set(translation.x, translation.y);
info.transform = inputTransform.inverse();
// We need to send the layer bounds cropped to the screenbounds since the layer can be cropped.
// The frame should be the area the user sees on screen since it's used for occlusion
// detection.
transformedLayerBounds.intersect(screenBounds, &transformedLayerBounds);
info.frameLeft = transformedLayerBounds.left;
info.frameTop = transformedLayerBounds.top;
info.frameRight = transformedLayerBounds.right;
info.frameBottom = transformedLayerBounds.bottom;
// Position the touchable region relative to frame screen location and restrict it to frame
// bounds.
info.touchableRegion = inputTransform.transform(info.touchableRegion);
}
InputWindowInfo Layer::fillInputInfo(const sp<DisplayDevice>& display) {
if (!hasInputInfo()) {
mDrawingState.inputInfo.name = getName();
mDrawingState.inputInfo.ownerUid = mOwnerUid;
mDrawingState.inputInfo.ownerPid = mOwnerPid;
mDrawingState.inputInfo.inputFeatures = InputWindowInfo::Feature::NO_INPUT_CHANNEL;
mDrawingState.inputInfo.flags = InputWindowInfo::Flag::NOT_TOUCH_MODAL;
mDrawingState.inputInfo.displayId = getLayerStack();
}
InputWindowInfo info = mDrawingState.inputInfo;
info.id = sequence;
if (info.displayId == ADISPLAY_ID_NONE) {
info.displayId = getLayerStack();
}
// Transform that goes from "logical(rotated)" display to physical/unrotated display.
// This is for when inputflinger operates in physical display-space.
ui::Transform toPhysicalDisplay;
if (display) {
toPhysicalDisplay = display->getTransform();
}
fillInputFrameInfo(info, toPhysicalDisplay);
// For compatibility reasons we let layers which can receive input
// receive input before they have actually submitted a buffer. Because
// of this we use canReceiveInput instead of isVisible to check the
// policy-visibility, ignoring the buffer state. However for layers with
// hasInputInfo()==false we can use the real visibility state.
// We are just using these layers for occlusion detection in
// InputDispatcher, and obviously if they aren't visible they can't occlude
// anything.
info.visible = hasInputInfo() ? canReceiveInput() : isVisible();
info.alpha = getAlpha();
auto cropLayer = mDrawingState.touchableRegionCrop.promote();
if (info.replaceTouchableRegionWithCrop) {
if (cropLayer == nullptr) {
info.touchableRegion = Region(toPhysicalDisplay.transform(Rect{mScreenBounds}));
} else {
info.touchableRegion =
Region(toPhysicalDisplay.transform(Rect{cropLayer->mScreenBounds}));
}
} else if (cropLayer != nullptr) {
info.touchableRegion = info.touchableRegion.intersect(
toPhysicalDisplay.transform(Rect{cropLayer->mScreenBounds}));
}
// If the layer is a clone, we need to crop the input region to cloned root to prevent
// touches from going outside the cloned area.
if (isClone()) {
sp<Layer> clonedRoot = getClonedRoot();
if (clonedRoot != nullptr) {
Rect rect = toPhysicalDisplay.transform(Rect{clonedRoot->mScreenBounds});
info.touchableRegion = info.touchableRegion.intersect(rect);
}
}
return info;
}
sp<Layer> Layer::getClonedRoot() {
if (mClonedChild != nullptr) {
return this;
}
if (mDrawingParent == nullptr || mDrawingParent.promote() == nullptr) {
return nullptr;
}
return mDrawingParent.promote()->getClonedRoot();
}
bool Layer::hasInputInfo() const {
return mDrawingState.inputInfo.token != nullptr;
}
bool Layer::canReceiveInput() const {
return !isHiddenByPolicy();
}
compositionengine::OutputLayer* Layer::findOutputLayerForDisplay(
const DisplayDevice* display) const {
if (!display) return nullptr;
return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionEngineLayerFE());
}
Region Layer::getVisibleRegion(const DisplayDevice* display) const {
const auto outputLayer = findOutputLayerForDisplay(display);
return outputLayer ? outputLayer->getState().visibleRegion : Region();
}
void Layer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
// copy drawing state from cloned layer
mDrawingState = clonedFrom->mDrawingState;
mClonedFrom = clonedFrom;
}
void Layer::updateMirrorInfo() {
if (mClonedChild == nullptr || !mClonedChild->isClonedFromAlive()) {
// If mClonedChild is null, there is nothing to mirror. If isClonedFromAlive returns false,
// it means that there is a clone, but the layer it was cloned from has been destroyed. In
// that case, we want to delete the reference to the clone since we want it to get
// destroyed. The root, this layer, will still be around since the client can continue
// to hold a reference, but no cloned layers will be displayed.
mClonedChild = nullptr;
return;
}
std::map<sp<Layer>, sp<Layer>> clonedLayersMap;
// If the real layer exists and is in current state, add the clone as a child of the root.
// There's no need to remove from drawingState when the layer is offscreen since currentState is
// copied to drawingState for the root layer. So the clonedChild is always removed from
// drawingState and then needs to be added back each traversal.
if (!mClonedChild->getClonedFrom()->isRemovedFromCurrentState()) {
addChildToDrawing(mClonedChild);
}
mClonedChild->updateClonedDrawingState(clonedLayersMap);
mClonedChild->updateClonedChildren(this, clonedLayersMap);
mClonedChild->updateClonedRelatives(clonedLayersMap);
}
void Layer::updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
// If the layer the clone was cloned from is alive, copy the content of the drawingState
// to the clone. If the real layer is no longer alive, continue traversing the children
// since we may be able to pull out other children that are still alive.
if (isClonedFromAlive()) {
sp<Layer> clonedFrom = getClonedFrom();
mDrawingState = clonedFrom->mDrawingState;
clonedLayersMap.emplace(clonedFrom, this);
}
// The clone layer may have children in drawingState since they may have been created and
// added from a previous request to updateMirorInfo. This is to ensure we don't recreate clones
// that already exist, since we can just re-use them.
// The drawingChildren will not get overwritten by the currentChildren since the clones are
// not updated in the regular traversal. They are skipped since the root will lose the
// reference to them when it copies its currentChildren to drawing.
for (sp<Layer>& child : mDrawingChildren) {
child->updateClonedDrawingState(clonedLayersMap);
}
}
void Layer::updateClonedChildren(const sp<Layer>& mirrorRoot,
std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
mDrawingChildren.clear();
if (!isClonedFromAlive()) {
return;
}
sp<Layer> clonedFrom = getClonedFrom();
for (sp<Layer>& child : clonedFrom->mDrawingChildren) {
if (child == mirrorRoot) {
// This is to avoid cyclical mirroring.
continue;
}
sp<Layer> clonedChild = clonedLayersMap[child];
if (clonedChild == nullptr) {
clonedChild = child->createClone();
clonedLayersMap[child] = clonedChild;
}
addChildToDrawing(clonedChild);
clonedChild->updateClonedChildren(mirrorRoot, clonedLayersMap);
}
}
void Layer::updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
auto cropLayer = mDrawingState.touchableRegionCrop.promote();
if (cropLayer != nullptr) {
if (clonedLayersMap.count(cropLayer) == 0) {
// Real layer had a crop layer but it's not in the cloned hierarchy. Just set to
// self as crop layer to avoid going outside bounds.
mDrawingState.touchableRegionCrop = this;
} else {
const sp<Layer>& clonedCropLayer = clonedLayersMap.at(cropLayer);
mDrawingState.touchableRegionCrop = clonedCropLayer;
}
}
// Cloned layers shouldn't handle watch outside since their z order is not determined by
// WM or the client.
mDrawingState.inputInfo.flags &= ~InputWindowInfo::Flag::WATCH_OUTSIDE_TOUCH;
}
void Layer::updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
mDrawingState.zOrderRelativeOf = nullptr;
mDrawingState.zOrderRelatives.clear();
if (!isClonedFromAlive()) {
return;
}
const sp<Layer>& clonedFrom = getClonedFrom();
for (wp<Layer>& relativeWeak : clonedFrom->mDrawingState.zOrderRelatives) {
const sp<Layer>& relative = relativeWeak.promote();
if (clonedLayersMap.count(relative) > 0) {
auto& clonedRelative = clonedLayersMap.at(relative);
mDrawingState.zOrderRelatives.add(clonedRelative);
}
}
// Check if the relativeLayer for the real layer is part of the cloned hierarchy.
// It's possible that the layer it's relative to is outside the requested cloned hierarchy.
// In that case, we treat the layer as if the relativeOf has been removed. This way, it will
// still traverse the children, but the layer with the missing relativeOf will not be shown
// on screen.
const sp<Layer>& relativeOf = clonedFrom->mDrawingState.zOrderRelativeOf.promote();
if (clonedLayersMap.count(relativeOf) > 0) {
const sp<Layer>& clonedRelativeOf = clonedLayersMap.at(relativeOf);
mDrawingState.zOrderRelativeOf = clonedRelativeOf;
}
updateClonedInputInfo(clonedLayersMap);
for (sp<Layer>& child : mDrawingChildren) {
child->updateClonedRelatives(clonedLayersMap);
}
}
void Layer::addChildToDrawing(const sp<Layer>& layer) {
mDrawingChildren.add(layer);
layer->mDrawingParent = this;
}
Layer::FrameRateCompatibility Layer::FrameRate::convertCompatibility(int8_t compatibility) {
switch (compatibility) {
case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT:
return FrameRateCompatibility::Default;
case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE:
return FrameRateCompatibility::ExactOrMultiple;
case ANATIVEWINDOW_FRAME_RATE_EXACT:
return FrameRateCompatibility::Exact;
default:
LOG_ALWAYS_FATAL("Invalid frame rate compatibility value %d", compatibility);
return FrameRateCompatibility::Default;
}
}
scheduler::Seamlessness Layer::FrameRate::convertChangeFrameRateStrategy(int8_t strategy) {
switch (strategy) {
case ANATIVEWINDOW_CHANGE_FRAME_RATE_ONLY_IF_SEAMLESS:
return Seamlessness::OnlySeamless;
case ANATIVEWINDOW_CHANGE_FRAME_RATE_ALWAYS:
return Seamlessness::SeamedAndSeamless;
default:
LOG_ALWAYS_FATAL("Invalid change frame sate strategy value %d", strategy);
return Seamlessness::Default;
}
}
bool Layer::getPrimaryDisplayOnly() const {
const State& s(mDrawingState);
if (s.flags & layer_state_t::eLayerSkipScreenshot) {
return true;
}
sp<Layer> parent = mDrawingParent.promote();
return parent == nullptr ? false : parent->getPrimaryDisplayOnly();
}
// ---------------------------------------------------------------------------
std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate) {
return stream << "{rate=" << rate.rate
<< " type=" << Layer::frameRateCompatibilityString(rate.type)
<< " seamlessness=" << toString(rate.seamlessness) << "}";
}
}; // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"