blob: f17a7d289b315e97abcb9efa0b326bbb2f5a4c23 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <stdint.h>
#include <sys/types.h>
#include <errno.h>
#include <math.h>
#include <EGL/egl.h>
#include <GLES/gl.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/MemoryHeapBase.h>
#include <binder/PermissionCache.h>
#include <ui/DisplayInfo.h>
#include <gui/BitTube.h>
#include <gui/BufferQueue.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/SurfaceTextureClient.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/PixelFormat.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <private/android_filesystem_config.h>
#include "clz.h"
#include "DdmConnection.h"
#include "DisplayDevice.h"
#include "Client.h"
#include "EventThread.h"
#include "GLExtensions.h"
#include "Layer.h"
#include "LayerDim.h"
#include "LayerScreenshot.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#define EGL_VERSION_HW_ANDROID 0x3143
#define DISPLAY_COUNT 1
namespace android {
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sDump("android.permission.DUMP");
// ---------------------------------------------------------------------------
SurfaceFlinger::SurfaceFlinger()
: BnSurfaceComposer(), Thread(false),
mTransactionFlags(0),
mTransationPending(false),
mLayersRemoved(false),
mRepaintEverything(0),
mBootTime(systemTime()),
mVisibleRegionsDirty(false),
mHwWorkListDirty(false),
mDebugRegion(0),
mDebugDDMS(0),
mDebugDisableHWC(0),
mDebugDisableTransformHint(0),
mDebugInSwapBuffers(0),
mLastSwapBufferTime(0),
mDebugInTransaction(0),
mLastTransactionTime(0),
mBootFinished(false),
mExternalDisplaySurface(EGL_NO_SURFACE)
{
ALOGI("SurfaceFlinger is starting");
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.ddms", value, "0");
mDebugDDMS = atoi(value);
if (mDebugDDMS) {
DdmConnection::start(getServiceName());
}
ALOGI_IF(mDebugRegion, "showupdates enabled");
ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
}
void SurfaceFlinger::onFirstRef()
{
mEventQueue.init(this);
run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
// Wait for the main thread to be done with its initialization
mReadyToRunBarrier.wait();
}
SurfaceFlinger::~SurfaceFlinger()
{
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglTerminate(display);
}
void SurfaceFlinger::binderDied(const wp<IBinder>& who)
{
// the window manager died on us. prepare its eulogy.
// reset screen orientation
Vector<ComposerState> state;
Vector<DisplayState> displays;
DisplayState d;
d.orientation = eOrientationDefault;
displays.add(d);
setTransactionState(state, displays, 0);
// restart the boot-animation
startBootAnim();
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
{
sp<ISurfaceComposerClient> bclient;
sp<Client> client(new Client(this));
status_t err = client->initCheck();
if (err == NO_ERROR) {
bclient = client;
}
return bclient;
}
sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
{
sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
return gba;
}
void SurfaceFlinger::bootFinished()
{
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mBootFinished = true;
// wait patiently for the window manager death
const String16 name("window");
sp<IBinder> window(defaultServiceManager()->getService(name));
if (window != 0) {
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
}
void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
class MessageDestroyGLTexture : public MessageBase {
GLuint texture;
public:
MessageDestroyGLTexture(GLuint texture)
: texture(texture) {
}
virtual bool handler() {
glDeleteTextures(1, &texture);
return true;
}
};
postMessageAsync(new MessageDestroyGLTexture(texture));
}
status_t SurfaceFlinger::selectConfigForPixelFormat(
EGLDisplay dpy,
EGLint const* attrs,
PixelFormat format,
EGLConfig* outConfig)
{
EGLConfig config = NULL;
EGLint numConfigs = -1, n=0;
eglGetConfigs(dpy, NULL, 0, &numConfigs);
EGLConfig* const configs = new EGLConfig[numConfigs];
eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
for (int i=0 ; i<n ; i++) {
EGLint nativeVisualId = 0;
eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
if (nativeVisualId>0 && format == nativeVisualId) {
*outConfig = configs[i];
delete [] configs;
return NO_ERROR;
}
}
delete [] configs;
return NAME_NOT_FOUND;
}
EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
// select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
// it is to be used with WIFI displays
EGLConfig config;
EGLint dummy;
status_t err;
EGLint attribs[] = {
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_RECORDABLE_ANDROID, EGL_TRUE,
EGL_NONE
};
err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
if (err) {
// maybe we failed because of EGL_RECORDABLE_ANDROID
ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
attribs[2] = EGL_NONE;
err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
}
ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
}
return config;
}
EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
// Also create our EGLContext
EGLint contextAttributes[] = {
#ifdef EGL_IMG_context_priority
#ifdef HAS_CONTEXT_PRIORITY
#warning "using EGL_IMG_context_priority"
EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
#endif
#endif
EGL_NONE, EGL_NONE
};
EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
return ctxt;
}
void SurfaceFlinger::initializeGL(EGLDisplay display, EGLSurface surface) {
EGLBoolean result = eglMakeCurrent(display, surface, surface, mEGLContext);
if (!result) {
ALOGE("Couldn't create a working GLES context. check logs. exiting...");
exit(0);
}
GLExtensions& extensions(GLExtensions::getInstance());
extensions.initWithGLStrings(
glGetString(GL_VENDOR),
glGetString(GL_RENDERER),
glGetString(GL_VERSION),
glGetString(GL_EXTENSIONS),
eglQueryString(display, EGL_VENDOR),
eglQueryString(display, EGL_VERSION),
eglQueryString(display, EGL_EXTENSIONS));
EGLint w, h;
eglQuerySurface(display, surface, EGL_WIDTH, &w);
eglQuerySurface(display, surface, EGL_HEIGHT, &h);
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glEnableClientState(GL_VERTEX_ARRAY);
glShadeModel(GL_FLAT);
glDisable(GL_DITHER);
glDisable(GL_CULL_FACE);
struct pack565 {
inline uint16_t operator() (int r, int g, int b) const {
return (r<<11)|(g<<5)|b;
}
} pack565;
const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
glGenTextures(1, &mProtectedTexName);
glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// put the origin in the left-bottom corner
glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
// print some debugging info
EGLint r,g,b,a;
eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE, &r);
eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE, &b);
eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
ALOGI("EGL informations:");
ALOGI("vendor : %s", extensions.getEglVendor());
ALOGI("version : %s", extensions.getEglVersion());
ALOGI("extensions: %s", extensions.getEglExtension());
ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
ALOGI("OpenGL ES informations:");
ALOGI("vendor : %s", extensions.getVendor());
ALOGI("renderer : %s", extensions.getRenderer());
ALOGI("version : %s", extensions.getVersion());
ALOGI("extensions: %s", extensions.getExtension());
ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
}
status_t SurfaceFlinger::readyToRun()
{
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
// initialize EGL
mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(mEGLDisplay, NULL, NULL);
// Initialize the main display
// create native window to main display
sp<FramebufferSurface> fbs = FramebufferSurface::create();
if (fbs == NULL) {
ALOGE("Display subsystem failed to initialize. check logs. exiting...");
exit(0);
}
sp<SurfaceTextureClient> stc(new SurfaceTextureClient(static_cast<sp<ISurfaceTexture> >(fbs->getBufferQueue())));
// initialize the config and context
int format;
ANativeWindow* const anw = stc.get();
anw->query(anw, NATIVE_WINDOW_FORMAT, &format);
mEGLConfig = selectEGLConfig(mEGLDisplay, format);
mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
// initialize our main display hardware
mCurrentState.displays.add(DisplayDevice::DISPLAY_ID_MAIN, DisplayDeviceState());
sp<DisplayDevice> hw = new DisplayDevice(this, DisplayDevice::DISPLAY_ID_MAIN, anw, fbs, mEGLConfig);
mDisplays.add(DisplayDevice::DISPLAY_ID_MAIN, hw);
// initialize OpenGL ES
EGLSurface surface = hw->getEGLSurface();
initializeGL(mEGLDisplay, surface);
// start the EventThread
mEventThread = new EventThread(this);
mEventQueue.setEventThread(mEventThread);
// initialize the H/W composer
mHwc = new HWComposer(this, *static_cast<HWComposer::EventHandler *>(this));
// initialize our drawing state
mDrawingState = mCurrentState;
// We're now ready to accept clients...
mReadyToRunBarrier.open();
// start boot animation
startBootAnim();
return NO_ERROR;
}
void SurfaceFlinger::startBootAnim() {
// start boot animation
property_set("service.bootanim.exit", "0");
property_set("ctl.start", "bootanim");
}
uint32_t SurfaceFlinger::getMaxTextureSize() const {
return mMaxTextureSize;
}
uint32_t SurfaceFlinger::getMaxViewportDims() const {
return mMaxViewportDims[0] < mMaxViewportDims[1] ?
mMaxViewportDims[0] : mMaxViewportDims[1];
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<ISurfaceTexture>& surfaceTexture) const {
Mutex::Autolock _l(mStateLock);
sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
// Check the visible layer list for the ISurface
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
if (lbc != NULL) {
wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
if (lbcBinder == surfaceTextureBinder) {
return true;
}
}
}
// Check the layers in the purgatory. This check is here so that if a
// SurfaceTexture gets destroyed before all the clients are done using it,
// the error will not be reported as "surface XYZ is not authenticated", but
// will instead fail later on when the client tries to use the surface,
// which should be reported as "surface XYZ returned an -ENODEV". The
// purgatorized layers are no less authentic than the visible ones, so this
// should not cause any harm.
size_t purgatorySize = mLayerPurgatory.size();
for (size_t i=0 ; i<purgatorySize ; i++) {
const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
if (lbc != NULL) {
wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
if (lbcBinder == surfaceTextureBinder) {
return true;
}
}
}
return false;
}
status_t SurfaceFlinger::getDisplayInfo(DisplayID dpy, DisplayInfo* info) {
// TODO: this is here only for compatibility -- should go away eventually.
if (uint32_t(dpy) >= 1) {
return BAD_INDEX;
}
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
info->w = hw->getWidth();
info->h = hw->getHeight();
info->xdpi = hw->getDpiX();
info->ydpi = hw->getDpiY();
info->fps = float(1e9 / getHwComposer().getRefreshPeriod());
info->density = hw->getDensity();
info->orientation = hw->getOrientation();
// TODO: this needs to go away (currently needed only by webkit)
getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
return mEventThread->createEventConnection();
}
void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture> display) {
EGLSurface result = EGL_NO_SURFACE;
EGLSurface old_surface = EGL_NO_SURFACE;
sp<SurfaceTextureClient> stc;
if (display != NULL) {
stc = new SurfaceTextureClient(display);
result = eglCreateWindowSurface(mEGLDisplay,
mEGLConfig, (EGLNativeWindowType)stc.get(), NULL);
ALOGE_IF(result == EGL_NO_SURFACE,
"eglCreateWindowSurface failed (ISurfaceTexture=%p)",
display.get());
}
{ // scope for the lock
Mutex::Autolock _l(mStateLock);
old_surface = mExternalDisplaySurface;
mExternalDisplayNativeWindow = stc;
mExternalDisplaySurface = result;
ALOGD("mExternalDisplaySurface = %p", result);
}
if (old_surface != EGL_NO_SURFACE) {
// Note: EGL allows to destroy an object while its current
// it will fail to become current next time though.
eglDestroySurface(mEGLDisplay, old_surface);
}
}
EGLSurface SurfaceFlinger::getExternalDisplaySurface() const {
Mutex::Autolock _l(mStateLock);
return mExternalDisplaySurface;
}
// ----------------------------------------------------------------------------
void SurfaceFlinger::waitForEvent() {
mEventQueue.waitMessage();
}
void SurfaceFlinger::signalTransaction() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signalRefresh() {
mEventQueue.refresh();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t flags) {
return mEventQueue.postMessage(msg, reltime);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t flags) {
status_t res = mEventQueue.postMessage(msg, reltime);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
bool SurfaceFlinger::threadLoop() {
waitForEvent();
return true;
}
void SurfaceFlinger::onVSyncReceived(int dpy, nsecs_t timestamp) {
mEventThread->onVSyncReceived(dpy, timestamp);
}
void SurfaceFlinger::eventControl(int event, int enabled) {
getHwComposer().eventControl(event, enabled);
}
void SurfaceFlinger::onMessageReceived(int32_t what) {
ATRACE_CALL();
switch (what) {
case MessageQueue::INVALIDATE:
handleMessageTransaction();
handleMessageInvalidate();
signalRefresh();
break;
case MessageQueue::REFRESH:
handleMessageRefresh();
break;
}
}
void SurfaceFlinger::handleMessageTransaction() {
const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
uint32_t transactionFlags = peekTransactionFlags(mask);
if (transactionFlags) {
handleTransaction(transactionFlags);
}
}
void SurfaceFlinger::handleMessageInvalidate() {
handlePageFlip();
}
void SurfaceFlinger::handleMessageRefresh() {
handleRefresh();
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
/*
* rebuild the visible layer list per screen
*/
const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
Region opaqueRegion;
Region dirtyRegion;
computeVisibleRegions(currentLayers,
hw->getLayerStack(), dirtyRegion, opaqueRegion);
hw->dirtyRegion.orSelf(dirtyRegion);
Vector< sp<LayerBase> > layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const Layer::State& s(currentLayers[i]->drawingState());
if (s.layerStack == hw->getLayerStack()) {
if (!currentLayers[i]->visibleRegion.isEmpty()) {
layersSortedByZ.add(currentLayers[i]);
}
}
}
hw->setVisibleLayersSortedByZ(layersSortedByZ);
hw->undefinedRegion.set(hw->getBounds());
hw->undefinedRegion.subtractSelf(hw->getTransform().transform(opaqueRegion));
}
}
HWComposer& hwc(getHwComposer());
if (hwc.initCheck() == NO_ERROR) {
// build the h/w work list
const bool workListsDirty = mHwWorkListDirty;
mHwWorkListDirty = false;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
const int32_t id = hw->getDisplayId();
if (hwc.createWorkList(id, count) >= 0) {
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
const sp<LayerBase>& layer(currentLayers[i]);
if (CC_UNLIKELY(workListsDirty)) {
layer->setGeometry(hw, *cur);
if (mDebugDisableHWC || mDebugRegion) {
cur->setSkip(true);
}
}
/*
* update the per-frame h/w composer data for each layer
* and build the transparent region of the FB
*/
layer->setPerFrameData(hw, *cur);
}
}
}
status_t err = hwc.prepare();
ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
}
const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
// transform the dirty region into this screen's coordinate space
const Transform& planeTransform(hw->getTransform());
Region dirtyRegion;
if (repaintEverything) {
dirtyRegion.set(hw->bounds());
} else {
dirtyRegion = planeTransform.transform(hw->dirtyRegion);
dirtyRegion.andSelf(hw->bounds());
}
hw->dirtyRegion.clear();
if (!dirtyRegion.isEmpty()) {
if (hw->canDraw()) {
// repaint the framebuffer (if needed)
handleRepaint(hw, dirtyRegion);
}
}
// inform the h/w that we're done compositing
hw->compositionComplete();
}
postFramebuffer();
#if 1
// render to the external display if we have one
EGLSurface externalDisplaySurface = getExternalDisplaySurface();
if (externalDisplaySurface != EGL_NO_SURFACE) {
EGLSurface cur = eglGetCurrentSurface(EGL_DRAW);
EGLBoolean success = eglMakeCurrent(eglGetCurrentDisplay(),
externalDisplaySurface, externalDisplaySurface,
eglGetCurrentContext());
ALOGE_IF(!success, "eglMakeCurrent -> external failed");
if (success) {
// redraw the screen entirely...
glDisable(GL_TEXTURE_EXTERNAL_OES);
glDisable(GL_TEXTURE_2D);
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
const sp<DisplayDevice>& hw(getDisplayDevice(0));
const Vector< sp<LayerBase> >& layers( hw->getVisibleLayersSortedByZ() );
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
layer->draw(hw);
}
success = eglSwapBuffers(eglGetCurrentDisplay(), externalDisplaySurface);
ALOGE_IF(!success, "external display eglSwapBuffers failed");
hw->compositionComplete();
}
success = eglMakeCurrent(eglGetCurrentDisplay(),
cur, cur, eglGetCurrentContext());
ALOGE_IF(!success, "eglMakeCurrent -> internal failed");
}
#endif
}
void SurfaceFlinger::postFramebuffer()
{
ATRACE_CALL();
const nsecs_t now = systemTime();
mDebugInSwapBuffers = now;
HWComposer& hwc(getHwComposer());
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hwc.initCheck() == NO_ERROR) {
const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
const int32_t id = hw->getDisplayId();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
const sp<LayerBase>& layer(currentLayers[i]);
layer->setAcquireFence(hw, *cur);
}
}
hw->flip(hw->swapRegion);
hw->swapRegion.clear();
}
if (hwc.initCheck() == NO_ERROR) {
// FIXME: eventually commit() won't take arguments
hwc.commit(mEGLDisplay, getDefaultDisplayDevice()->getEGLSurface());
}
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
const size_t count = currentLayers.size();
if (hwc.initCheck() == NO_ERROR) {
int32_t id = hw->getDisplayId();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
currentLayers[i]->onLayerDisplayed(hw, &*cur);
}
} else {
eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
for (size_t i = 0; i < count; i++) {
currentLayers[i]->onLayerDisplayed(hw, NULL);
}
}
// FIXME: we need to call eglSwapBuffers() on displays that have GL composition
}
mLastSwapBufferTime = systemTime() - now;
mDebugInSwapBuffers = 0;
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
ATRACE_CALL();
Mutex::Autolock _l(mStateLock);
const nsecs_t now = systemTime();
mDebugInTransaction = now;
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
transactionFlags = getTransactionFlags(mask);
handleTransactionLocked(transactionFlags);
mLastTransactionTime = systemTime() - now;
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
const size_t count = currentLayers.size();
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
if (layersNeedTransaction) {
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer = currentLayers[i];
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) continue;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
}
}
/*
* Perform our own transaction if needed
*/
if (transactionFlags & eTransactionNeeded) {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector<int32_t, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector<int32_t, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
const size_t cc = curr.size();
const size_t dc = draw.size();
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i=0 ; i<dc ; i++) {
if (curr.indexOfKey(draw[i].id) < 0) {
// in drawing state but not in current state
if (draw[i].id != DisplayDevice::DISPLAY_ID_MAIN) {
mDisplays.removeItem(draw[i].id);
} else {
ALOGW("trying to remove the main display");
}
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& state(curr[i]);
if (state.layerStack != draw[i].layerStack) {
const sp<DisplayDevice>& disp(getDisplayDevice(state.id));
disp->setLayerStack(state.layerStack);
}
if (curr[i].orientation != draw[i].orientation) {
const sp<DisplayDevice>& disp(getDisplayDevice(state.id));
disp->setOrientation(state.orientation);
}
}
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i=0 ; i<cc ; i++) {
if (mDrawingState.displays.indexOfKey(curr[i].id) < 0) {
// FIXME: we need to pass the surface here
sp<DisplayDevice> disp = new DisplayDevice(this, curr[i].id, 0, 0, mEGLConfig);
mDisplays.add(curr[i].id, disp);
}
}
}
if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
// layers have been added
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
const size_t count = previousLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(previousLayers[i]);
if (currentLayers.indexOf(layer) < 0) {
// this layer is not visible anymore
// TODO: we could traverse the tree from front to back and
// compute the actual visible region
// TODO: we could cache the transformed region
Layer::State front(layer->drawingState());
Region visibleReg = front.transform.transform(
Region(Rect(front.active.w, front.active.h)));
invalidateLayerStack(front.layerStack, visibleReg);
}
}
}
}
commitTransaction();
}
void SurfaceFlinger::commitTransaction()
{
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
mLayersPendingRemoval[i]->onRemoved();
}
mLayersPendingRemoval.clear();
}
mDrawingState = mCurrentState;
mTransationPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::computeVisibleRegions(
const LayerVector& currentLayers, uint32_t layerStack,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
ATRACE_CALL();
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
outDirtyRegion.clear();
size_t i = currentLayers.size();
while (i--) {
const sp<LayerBase>& layer = currentLayers[i];
// start with the whole surface at its current location
const Layer::State& s(layer->drawingState());
// only consider the layers on the given later stack
if (s.layerStack != layerStack)
continue;
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
// handle hidden surfaces by setting the visible region to empty
if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
const bool translucent = !layer->isOpaque();
Rect bounds(layer->computeBounds());
visibleRegion.set(bounds);
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
Region transparentRegionScreen;
const Transform tr(s.transform);
if (tr.transformed()) {
if (tr.preserveRects()) {
// transform the transparent region
transparentRegionScreen = tr.transform(s.transparentRegion);
} else {
// transformation too complex, can't do the
// transparent region optimization.
transparentRegionScreen.clear();
}
} else {
transparentRegionScreen = s.transparentRegion;
}
visibleRegion.subtractSelf(transparentRegionScreen);
}
// compute the opaque region
const int32_t layerOrientation = s.transform.getOrientation();
if (s.alpha==255 && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegion);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegion;
const Region oldCoveredRegion = layer->coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
outDirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region is screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
}
outOpaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
const Region& dirty) {
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->getLayerStack() == layerStack) {
hw->dirtyRegion.orSelf(dirty);
}
}
}
void SurfaceFlinger::handlePageFlip()
{
ATRACE_CALL();
Region dirtyRegion;
const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
bool visibleRegions = false;
const size_t count = currentLayers.size();
sp<LayerBase> const* layers = currentLayers.array();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(layers[i]);
const Region dirty(layer->latchBuffer(visibleRegions));
Layer::State s(layer->drawingState());
invalidateLayerStack(s.layerStack, dirty);
}
mVisibleRegionsDirty |= visibleRegions;
}
void SurfaceFlinger::invalidateHwcGeometry()
{
mHwWorkListDirty = true;
}
void SurfaceFlinger::handleRefresh()
{
bool needInvalidate = false;
const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
if (layer->onPreComposition()) {
needInvalidate = true;
}
}
if (needInvalidate) {
signalLayerUpdate();
}
}
void SurfaceFlinger::handleRepaint(const sp<const DisplayDevice>& hw,
const Region& inDirtyRegion)
{
ATRACE_CALL();
Region dirtyRegion(inDirtyRegion);
// compute the invalid region
hw->swapRegion.orSelf(dirtyRegion);
if (CC_UNLIKELY(mDebugRegion)) {
debugFlashRegions(hw, dirtyRegion);
}
uint32_t flags = hw->getFlags();
if (flags & DisplayDevice::SWAP_RECTANGLE) {
// we can redraw only what's dirty, but since SWAP_RECTANGLE only
// takes a rectangle, we must make sure to update that whole
// rectangle in that case
dirtyRegion.set(hw->swapRegion.bounds());
} else {
if (flags & DisplayDevice::PARTIAL_UPDATES) {
// We need to redraw the rectangle that will be updated
// (pushed to the framebuffer).
// This is needed because PARTIAL_UPDATES only takes one
// rectangle instead of a region (see DisplayDevice::flip())
dirtyRegion.set(hw->swapRegion.bounds());
} else {
// we need to redraw everything (the whole screen)
dirtyRegion.set(hw->bounds());
hw->swapRegion = dirtyRegion;
}
}
composeSurfaces(hw, dirtyRegion);
const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
currentLayers[i]->onPostComposition();
}
// update the swap region and clear the dirty region
hw->swapRegion.orSelf(dirtyRegion);
}
void SurfaceFlinger::composeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
{
HWComposer& hwc(getHwComposer());
int32_t id = hw->getDisplayId();
HWComposer::LayerListIterator cur = hwc.begin(id);
const HWComposer::LayerListIterator end = hwc.end(id);
const size_t fbLayerCount = hwc.getLayerCount(id, HWC_FRAMEBUFFER);
if (cur==end || fbLayerCount) {
DisplayDevice::makeCurrent(hw, mEGLContext);
// set the frame buffer
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// Never touch the framebuffer if we don't have any framebuffer layers
if (hwc.getLayerCount(id, HWC_OVERLAY)) {
// when using overlays, we assume a fully transparent framebuffer
// NOTE: we could reduce how much we need to clear, for instance
// remove where there are opaque FB layers. however, on some
// GPUs doing a "clean slate" glClear might be more efficient.
// We'll revisit later if needed.
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
} else {
const Region region(hw->undefinedRegion.intersect(dirty));
// screen is already cleared here
if (!region.isEmpty()) {
// can happen with SurfaceView
drawWormhole(region);
}
}
/*
* and then, render the layers targeted at the framebuffer
*/
const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
const size_t count = layers.size();
const Transform& tr = hw->getTransform();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
if (!clip.isEmpty()) {
if (cur != end && cur->getCompositionType() == HWC_OVERLAY) {
if (i && (cur->getHints() & HWC_HINT_CLEAR_FB)
&& layer->isOpaque()) {
// never clear the very first layer since we're
// guaranteed the FB is already cleared
layer->clearWithOpenGL(hw, clip);
}
++cur;
continue;
}
// render the layer
layer->draw(hw, clip);
}
if (cur != end) {
++cur;
}
}
}
}
void SurfaceFlinger::debugFlashRegions(const sp<const DisplayDevice>& hw,
const Region& dirtyRegion)
{
const uint32_t flags = hw->getFlags();
const int32_t height = hw->getHeight();
if (hw->swapRegion.isEmpty()) {
return;
}
if (!(flags & DisplayDevice::SWAP_RECTANGLE)) {
const Region repaint((flags & DisplayDevice::PARTIAL_UPDATES) ?
dirtyRegion.bounds() : hw->bounds());
composeSurfaces(hw, repaint);
}
glDisable(GL_TEXTURE_EXTERNAL_OES);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
static int toggle = 0;
toggle = 1 - toggle;
if (toggle) {
glColor4f(1, 0, 1, 1);
} else {
glColor4f(1, 1, 0, 1);
}
Region::const_iterator it = dirtyRegion.begin();
Region::const_iterator const end = dirtyRegion.end();
while (it != end) {
const Rect& r = *it++;
GLfloat vertices[][2] = {
{ r.left, height - r.top },
{ r.left, height - r.bottom },
{ r.right, height - r.bottom },
{ r.right, height - r.top }
};
glVertexPointer(2, GL_FLOAT, 0, vertices);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
hw->flip(hw->swapRegion);
if (mDebugRegion > 1)
usleep(mDebugRegion * 1000);
}
void SurfaceFlinger::drawWormhole(const Region& region) const
{
glDisable(GL_TEXTURE_EXTERNAL_OES);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glColor4f(0,0,0,0);
GLfloat vertices[4][2];
glVertexPointer(2, GL_FLOAT, 0, vertices);
Region::const_iterator it = region.begin();
Region::const_iterator const end = region.end();
while (it != end) {
const Rect& r = *it++;
vertices[0][0] = r.left;
vertices[0][1] = r.top;
vertices[1][0] = r.right;
vertices[1][1] = r.top;
vertices[2][0] = r.right;
vertices[2][1] = r.bottom;
vertices[3][0] = r.left;
vertices[3][1] = r.bottom;
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
const sp<LayerBaseClient>& lbc)
{
// attach this layer to the client
size_t name = client->attachLayer(lbc);
// add this layer to the current state list
Mutex::Autolock _l(mStateLock);
mCurrentState.layersSortedByZ.add(lbc);
return ssize_t(name);
}
status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
{
Mutex::Autolock _l(mStateLock);
status_t err = purgatorizeLayer_l(layer);
if (err == NO_ERROR)
setTransactionFlags(eTransactionNeeded);
return err;
}
status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
{
ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
if (index >= 0) {
mLayersRemoved = true;
return NO_ERROR;
}
return status_t(index);
}
status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
{
// First add the layer to the purgatory list, which makes sure it won't
// go away, then remove it from the main list (through a transaction).
ssize_t err = removeLayer_l(layerBase);
if (err >= 0) {
mLayerPurgatory.add(layerBase);
}
mLayersPendingRemoval.push(layerBase);
// it's possible that we don't find a layer, because it might
// have been destroyed already -- this is not technically an error
// from the user because there is a race between Client::destroySurface(),
// ~Client() and ~ISurface().
return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
}
uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
{
return android_atomic_release_load(&mTransactionFlags);
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
{
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
{
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
if ((old & flags)==0) { // wake the server up
signalTransaction();
}
return old;
}
void SurfaceFlinger::setTransactionState(
const Vector<ComposerState>& state,
const Vector<DisplayState>& displays,
uint32_t flags)
{
Mutex::Autolock _l(mStateLock);
int orientation = eOrientationUnchanged;
if (displays.size()) {
// TODO: handle all displays
orientation = displays[0].orientation;
}
uint32_t transactionFlags = 0;
// FIXME: don't hardcode display id here
if (mCurrentState.displays.valueFor(0).orientation != orientation) {
if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
mCurrentState.displays.editValueFor(0).orientation = orientation;
transactionFlags |= eTransactionNeeded;
} else if (orientation != eOrientationUnchanged) {
ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
orientation);
}
}
const size_t count = state.size();
for (size_t i=0 ; i<count ; i++) {
const ComposerState& s(state[i]);
sp<Client> client( static_cast<Client *>(s.client.get()) );
transactionFlags |= setClientStateLocked(client, s.state);
}
if (transactionFlags) {
// this triggers the transaction
setTransactionFlags(transactionFlags);
// if this is a synchronous transaction, wait for it to take effect
// before returning.
if (flags & eSynchronous) {
mTransationPending = true;
}
while (mTransationPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// called after a few seconds.
ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
mTransationPending = false;
break;
}
}
}
}
sp<ISurface> SurfaceFlinger::createLayer(
ISurfaceComposerClient::surface_data_t* params,
const String8& name,
const sp<Client>& client,
DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
{
sp<LayerBaseClient> layer;
sp<ISurface> surfaceHandle;
if (int32_t(w|h) < 0) {
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return surfaceHandle;
}
//ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
switch (flags & eFXSurfaceMask) {
case eFXSurfaceNormal:
layer = createNormalLayer(client, d, w, h, flags, format);
break;
case eFXSurfaceBlur:
// for now we treat Blur as Dim, until we can implement it
// efficiently.
case eFXSurfaceDim:
layer = createDimLayer(client, d, w, h, flags);
break;
case eFXSurfaceScreenshot:
layer = createScreenshotLayer(client, d, w, h, flags);
break;
}
if (layer != 0) {
layer->initStates(w, h, flags);
layer->setName(name);
ssize_t token = addClientLayer(client, layer);
surfaceHandle = layer->getSurface();
if (surfaceHandle != 0) {
params->token = token;
params->identity = layer->getIdentity();
}
setTransactionFlags(eTransactionNeeded);
}
return surfaceHandle;
}
sp<Layer> SurfaceFlinger::createNormalLayer(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags,
PixelFormat& format)
{
// initialize the surfaces
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
#ifdef NO_RGBX_8888
format = PIXEL_FORMAT_RGB_565;
#else
format = PIXEL_FORMAT_RGBX_8888;
#endif
break;
}
#ifdef NO_RGBX_8888
if (format == PIXEL_FORMAT_RGBX_8888)
format = PIXEL_FORMAT_RGBA_8888;
#endif
sp<Layer> layer = new Layer(this, display, client);
status_t err = layer->setBuffers(w, h, format, flags);
if (CC_LIKELY(err != NO_ERROR)) {
ALOGE("createNormalLayer() failed (%s)", strerror(-err));
layer.clear();
}
return layer;
}
sp<LayerDim> SurfaceFlinger::createDimLayer(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags)
{
sp<LayerDim> layer = new LayerDim(this, display, client);
return layer;
}
sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags)
{
sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
return layer;
}
status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
{
/*
* called by the window manager, when a surface should be marked for
* destruction.
*
* The surface is removed from the current and drawing lists, but placed
* in the purgatory queue, so it's not destroyed right-away (we need
* to wait for all client's references to go away first).
*/
status_t err = NAME_NOT_FOUND;
Mutex::Autolock _l(mStateLock);
sp<LayerBaseClient> layer = client->getLayerUser(sid);
if (layer != 0) {
err = purgatorizeLayer_l(layer);
if (err == NO_ERROR) {
setTransactionFlags(eTransactionNeeded);
}
}
return err;
}
status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
{
// called by ~ISurface() when all references are gone
status_t err = NO_ERROR;
sp<LayerBaseClient> l(layer.promote());
if (l != NULL) {
Mutex::Autolock _l(mStateLock);
err = removeLayer_l(l);
if (err == NAME_NOT_FOUND) {
// The surface wasn't in the current list, which means it was
// removed already, which means it is in the purgatory,
// and need to be removed from there.
ssize_t idx = mLayerPurgatory.remove(l);
ALOGE_IF(idx < 0,
"layer=%p is not in the purgatory list", l.get());
}
ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
"error removing layer=%p (%s)", l.get(), strerror(-err));
}
return err;
}
uint32_t SurfaceFlinger::setClientStateLocked(
const sp<Client>& client,
const layer_state_t& s)
{
uint32_t flags = 0;
sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
if (layer != 0) {
const uint32_t what = s.what;
if (what & ePositionChanged) {
if (layer->setPosition(s.x, s.y))
flags |= eTraversalNeeded;
}
if (what & eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & eAlphaChanged) {
if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
flags |= eTraversalNeeded;
}
if (what & eMatrixChanged) {
if (layer->setMatrix(s.matrix))
flags |= eTraversalNeeded;
}
if (what & eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & eVisibilityChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
if (what & eCropChanged) {
if (layer->setCrop(s.crop))
flags |= eTraversalNeeded;
}
if (what & eLayerStackChanged) {
// NOTE: index needs to be calculated before we update the state
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
return flags;
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::onScreenAcquired() {
ALOGD("Screen about to return, flinger = %p", this);
sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
getHwComposer().acquire();
hw->acquireScreen();
mEventThread->onScreenAcquired();
}
void SurfaceFlinger::onScreenReleased() {
ALOGD("About to give-up screen, flinger = %p", this);
sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
if (hw->isScreenAcquired()) {
mEventThread->onScreenReleased();
hw->releaseScreen();
getHwComposer().release();
// from this point on, SF will stop drawing
}
}
void SurfaceFlinger::unblank() {
class MessageScreenAcquired : public MessageBase {
SurfaceFlinger* flinger;
public:
MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
virtual bool handler() {
flinger->onScreenAcquired();
return true;
}
};
sp<MessageBase> msg = new MessageScreenAcquired(this);
postMessageSync(msg);
}
void SurfaceFlinger::blank() {
class MessageScreenReleased : public MessageBase {
SurfaceFlinger* flinger;
public:
MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
virtual bool handler() {
flinger->onScreenReleased();
return true;
}
};
sp<MessageBase> msg = new MessageScreenReleased(this);
postMessageSync(msg);
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
{
const size_t SIZE = 4096;
char buffer[SIZE];
String8 result;
if (!PermissionCache::checkCallingPermission(sDump)) {
snprintf(buffer, SIZE, "Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
result.append(buffer);
} else {
// Try to get the main lock, but don't insist if we can't
// (this would indicate SF is stuck, but we want to be able to
// print something in dumpsys).
int retry = 3;
while (mStateLock.tryLock()<0 && --retry>=0) {
usleep(1000000);
}
const bool locked(retry >= 0);
if (!locked) {
snprintf(buffer, SIZE,
"SurfaceFlinger appears to be unresponsive, "
"dumping anyways (no locks held)\n");
result.append(buffer);
}
bool dumpAll = true;
size_t index = 0;
size_t numArgs = args.size();
if (numArgs) {
if ((index < numArgs) &&
(args[index] == String16("--list"))) {
index++;
listLayersLocked(args, index, result, buffer, SIZE);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--latency"))) {
index++;
dumpStatsLocked(args, index, result, buffer, SIZE);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--latency-clear"))) {
index++;
clearStatsLocked(args, index, result, buffer, SIZE);
dumpAll = false;
}
}
if (dumpAll) {
dumpAllLocked(result, buffer, SIZE);
}
if (locked) {
mStateLock.unlock();
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
String8& result, char* buffer, size_t SIZE) const
{
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
snprintf(buffer, SIZE, "%s\n", layer->getName().string());
result.append(buffer);
}
}
void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
String8& result, char* buffer, size_t SIZE) const
{
String8 name;
if (index < args.size()) {
name = String8(args[index]);
index++;
}
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
if (name.isEmpty()) {
snprintf(buffer, SIZE, "%s\n", layer->getName().string());
result.append(buffer);
}
if (name.isEmpty() || (name == layer->getName())) {
layer->dumpStats(result, buffer, SIZE);
}
}
}
void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
String8& result, char* buffer, size_t SIZE) const
{
String8 name;
if (index < args.size()) {
name = String8(args[index]);
index++;
}
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
if (name.isEmpty() || (name == layer->getName())) {
layer->clearStats();
}
}
}
void SurfaceFlinger::dumpAllLocked(
String8& result, char* buffer, size_t SIZE) const
{
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
/*
* Dump the visible layer list
*/
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
result.append(buffer);
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
layer->dump(result, buffer, SIZE);
}
/*
* Dump the layers in the purgatory
*/
const size_t purgatorySize = mLayerPurgatory.size();
snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
result.append(buffer);
for (size_t i=0 ; i<purgatorySize ; i++) {
const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
layer->shortDump(result, buffer, SIZE);
}
/*
* Dump SurfaceFlinger global state
*/
snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
result.append(buffer);
HWComposer& hwc(getHwComposer());
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
const GLExtensions& extensions(GLExtensions::getInstance());
snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
extensions.getVendor(),
extensions.getRenderer(),
extensions.getVersion());
result.append(buffer);
snprintf(buffer, SIZE, "EGL : %s\n",
eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
result.append(buffer);
snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
result.append(buffer);
hw->undefinedRegion.dump(result, "undefinedRegion");
snprintf(buffer, SIZE,
" orientation=%d, canDraw=%d\n",
hw->getOrientation(), hw->canDraw());
result.append(buffer);
snprintf(buffer, SIZE,
" last eglSwapBuffers() time: %f us\n"
" last transaction time : %f us\n"
" transaction-flags : %08x\n"
" refresh-rate : %f fps\n"
" x-dpi : %f\n"
" y-dpi : %f\n"
" density : %f\n",
mLastSwapBufferTime/1000.0,
mLastTransactionTime/1000.0,
mTransactionFlags,
1e9 / hwc.getRefreshPeriod(),
hw->getDpiX(),
hw->getDpiY(),
hw->getDensity());
result.append(buffer);
snprintf(buffer, SIZE, " eglSwapBuffers time: %f us\n",
inSwapBuffersDuration/1000.0);
result.append(buffer);
snprintf(buffer, SIZE, " transaction time: %f us\n",
inTransactionDuration/1000.0);
result.append(buffer);
/*
* VSYNC state
*/
mEventThread->dump(result, buffer, SIZE);
/*
* Dump HWComposer state
*/
snprintf(buffer, SIZE, "h/w composer state:\n");
result.append(buffer);
snprintf(buffer, SIZE, " h/w composer %s and %s\n",
hwc.initCheck()==NO_ERROR ? "present" : "not present",
(mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
result.append(buffer);
hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
hw->dump(result);
}
status_t SurfaceFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case CREATE_CONNECTION:
case SET_TRANSACTION_STATE:
case SET_ORIENTATION:
case BOOT_FINISHED:
case BLANK:
case UNBLANK:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
case CAPTURE_SCREEN:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: "
"can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1004:{ // repaint everything
repaintEverything();
return NO_ERROR;
}
case 1005:{ // force transaction
setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
return NO_ERROR;
}
case 1006:{ // send empty update
signalRefresh();
return NO_ERROR;
}
case 1008: // toggle use of hw composer
n = data.readInt32();
mDebugDisableHWC = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1009: // toggle use of transform hint
n = data.readInt32();
mDebugDisableTransformHint = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(0);
reply->writeInt32(mDebugDisableHWC);
return NO_ERROR;
case 1013: {
Mutex::Autolock _l(mStateLock);
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
reply->writeInt32(hw->getPageFlipCount());
}
return NO_ERROR;
}
}
return err;
}
void SurfaceFlinger::repaintEverything() {
android_atomic_or(1, &mRepaintEverything);
signalTransaction();
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
{
Mutex::Autolock _l(mStateLock);
return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
}
status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
{
ATRACE_CALL();
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
// get screen geometry
sp<const DisplayDevice> hw(getDisplayDevice(dpy));
const uint32_t hw_w = hw->getWidth();
const uint32_t hw_h = hw->getHeight();
GLfloat u = 1;
GLfloat v = 1;
// make sure to clear all GL error flags
while ( glGetError() != GL_NO_ERROR ) ;
// create a FBO
GLuint name, tname;
glGenTextures(1, &tname);
glBindTexture(GL_TEXTURE_2D, tname);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
if (glGetError() != GL_NO_ERROR) {
while ( glGetError() != GL_NO_ERROR ) ;
GLint tw = (2 << (31 - clz(hw_w)));
GLint th = (2 << (31 - clz(hw_h)));
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
u = GLfloat(hw_w) / tw;
v = GLfloat(hw_h) / th;
}
glGenFramebuffersOES(1, &name);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
// redraw the screen entirely...
glDisable(GL_TEXTURE_EXTERNAL_OES);
glDisable(GL_TEXTURE_2D);
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
layer->draw(hw);
}
hw->compositionComplete();
// back to main framebuffer
glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
glDeleteFramebuffersOES(1, &name);
*textureName = tname;
*uOut = u;
*vOut = v;
return NO_ERROR;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
sp<IMemoryHeap>* heap,
uint32_t* w, uint32_t* h, PixelFormat* f,
uint32_t sw, uint32_t sh,
uint32_t minLayerZ, uint32_t maxLayerZ)
{
ATRACE_CALL();
status_t result = PERMISSION_DENIED;
// only one display supported for now
if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) {
return BAD_VALUE;
}
if (!GLExtensions::getInstance().haveFramebufferObject()) {
return INVALID_OPERATION;
}
// get screen geometry
sp<const DisplayDevice> hw(getDisplayDevice(dpy));
const uint32_t hw_w = hw->getWidth();
const uint32_t hw_h = hw->getHeight();
// if we have secure windows on this display, never allow the screen capture
if (hw->getSecureLayerVisible()) {
return PERMISSION_DENIED;
}
if ((sw > hw_w) || (sh > hw_h)) {
return BAD_VALUE;
}
sw = (!sw) ? hw_w : sw;
sh = (!sh) ? hw_h : sh;
const size_t size = sw * sh * 4;
const bool filtering = sw != hw_w || sh != hw_h;
//ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
// sw, sh, minLayerZ, maxLayerZ);
// make sure to clear all GL error flags
while ( glGetError() != GL_NO_ERROR ) ;
// create a FBO
GLuint name, tname;
glGenRenderbuffersOES(1, &tname);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
glGenFramebuffersOES(1, &name);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
// invert everything, b/c glReadPixel() below will invert the FB
glViewport(0, 0, sw, sh);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrthof(0, hw_w, hw_h, 0, 0, 1);
glMatrixMode(GL_MODELVIEW);
// redraw the screen entirely...
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
const LayerVector& layers(mDrawingState.layersSortedByZ);
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
const uint32_t flags = layer->drawingState().flags;
if (!(flags & ISurfaceComposer::eLayerHidden)) {
const uint32_t z = layer->drawingState().z;
if (z >= minLayerZ && z <= maxLayerZ) {
if (filtering) layer->setFiltering(true);
layer->draw(hw);
if (filtering) layer->setFiltering(false);
}
}
}
// check for errors and return screen capture
if (glGetError() != GL_NO_ERROR) {
// error while rendering
result = INVALID_OPERATION;
} else {
// allocate shared memory large enough to hold the
// screen capture
sp<MemoryHeapBase> base(
new MemoryHeapBase(size, 0, "screen-capture") );
void* const ptr = base->getBase();
if (ptr) {
// capture the screen with glReadPixels()
ScopedTrace _t(ATRACE_TAG, "glReadPixels");
glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
if (glGetError() == GL_NO_ERROR) {
*heap = base;
*w = sw;
*h = sh;
*f = PIXEL_FORMAT_RGBA_8888;
result = NO_ERROR;
}
} else {
result = NO_MEMORY;
}
}
glViewport(0, 0, hw_w, hw_h);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
} else {
result = BAD_VALUE;
}
// release FBO resources
glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
glDeleteRenderbuffersOES(1, &tname);
glDeleteFramebuffersOES(1, &name);
hw->compositionComplete();
// ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
return result;
}
status_t SurfaceFlinger::captureScreen(DisplayID dpy,
sp<IMemoryHeap>* heap,
uint32_t* width, uint32_t* height, PixelFormat* format,
uint32_t sw, uint32_t sh,
uint32_t minLayerZ, uint32_t maxLayerZ)
{
// only one display supported for now
if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
class MessageCaptureScreen : public MessageBase {
SurfaceFlinger* flinger;
DisplayID dpy;
sp<IMemoryHeap>* heap;
uint32_t* w;
uint32_t* h;
PixelFormat* f;
uint32_t sw;
uint32_t sh;
uint32_t minLayerZ;
uint32_t maxLayerZ;
status_t result;
public:
MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
uint32_t sw, uint32_t sh,
uint32_t minLayerZ, uint32_t maxLayerZ)
: flinger(flinger), dpy(dpy),
heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
result(PERMISSION_DENIED)
{
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
result = flinger->captureScreenImplLocked(dpy,
heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
return true;
}
};
sp<MessageBase> msg = new MessageCaptureScreen(this,
dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
status_t res = postMessageSync(msg);
if (res == NO_ERROR) {
res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
}
return res;
}
// ---------------------------------------------------------------------------
SurfaceFlinger::LayerVector::LayerVector() {
}
SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
: SortedVector<sp<LayerBase> >(rhs) {
}
int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
const void* rhs) const
{
// sort layers per layer-stack, then by z-order and finally by sequence
const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
uint32_t ls = l->currentState().layerStack;
uint32_t rs = r->currentState().layerStack;
if (ls != rs)
return ls - rs;
uint32_t lz = l->currentState().z;
uint32_t rz = r->currentState().z;
if (lz != rz)
return lz - rz;
return l->sequence - r->sequence;
}
// ---------------------------------------------------------------------------
SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
: id(DisplayDevice::DISPLAY_ID_MAIN), layerStack(0), orientation(0) {
}
// ---------------------------------------------------------------------------
GraphicBufferAlloc::GraphicBufferAlloc() {}
GraphicBufferAlloc::~GraphicBufferAlloc() {}
sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
PixelFormat format, uint32_t usage, status_t* error) {
sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
status_t err = graphicBuffer->initCheck();
*error = err;
if (err != 0 || graphicBuffer->handle == 0) {
if (err == NO_MEMORY) {
GraphicBuffer::dumpAllocationsToSystemLog();
}
ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
"failed (%s), handle=%p",
w, h, strerror(-err), graphicBuffer->handle);
return 0;
}
return graphicBuffer;
}
// ---------------------------------------------------------------------------
}; // namespace android