blob: d6f9e635f3aae315c22cff15dec9453c281ac0d9 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Surface"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#include <gui/Surface.h>
#include <condition_variable>
#include <deque>
#include <mutex>
#include <thread>
#include <inttypes.h>
#include <android/native_window.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <utils/NativeHandle.h>
#include <ui/DisplayStatInfo.h>
#include <ui/Fence.h>
#include <ui/GraphicBuffer.h>
#include <ui/HdrCapabilities.h>
#include <ui/Region.h>
#include <gui/BufferItem.h>
#include <gui/IProducerListener.h>
#include <gui/ISurfaceComposer.h>
#include <gui/LayerState.h>
#include <private/gui/ComposerService.h>
namespace android {
using ui::ColorMode;
using ui::Dataspace;
namespace {
bool isInterceptorRegistrationOp(int op) {
return op == NATIVE_WINDOW_SET_CANCEL_INTERCEPTOR ||
op == NATIVE_WINDOW_SET_DEQUEUE_INTERCEPTOR ||
op == NATIVE_WINDOW_SET_PERFORM_INTERCEPTOR ||
op == NATIVE_WINDOW_SET_QUEUE_INTERCEPTOR ||
op == NATIVE_WINDOW_SET_QUERY_INTERCEPTOR;
}
} // namespace
Surface::Surface(const sp<IGraphicBufferProducer>& bufferProducer, bool controlledByApp)
: mGraphicBufferProducer(bufferProducer),
mCrop(Rect::EMPTY_RECT),
mBufferAge(0),
mGenerationNumber(0),
mSharedBufferMode(false),
mAutoRefresh(false),
mSharedBufferSlot(BufferItem::INVALID_BUFFER_SLOT),
mSharedBufferHasBeenQueued(false),
mQueriedSupportedTimestamps(false),
mFrameTimestampsSupportsPresent(false),
mEnableFrameTimestamps(false),
mFrameEventHistory(std::make_unique<ProducerFrameEventHistory>()) {
// Initialize the ANativeWindow function pointers.
ANativeWindow::setSwapInterval = hook_setSwapInterval;
ANativeWindow::dequeueBuffer = hook_dequeueBuffer;
ANativeWindow::cancelBuffer = hook_cancelBuffer;
ANativeWindow::queueBuffer = hook_queueBuffer;
ANativeWindow::query = hook_query;
ANativeWindow::perform = hook_perform;
ANativeWindow::dequeueBuffer_DEPRECATED = hook_dequeueBuffer_DEPRECATED;
ANativeWindow::cancelBuffer_DEPRECATED = hook_cancelBuffer_DEPRECATED;
ANativeWindow::lockBuffer_DEPRECATED = hook_lockBuffer_DEPRECATED;
ANativeWindow::queueBuffer_DEPRECATED = hook_queueBuffer_DEPRECATED;
const_cast<int&>(ANativeWindow::minSwapInterval) = 0;
const_cast<int&>(ANativeWindow::maxSwapInterval) = 1;
mReqWidth = 0;
mReqHeight = 0;
mReqFormat = 0;
mReqUsage = 0;
mTimestamp = NATIVE_WINDOW_TIMESTAMP_AUTO;
mDataSpace = Dataspace::UNKNOWN;
mScalingMode = NATIVE_WINDOW_SCALING_MODE_FREEZE;
mTransform = 0;
mStickyTransform = 0;
mDefaultWidth = 0;
mDefaultHeight = 0;
mUserWidth = 0;
mUserHeight = 0;
mTransformHint = 0;
mConsumerRunningBehind = false;
mConnectedToCpu = false;
mProducerControlledByApp = controlledByApp;
mSwapIntervalZero = false;
mMaxBufferCount = NUM_BUFFER_SLOTS;
}
Surface::~Surface() {
if (mConnectedToCpu) {
Surface::disconnect(NATIVE_WINDOW_API_CPU);
}
}
sp<ISurfaceComposer> Surface::composerService() const {
return ComposerService::getComposerService();
}
nsecs_t Surface::now() const {
return systemTime();
}
sp<IGraphicBufferProducer> Surface::getIGraphicBufferProducer() const {
return mGraphicBufferProducer;
}
void Surface::setSidebandStream(const sp<NativeHandle>& stream) {
mGraphicBufferProducer->setSidebandStream(stream);
}
void Surface::allocateBuffers() {
uint32_t reqWidth = mReqWidth ? mReqWidth : mUserWidth;
uint32_t reqHeight = mReqHeight ? mReqHeight : mUserHeight;
mGraphicBufferProducer->allocateBuffers(reqWidth, reqHeight,
mReqFormat, mReqUsage);
}
status_t Surface::setGenerationNumber(uint32_t generation) {
status_t result = mGraphicBufferProducer->setGenerationNumber(generation);
if (result == NO_ERROR) {
mGenerationNumber = generation;
}
return result;
}
uint64_t Surface::getNextFrameNumber() const {
Mutex::Autolock lock(mMutex);
return mNextFrameNumber;
}
String8 Surface::getConsumerName() const {
return mGraphicBufferProducer->getConsumerName();
}
status_t Surface::setDequeueTimeout(nsecs_t timeout) {
return mGraphicBufferProducer->setDequeueTimeout(timeout);
}
status_t Surface::getLastQueuedBuffer(sp<GraphicBuffer>* outBuffer,
sp<Fence>* outFence, float outTransformMatrix[16]) {
return mGraphicBufferProducer->getLastQueuedBuffer(outBuffer, outFence,
outTransformMatrix);
}
status_t Surface::getDisplayRefreshCycleDuration(nsecs_t* outRefreshDuration) {
ATRACE_CALL();
DisplayStatInfo stats;
status_t result = composerService()->getDisplayStats(nullptr, &stats);
if (result != NO_ERROR) {
return result;
}
*outRefreshDuration = stats.vsyncPeriod;
return NO_ERROR;
}
void Surface::enableFrameTimestamps(bool enable) {
Mutex::Autolock lock(mMutex);
// If going from disabled to enabled, get the initial values for
// compositor and display timing.
if (!mEnableFrameTimestamps && enable) {
FrameEventHistoryDelta delta;
mGraphicBufferProducer->getFrameTimestamps(&delta);
mFrameEventHistory->applyDelta(delta);
}
mEnableFrameTimestamps = enable;
}
status_t Surface::getCompositorTiming(
nsecs_t* compositeDeadline, nsecs_t* compositeInterval,
nsecs_t* compositeToPresentLatency) {
Mutex::Autolock lock(mMutex);
if (!mEnableFrameTimestamps) {
return INVALID_OPERATION;
}
if (compositeDeadline != nullptr) {
*compositeDeadline =
mFrameEventHistory->getNextCompositeDeadline(now());
}
if (compositeInterval != nullptr) {
*compositeInterval = mFrameEventHistory->getCompositeInterval();
}
if (compositeToPresentLatency != nullptr) {
*compositeToPresentLatency =
mFrameEventHistory->getCompositeToPresentLatency();
}
return NO_ERROR;
}
static bool checkConsumerForUpdates(
const FrameEvents* e, const uint64_t lastFrameNumber,
const nsecs_t* outLatchTime,
const nsecs_t* outFirstRefreshStartTime,
const nsecs_t* outLastRefreshStartTime,
const nsecs_t* outGpuCompositionDoneTime,
const nsecs_t* outDisplayPresentTime,
const nsecs_t* outDequeueReadyTime,
const nsecs_t* outReleaseTime) {
bool checkForLatch = (outLatchTime != nullptr) && !e->hasLatchInfo();
bool checkForFirstRefreshStart = (outFirstRefreshStartTime != nullptr) &&
!e->hasFirstRefreshStartInfo();
bool checkForGpuCompositionDone = (outGpuCompositionDoneTime != nullptr) &&
!e->hasGpuCompositionDoneInfo();
bool checkForDisplayPresent = (outDisplayPresentTime != nullptr) &&
!e->hasDisplayPresentInfo();
// LastRefreshStart, DequeueReady, and Release are never available for the
// last frame.
bool checkForLastRefreshStart = (outLastRefreshStartTime != nullptr) &&
!e->hasLastRefreshStartInfo() &&
(e->frameNumber != lastFrameNumber);
bool checkForDequeueReady = (outDequeueReadyTime != nullptr) &&
!e->hasDequeueReadyInfo() && (e->frameNumber != lastFrameNumber);
bool checkForRelease = (outReleaseTime != nullptr) &&
!e->hasReleaseInfo() && (e->frameNumber != lastFrameNumber);
// RequestedPresent and Acquire info are always available producer-side.
return checkForLatch || checkForFirstRefreshStart ||
checkForLastRefreshStart || checkForGpuCompositionDone ||
checkForDisplayPresent || checkForDequeueReady || checkForRelease;
}
static void getFrameTimestamp(nsecs_t *dst, const nsecs_t& src) {
if (dst != nullptr) {
// We always get valid timestamps for these eventually.
*dst = (src == FrameEvents::TIMESTAMP_PENDING) ?
NATIVE_WINDOW_TIMESTAMP_PENDING : src;
}
}
static void getFrameTimestampFence(nsecs_t *dst,
const std::shared_ptr<FenceTime>& src, bool fenceShouldBeKnown) {
if (dst != nullptr) {
if (!fenceShouldBeKnown) {
*dst = NATIVE_WINDOW_TIMESTAMP_PENDING;
return;
}
nsecs_t signalTime = src->getSignalTime();
*dst = (signalTime == Fence::SIGNAL_TIME_PENDING) ?
NATIVE_WINDOW_TIMESTAMP_PENDING :
(signalTime == Fence::SIGNAL_TIME_INVALID) ?
NATIVE_WINDOW_TIMESTAMP_INVALID :
signalTime;
}
}
status_t Surface::getFrameTimestamps(uint64_t frameNumber,
nsecs_t* outRequestedPresentTime, nsecs_t* outAcquireTime,
nsecs_t* outLatchTime, nsecs_t* outFirstRefreshStartTime,
nsecs_t* outLastRefreshStartTime, nsecs_t* outGpuCompositionDoneTime,
nsecs_t* outDisplayPresentTime, nsecs_t* outDequeueReadyTime,
nsecs_t* outReleaseTime) {
ATRACE_CALL();
Mutex::Autolock lock(mMutex);
if (!mEnableFrameTimestamps) {
return INVALID_OPERATION;
}
// Verify the requested timestamps are supported.
querySupportedTimestampsLocked();
if (outDisplayPresentTime != nullptr && !mFrameTimestampsSupportsPresent) {
return BAD_VALUE;
}
FrameEvents* events = mFrameEventHistory->getFrame(frameNumber);
if (events == nullptr) {
// If the entry isn't available in the producer, it's definitely not
// available in the consumer.
return NAME_NOT_FOUND;
}
// Update our cache of events if the requested events are not available.
if (checkConsumerForUpdates(events, mLastFrameNumber,
outLatchTime, outFirstRefreshStartTime, outLastRefreshStartTime,
outGpuCompositionDoneTime, outDisplayPresentTime,
outDequeueReadyTime, outReleaseTime)) {
FrameEventHistoryDelta delta;
mGraphicBufferProducer->getFrameTimestamps(&delta);
mFrameEventHistory->applyDelta(delta);
events = mFrameEventHistory->getFrame(frameNumber);
}
if (events == nullptr) {
// The entry was available before the update, but was overwritten
// after the update. Make sure not to send the wrong frame's data.
return NAME_NOT_FOUND;
}
getFrameTimestamp(outRequestedPresentTime, events->requestedPresentTime);
getFrameTimestamp(outLatchTime, events->latchTime);
getFrameTimestamp(outFirstRefreshStartTime, events->firstRefreshStartTime);
getFrameTimestamp(outLastRefreshStartTime, events->lastRefreshStartTime);
getFrameTimestamp(outDequeueReadyTime, events->dequeueReadyTime);
getFrameTimestampFence(outAcquireTime, events->acquireFence,
events->hasAcquireInfo());
getFrameTimestampFence(outGpuCompositionDoneTime,
events->gpuCompositionDoneFence,
events->hasGpuCompositionDoneInfo());
getFrameTimestampFence(outDisplayPresentTime, events->displayPresentFence,
events->hasDisplayPresentInfo());
getFrameTimestampFence(outReleaseTime, events->releaseFence,
events->hasReleaseInfo());
return NO_ERROR;
}
status_t Surface::getWideColorSupport(bool* supported) {
ATRACE_CALL();
const sp<IBinder> display = composerService()->getInternalDisplayToken();
if (display == nullptr) {
return NAME_NOT_FOUND;
}
*supported = false;
status_t error = composerService()->isWideColorDisplay(display, supported);
return error;
}
status_t Surface::getHdrSupport(bool* supported) {
ATRACE_CALL();
const sp<IBinder> display = composerService()->getInternalDisplayToken();
if (display == nullptr) {
return NAME_NOT_FOUND;
}
HdrCapabilities hdrCapabilities;
status_t err =
composerService()->getHdrCapabilities(display, &hdrCapabilities);
if (err)
return err;
*supported = !hdrCapabilities.getSupportedHdrTypes().empty();
return NO_ERROR;
}
int Surface::hook_setSwapInterval(ANativeWindow* window, int interval) {
Surface* c = getSelf(window);
return c->setSwapInterval(interval);
}
int Surface::hook_dequeueBuffer(ANativeWindow* window,
ANativeWindowBuffer** buffer, int* fenceFd) {
Surface* c = getSelf(window);
{
std::shared_lock<std::shared_mutex> lock(c->mInterceptorMutex);
if (c->mDequeueInterceptor != nullptr) {
auto interceptor = c->mDequeueInterceptor;
auto data = c->mDequeueInterceptorData;
return interceptor(window, Surface::dequeueBufferInternal, data, buffer, fenceFd);
}
}
return c->dequeueBuffer(buffer, fenceFd);
}
int Surface::dequeueBufferInternal(ANativeWindow* window, ANativeWindowBuffer** buffer,
int* fenceFd) {
Surface* c = getSelf(window);
return c->dequeueBuffer(buffer, fenceFd);
}
int Surface::hook_cancelBuffer(ANativeWindow* window,
ANativeWindowBuffer* buffer, int fenceFd) {
Surface* c = getSelf(window);
{
std::shared_lock<std::shared_mutex> lock(c->mInterceptorMutex);
if (c->mCancelInterceptor != nullptr) {
auto interceptor = c->mCancelInterceptor;
auto data = c->mCancelInterceptorData;
return interceptor(window, Surface::cancelBufferInternal, data, buffer, fenceFd);
}
}
return c->cancelBuffer(buffer, fenceFd);
}
int Surface::cancelBufferInternal(ANativeWindow* window, ANativeWindowBuffer* buffer, int fenceFd) {
Surface* c = getSelf(window);
return c->cancelBuffer(buffer, fenceFd);
}
int Surface::hook_queueBuffer(ANativeWindow* window,
ANativeWindowBuffer* buffer, int fenceFd) {
Surface* c = getSelf(window);
{
std::shared_lock<std::shared_mutex> lock(c->mInterceptorMutex);
if (c->mQueueInterceptor != nullptr) {
auto interceptor = c->mQueueInterceptor;
auto data = c->mQueueInterceptorData;
return interceptor(window, Surface::queueBufferInternal, data, buffer, fenceFd);
}
}
return c->queueBuffer(buffer, fenceFd);
}
int Surface::queueBufferInternal(ANativeWindow* window, ANativeWindowBuffer* buffer, int fenceFd) {
Surface* c = getSelf(window);
return c->queueBuffer(buffer, fenceFd);
}
int Surface::hook_dequeueBuffer_DEPRECATED(ANativeWindow* window,
ANativeWindowBuffer** buffer) {
Surface* c = getSelf(window);
ANativeWindowBuffer* buf;
int fenceFd = -1;
int result = c->dequeueBuffer(&buf, &fenceFd);
if (result != OK) {
return result;
}
sp<Fence> fence(new Fence(fenceFd));
int waitResult = fence->waitForever("dequeueBuffer_DEPRECATED");
if (waitResult != OK) {
ALOGE("dequeueBuffer_DEPRECATED: Fence::wait returned an error: %d",
waitResult);
c->cancelBuffer(buf, -1);
return waitResult;
}
*buffer = buf;
return result;
}
int Surface::hook_cancelBuffer_DEPRECATED(ANativeWindow* window,
ANativeWindowBuffer* buffer) {
Surface* c = getSelf(window);
return c->cancelBuffer(buffer, -1);
}
int Surface::hook_lockBuffer_DEPRECATED(ANativeWindow* window,
ANativeWindowBuffer* buffer) {
Surface* c = getSelf(window);
return c->lockBuffer_DEPRECATED(buffer);
}
int Surface::hook_queueBuffer_DEPRECATED(ANativeWindow* window,
ANativeWindowBuffer* buffer) {
Surface* c = getSelf(window);
return c->queueBuffer(buffer, -1);
}
int Surface::hook_perform(ANativeWindow* window, int operation, ...) {
va_list args;
va_start(args, operation);
Surface* c = getSelf(window);
int result;
// Don't acquire shared ownership of the interceptor mutex if we're going to
// do interceptor registration, as otherwise we'll deadlock on acquiring
// exclusive ownership.
if (!isInterceptorRegistrationOp(operation)) {
std::shared_lock<std::shared_mutex> lock(c->mInterceptorMutex);
if (c->mPerformInterceptor != nullptr) {
result = c->mPerformInterceptor(window, Surface::performInternal,
c->mPerformInterceptorData, operation, args);
va_end(args);
return result;
}
}
result = c->perform(operation, args);
va_end(args);
return result;
}
int Surface::performInternal(ANativeWindow* window, int operation, va_list args) {
Surface* c = getSelf(window);
return c->perform(operation, args);
}
int Surface::hook_query(const ANativeWindow* window, int what, int* value) {
const Surface* c = getSelf(window);
{
std::shared_lock<std::shared_mutex> lock(c->mInterceptorMutex);
if (c->mQueryInterceptor != nullptr) {
auto interceptor = c->mQueryInterceptor;
auto data = c->mQueryInterceptorData;
return interceptor(window, Surface::queryInternal, data, what, value);
}
}
return c->query(what, value);
}
int Surface::queryInternal(const ANativeWindow* window, int what, int* value) {
const Surface* c = getSelf(window);
return c->query(what, value);
}
int Surface::setSwapInterval(int interval) {
ATRACE_CALL();
// EGL specification states:
// interval is silently clamped to minimum and maximum implementation
// dependent values before being stored.
if (interval < minSwapInterval)
interval = minSwapInterval;
if (interval > maxSwapInterval)
interval = maxSwapInterval;
const bool wasSwapIntervalZero = mSwapIntervalZero;
mSwapIntervalZero = (interval == 0);
if (mSwapIntervalZero != wasSwapIntervalZero) {
mGraphicBufferProducer->setAsyncMode(mSwapIntervalZero);
}
return NO_ERROR;
}
class FenceMonitor {
public:
explicit FenceMonitor(const char* name) : mName(name), mFencesQueued(0), mFencesSignaled(0) {
std::thread thread(&FenceMonitor::loop, this);
pthread_setname_np(thread.native_handle(), mName);
thread.detach();
}
void queueFence(const sp<Fence>& fence) {
char message[64];
std::lock_guard<std::mutex> lock(mMutex);
if (fence->getSignalTime() != Fence::SIGNAL_TIME_PENDING) {
snprintf(message, sizeof(message), "%s fence %u has signaled", mName, mFencesQueued);
ATRACE_NAME(message);
// Need an increment on both to make the trace number correct.
mFencesQueued++;
mFencesSignaled++;
return;
}
snprintf(message, sizeof(message), "Trace %s fence %u", mName, mFencesQueued);
ATRACE_NAME(message);
mQueue.push_back(fence);
mCondition.notify_one();
mFencesQueued++;
ATRACE_INT(mName, int32_t(mQueue.size()));
}
private:
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmissing-noreturn"
void loop() {
while (true) {
threadLoop();
}
}
#pragma clang diagnostic pop
void threadLoop() {
sp<Fence> fence;
uint32_t fenceNum;
{
std::unique_lock<std::mutex> lock(mMutex);
while (mQueue.empty()) {
mCondition.wait(lock);
}
fence = mQueue[0];
fenceNum = mFencesSignaled;
}
{
char message[64];
snprintf(message, sizeof(message), "waiting for %s %u", mName, fenceNum);
ATRACE_NAME(message);
status_t result = fence->waitForever(message);
if (result != OK) {
ALOGE("Error waiting for fence: %d", result);
}
}
{
std::lock_guard<std::mutex> lock(mMutex);
mQueue.pop_front();
mFencesSignaled++;
ATRACE_INT(mName, int32_t(mQueue.size()));
}
}
const char* mName;
uint32_t mFencesQueued;
uint32_t mFencesSignaled;
std::deque<sp<Fence>> mQueue;
std::condition_variable mCondition;
std::mutex mMutex;
};
int Surface::dequeueBuffer(android_native_buffer_t** buffer, int* fenceFd) {
ATRACE_CALL();
ALOGV("Surface::dequeueBuffer");
uint32_t reqWidth;
uint32_t reqHeight;
PixelFormat reqFormat;
uint64_t reqUsage;
bool enableFrameTimestamps;
{
Mutex::Autolock lock(mMutex);
if (mReportRemovedBuffers) {
mRemovedBuffers.clear();
}
reqWidth = mReqWidth ? mReqWidth : mUserWidth;
reqHeight = mReqHeight ? mReqHeight : mUserHeight;
reqFormat = mReqFormat;
reqUsage = mReqUsage;
enableFrameTimestamps = mEnableFrameTimestamps;
if (mSharedBufferMode && mAutoRefresh && mSharedBufferSlot !=
BufferItem::INVALID_BUFFER_SLOT) {
sp<GraphicBuffer>& gbuf(mSlots[mSharedBufferSlot].buffer);
if (gbuf != nullptr) {
*buffer = gbuf.get();
*fenceFd = -1;
return OK;
}
}
} // Drop the lock so that we can still touch the Surface while blocking in IGBP::dequeueBuffer
int buf = -1;
sp<Fence> fence;
nsecs_t startTime = systemTime();
FrameEventHistoryDelta frameTimestamps;
status_t result = mGraphicBufferProducer->dequeueBuffer(&buf, &fence, reqWidth, reqHeight,
reqFormat, reqUsage, &mBufferAge,
enableFrameTimestamps ? &frameTimestamps
: nullptr);
mLastDequeueDuration = systemTime() - startTime;
if (result < 0) {
ALOGV("dequeueBuffer: IGraphicBufferProducer::dequeueBuffer"
"(%d, %d, %d, %#" PRIx64 ") failed: %d",
reqWidth, reqHeight, reqFormat, reqUsage, result);
return result;
}
if (buf < 0 || buf >= NUM_BUFFER_SLOTS) {
ALOGE("dequeueBuffer: IGraphicBufferProducer returned invalid slot number %d", buf);
android_errorWriteLog(0x534e4554, "36991414"); // SafetyNet logging
return FAILED_TRANSACTION;
}
Mutex::Autolock lock(mMutex);
// Write this while holding the mutex
mLastDequeueStartTime = startTime;
sp<GraphicBuffer>& gbuf(mSlots[buf].buffer);
// this should never happen
ALOGE_IF(fence == nullptr, "Surface::dequeueBuffer: received null Fence! buf=%d", buf);
if (CC_UNLIKELY(atrace_is_tag_enabled(ATRACE_TAG_GRAPHICS))) {
static FenceMonitor hwcReleaseThread("HWC release");
hwcReleaseThread.queueFence(fence);
}
if (result & IGraphicBufferProducer::RELEASE_ALL_BUFFERS) {
freeAllBuffers();
}
if (enableFrameTimestamps) {
mFrameEventHistory->applyDelta(frameTimestamps);
}
if ((result & IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION) || gbuf == nullptr) {
if (mReportRemovedBuffers && (gbuf != nullptr)) {
mRemovedBuffers.push_back(gbuf);
}
result = mGraphicBufferProducer->requestBuffer(buf, &gbuf);
if (result != NO_ERROR) {
ALOGE("dequeueBuffer: IGraphicBufferProducer::requestBuffer failed: %d", result);
mGraphicBufferProducer->cancelBuffer(buf, fence);
return result;
}
}
if (fence->isValid()) {
*fenceFd = fence->dup();
if (*fenceFd == -1) {
ALOGE("dequeueBuffer: error duping fence: %d", errno);
// dup() should never fail; something is badly wrong. Soldier on
// and hope for the best; the worst that should happen is some
// visible corruption that lasts until the next frame.
}
} else {
*fenceFd = -1;
}
*buffer = gbuf.get();
if (mSharedBufferMode && mAutoRefresh) {
mSharedBufferSlot = buf;
mSharedBufferHasBeenQueued = false;
} else if (mSharedBufferSlot == buf) {
mSharedBufferSlot = BufferItem::INVALID_BUFFER_SLOT;
mSharedBufferHasBeenQueued = false;
}
mDequeuedSlots.insert(buf);
return OK;
}
int Surface::cancelBuffer(android_native_buffer_t* buffer,
int fenceFd) {
ATRACE_CALL();
ALOGV("Surface::cancelBuffer");
Mutex::Autolock lock(mMutex);
int i = getSlotFromBufferLocked(buffer);
if (i < 0) {
if (fenceFd >= 0) {
close(fenceFd);
}
return i;
}
if (mSharedBufferSlot == i && mSharedBufferHasBeenQueued) {
if (fenceFd >= 0) {
close(fenceFd);
}
return OK;
}
sp<Fence> fence(fenceFd >= 0 ? new Fence(fenceFd) : Fence::NO_FENCE);
mGraphicBufferProducer->cancelBuffer(i, fence);
if (mSharedBufferMode && mAutoRefresh && mSharedBufferSlot == i) {
mSharedBufferHasBeenQueued = true;
}
mDequeuedSlots.erase(i);
return OK;
}
int Surface::getSlotFromBufferLocked(
android_native_buffer_t* buffer) const {
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].buffer != nullptr &&
mSlots[i].buffer->handle == buffer->handle) {
return i;
}
}
ALOGE("getSlotFromBufferLocked: unknown buffer: %p", buffer->handle);
return BAD_VALUE;
}
int Surface::lockBuffer_DEPRECATED(android_native_buffer_t* buffer __attribute__((unused))) {
ALOGV("Surface::lockBuffer");
Mutex::Autolock lock(mMutex);
return OK;
}
int Surface::queueBuffer(android_native_buffer_t* buffer, int fenceFd) {
ATRACE_CALL();
ALOGV("Surface::queueBuffer");
Mutex::Autolock lock(mMutex);
int64_t timestamp;
bool isAutoTimestamp = false;
if (mTimestamp == NATIVE_WINDOW_TIMESTAMP_AUTO) {
timestamp = systemTime(SYSTEM_TIME_MONOTONIC);
isAutoTimestamp = true;
ALOGV("Surface::queueBuffer making up timestamp: %.2f ms",
timestamp / 1000000.0);
} else {
timestamp = mTimestamp;
}
int i = getSlotFromBufferLocked(buffer);
if (i < 0) {
if (fenceFd >= 0) {
close(fenceFd);
}
return i;
}
if (mSharedBufferSlot == i && mSharedBufferHasBeenQueued) {
if (fenceFd >= 0) {
close(fenceFd);
}
return OK;
}
// Make sure the crop rectangle is entirely inside the buffer.
Rect crop(Rect::EMPTY_RECT);
mCrop.intersect(Rect(buffer->width, buffer->height), &crop);
sp<Fence> fence(fenceFd >= 0 ? new Fence(fenceFd) : Fence::NO_FENCE);
IGraphicBufferProducer::QueueBufferOutput output;
IGraphicBufferProducer::QueueBufferInput input(timestamp, isAutoTimestamp,
static_cast<android_dataspace>(mDataSpace), crop, mScalingMode,
mTransform ^ mStickyTransform, fence, mStickyTransform,
mEnableFrameTimestamps);
// we should send HDR metadata as needed if this becomes a bottleneck
input.setHdrMetadata(mHdrMetadata);
if (mConnectedToCpu || mDirtyRegion.bounds() == Rect::INVALID_RECT) {
input.setSurfaceDamage(Region::INVALID_REGION);
} else {
// Here we do two things:
// 1) The surface damage was specified using the OpenGL ES convention of
// the origin being in the bottom-left corner. Here we flip to the
// convention that the rest of the system uses (top-left corner) by
// subtracting all top/bottom coordinates from the buffer height.
// 2) If the buffer is coming in rotated (for example, because the EGL
// implementation is reacting to the transform hint coming back from
// SurfaceFlinger), the surface damage needs to be rotated the
// opposite direction, since it was generated assuming an unrotated
// buffer (the app doesn't know that the EGL implementation is
// reacting to the transform hint behind its back). The
// transformations in the switch statement below apply those
// complementary rotations (e.g., if 90 degrees, rotate 270 degrees).
int width = buffer->width;
int height = buffer->height;
bool rotated90 = (mTransform ^ mStickyTransform) &
NATIVE_WINDOW_TRANSFORM_ROT_90;
if (rotated90) {
std::swap(width, height);
}
Region flippedRegion;
for (auto rect : mDirtyRegion) {
int left = rect.left;
int right = rect.right;
int top = height - rect.bottom; // Flip from OpenGL convention
int bottom = height - rect.top; // Flip from OpenGL convention
switch (mTransform ^ mStickyTransform) {
case NATIVE_WINDOW_TRANSFORM_ROT_90: {
// Rotate 270 degrees
Rect flippedRect{top, width - right, bottom, width - left};
flippedRegion.orSelf(flippedRect);
break;
}
case NATIVE_WINDOW_TRANSFORM_ROT_180: {
// Rotate 180 degrees
Rect flippedRect{width - right, height - bottom,
width - left, height - top};
flippedRegion.orSelf(flippedRect);
break;
}
case NATIVE_WINDOW_TRANSFORM_ROT_270: {
// Rotate 90 degrees
Rect flippedRect{height - bottom, left,
height - top, right};
flippedRegion.orSelf(flippedRect);
break;
}
default: {
Rect flippedRect{left, top, right, bottom};
flippedRegion.orSelf(flippedRect);
break;
}
}
}
input.setSurfaceDamage(flippedRegion);
}
nsecs_t now = systemTime();
status_t err = mGraphicBufferProducer->queueBuffer(i, input, &output);
mLastQueueDuration = systemTime() - now;
if (err != OK) {
ALOGE("queueBuffer: error queuing buffer to SurfaceTexture, %d", err);
}
mDequeuedSlots.erase(i);
if (mEnableFrameTimestamps) {
mFrameEventHistory->applyDelta(output.frameTimestamps);
// Update timestamps with the local acquire fence.
// The consumer doesn't send it back to prevent us from having two
// file descriptors of the same fence.
mFrameEventHistory->updateAcquireFence(mNextFrameNumber,
std::make_shared<FenceTime>(fence));
// Cache timestamps of signaled fences so we can close their file
// descriptors.
mFrameEventHistory->updateSignalTimes();
}
mLastFrameNumber = mNextFrameNumber;
mDefaultWidth = output.width;
mDefaultHeight = output.height;
mNextFrameNumber = output.nextFrameNumber;
// Ignore transform hint if sticky transform is set or transform to display inverse flag is
// set.
if (mStickyTransform == 0 && !transformToDisplayInverse()) {
mTransformHint = output.transformHint;
}
mConsumerRunningBehind = (output.numPendingBuffers >= 2);
if (!mConnectedToCpu) {
// Clear surface damage back to full-buffer
mDirtyRegion = Region::INVALID_REGION;
}
if (mSharedBufferMode && mAutoRefresh && mSharedBufferSlot == i) {
mSharedBufferHasBeenQueued = true;
}
mQueueBufferCondition.broadcast();
if (CC_UNLIKELY(atrace_is_tag_enabled(ATRACE_TAG_GRAPHICS))) {
static FenceMonitor gpuCompletionThread("GPU completion");
gpuCompletionThread.queueFence(fence);
}
return err;
}
void Surface::querySupportedTimestampsLocked() const {
// mMutex must be locked when calling this method.
if (mQueriedSupportedTimestamps) {
return;
}
mQueriedSupportedTimestamps = true;
std::vector<FrameEvent> supportedFrameTimestamps;
status_t err = composerService()->getSupportedFrameTimestamps(
&supportedFrameTimestamps);
if (err != NO_ERROR) {
return;
}
for (auto sft : supportedFrameTimestamps) {
if (sft == FrameEvent::DISPLAY_PRESENT) {
mFrameTimestampsSupportsPresent = true;
}
}
}
int Surface::query(int what, int* value) const {
ATRACE_CALL();
ALOGV("Surface::query");
{ // scope for the lock
Mutex::Autolock lock(mMutex);
switch (what) {
case NATIVE_WINDOW_FORMAT:
if (mReqFormat) {
*value = static_cast<int>(mReqFormat);
return NO_ERROR;
}
break;
case NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER: {
if (composerService()->authenticateSurfaceTexture(
mGraphicBufferProducer)) {
*value = 1;
} else {
*value = 0;
}
return NO_ERROR;
}
case NATIVE_WINDOW_CONCRETE_TYPE:
*value = NATIVE_WINDOW_SURFACE;
return NO_ERROR;
case NATIVE_WINDOW_DEFAULT_WIDTH:
*value = static_cast<int>(
mUserWidth ? mUserWidth : mDefaultWidth);
return NO_ERROR;
case NATIVE_WINDOW_DEFAULT_HEIGHT:
*value = static_cast<int>(
mUserHeight ? mUserHeight : mDefaultHeight);
return NO_ERROR;
case NATIVE_WINDOW_TRANSFORM_HINT:
*value = static_cast<int>(mTransformHint);
return NO_ERROR;
case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND: {
status_t err = NO_ERROR;
if (!mConsumerRunningBehind) {
*value = 0;
} else {
err = mGraphicBufferProducer->query(what, value);
if (err == NO_ERROR) {
mConsumerRunningBehind = *value;
}
}
return err;
}
case NATIVE_WINDOW_BUFFER_AGE: {
if (mBufferAge > INT32_MAX) {
*value = 0;
} else {
*value = static_cast<int32_t>(mBufferAge);
}
return NO_ERROR;
}
case NATIVE_WINDOW_LAST_DEQUEUE_DURATION: {
int64_t durationUs = mLastDequeueDuration / 1000;
*value = durationUs > std::numeric_limits<int>::max() ?
std::numeric_limits<int>::max() :
static_cast<int>(durationUs);
return NO_ERROR;
}
case NATIVE_WINDOW_LAST_QUEUE_DURATION: {
int64_t durationUs = mLastQueueDuration / 1000;
*value = durationUs > std::numeric_limits<int>::max() ?
std::numeric_limits<int>::max() :
static_cast<int>(durationUs);
return NO_ERROR;
}
case NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT: {
querySupportedTimestampsLocked();
*value = mFrameTimestampsSupportsPresent ? 1 : 0;
return NO_ERROR;
}
case NATIVE_WINDOW_IS_VALID: {
*value = mGraphicBufferProducer != nullptr ? 1 : 0;
return NO_ERROR;
}
case NATIVE_WINDOW_DATASPACE: {
*value = static_cast<int>(mDataSpace);
return NO_ERROR;
}
case NATIVE_WINDOW_MAX_BUFFER_COUNT: {
*value = mMaxBufferCount;
return NO_ERROR;
}
}
}
return mGraphicBufferProducer->query(what, value);
}
int Surface::perform(int operation, va_list args)
{
int res = NO_ERROR;
switch (operation) {
case NATIVE_WINDOW_CONNECT:
// deprecated. must return NO_ERROR.
break;
case NATIVE_WINDOW_DISCONNECT:
// deprecated. must return NO_ERROR.
break;
case NATIVE_WINDOW_SET_USAGE:
res = dispatchSetUsage(args);
break;
case NATIVE_WINDOW_SET_CROP:
res = dispatchSetCrop(args);
break;
case NATIVE_WINDOW_SET_BUFFER_COUNT:
res = dispatchSetBufferCount(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_GEOMETRY:
res = dispatchSetBuffersGeometry(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_TRANSFORM:
res = dispatchSetBuffersTransform(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_STICKY_TRANSFORM:
res = dispatchSetBuffersStickyTransform(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_TIMESTAMP:
res = dispatchSetBuffersTimestamp(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_DIMENSIONS:
res = dispatchSetBuffersDimensions(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_USER_DIMENSIONS:
res = dispatchSetBuffersUserDimensions(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_FORMAT:
res = dispatchSetBuffersFormat(args);
break;
case NATIVE_WINDOW_LOCK:
res = dispatchLock(args);
break;
case NATIVE_WINDOW_UNLOCK_AND_POST:
res = dispatchUnlockAndPost(args);
break;
case NATIVE_WINDOW_SET_SCALING_MODE:
res = dispatchSetScalingMode(args);
break;
case NATIVE_WINDOW_API_CONNECT:
res = dispatchConnect(args);
break;
case NATIVE_WINDOW_API_DISCONNECT:
res = dispatchDisconnect(args);
break;
case NATIVE_WINDOW_SET_SIDEBAND_STREAM:
res = dispatchSetSidebandStream(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_DATASPACE:
res = dispatchSetBuffersDataSpace(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_SMPTE2086_METADATA:
res = dispatchSetBuffersSmpte2086Metadata(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_CTA861_3_METADATA:
res = dispatchSetBuffersCta8613Metadata(args);
break;
case NATIVE_WINDOW_SET_BUFFERS_HDR10_PLUS_METADATA:
res = dispatchSetBuffersHdr10PlusMetadata(args);
break;
case NATIVE_WINDOW_SET_SURFACE_DAMAGE:
res = dispatchSetSurfaceDamage(args);
break;
case NATIVE_WINDOW_SET_SHARED_BUFFER_MODE:
res = dispatchSetSharedBufferMode(args);
break;
case NATIVE_WINDOW_SET_AUTO_REFRESH:
res = dispatchSetAutoRefresh(args);
break;
case NATIVE_WINDOW_GET_REFRESH_CYCLE_DURATION:
res = dispatchGetDisplayRefreshCycleDuration(args);
break;
case NATIVE_WINDOW_GET_NEXT_FRAME_ID:
res = dispatchGetNextFrameId(args);
break;
case NATIVE_WINDOW_ENABLE_FRAME_TIMESTAMPS:
res = dispatchEnableFrameTimestamps(args);
break;
case NATIVE_WINDOW_GET_COMPOSITOR_TIMING:
res = dispatchGetCompositorTiming(args);
break;
case NATIVE_WINDOW_GET_FRAME_TIMESTAMPS:
res = dispatchGetFrameTimestamps(args);
break;
case NATIVE_WINDOW_GET_WIDE_COLOR_SUPPORT:
res = dispatchGetWideColorSupport(args);
break;
case NATIVE_WINDOW_GET_HDR_SUPPORT:
res = dispatchGetHdrSupport(args);
break;
case NATIVE_WINDOW_SET_USAGE64:
res = dispatchSetUsage64(args);
break;
case NATIVE_WINDOW_GET_CONSUMER_USAGE64:
res = dispatchGetConsumerUsage64(args);
break;
case NATIVE_WINDOW_SET_AUTO_PREROTATION:
res = dispatchSetAutoPrerotation(args);
break;
case NATIVE_WINDOW_GET_LAST_DEQUEUE_START:
res = dispatchGetLastDequeueStartTime(args);
break;
case NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT:
res = dispatchSetDequeueTimeout(args);
break;
case NATIVE_WINDOW_GET_LAST_DEQUEUE_DURATION:
res = dispatchGetLastDequeueDuration(args);
break;
case NATIVE_WINDOW_GET_LAST_QUEUE_DURATION:
res = dispatchGetLastQueueDuration(args);
break;
case NATIVE_WINDOW_SET_FRAME_RATE:
res = dispatchSetFrameRate(args);
break;
case NATIVE_WINDOW_SET_CANCEL_INTERCEPTOR:
res = dispatchAddCancelInterceptor(args);
break;
case NATIVE_WINDOW_SET_DEQUEUE_INTERCEPTOR:
res = dispatchAddDequeueInterceptor(args);
break;
case NATIVE_WINDOW_SET_PERFORM_INTERCEPTOR:
res = dispatchAddPerformInterceptor(args);
break;
case NATIVE_WINDOW_SET_QUEUE_INTERCEPTOR:
res = dispatchAddQueueInterceptor(args);
break;
case NATIVE_WINDOW_SET_QUERY_INTERCEPTOR:
res = dispatchAddQueryInterceptor(args);
break;
case NATIVE_WINDOW_ALLOCATE_BUFFERS:
allocateBuffers();
res = NO_ERROR;
break;
case NATIVE_WINDOW_GET_LAST_QUEUED_BUFFER:
res = dispatchGetLastQueuedBuffer(args);
break;
default:
res = NAME_NOT_FOUND;
break;
}
return res;
}
int Surface::dispatchConnect(va_list args) {
int api = va_arg(args, int);
return connect(api);
}
int Surface::dispatchDisconnect(va_list args) {
int api = va_arg(args, int);
return disconnect(api);
}
int Surface::dispatchSetUsage(va_list args) {
uint64_t usage = va_arg(args, uint32_t);
return setUsage(usage);
}
int Surface::dispatchSetUsage64(va_list args) {
uint64_t usage = va_arg(args, uint64_t);
return setUsage(usage);
}
int Surface::dispatchSetCrop(va_list args) {
android_native_rect_t const* rect = va_arg(args, android_native_rect_t*);
return setCrop(reinterpret_cast<Rect const*>(rect));
}
int Surface::dispatchSetBufferCount(va_list args) {
size_t bufferCount = va_arg(args, size_t);
return setBufferCount(static_cast<int32_t>(bufferCount));
}
int Surface::dispatchSetBuffersGeometry(va_list args) {
uint32_t width = va_arg(args, uint32_t);
uint32_t height = va_arg(args, uint32_t);
PixelFormat format = va_arg(args, PixelFormat);
int err = setBuffersDimensions(width, height);
if (err != 0) {
return err;
}
return setBuffersFormat(format);
}
int Surface::dispatchSetBuffersDimensions(va_list args) {
uint32_t width = va_arg(args, uint32_t);
uint32_t height = va_arg(args, uint32_t);
return setBuffersDimensions(width, height);
}
int Surface::dispatchSetBuffersUserDimensions(va_list args) {
uint32_t width = va_arg(args, uint32_t);
uint32_t height = va_arg(args, uint32_t);
return setBuffersUserDimensions(width, height);
}
int Surface::dispatchSetBuffersFormat(va_list args) {
PixelFormat format = va_arg(args, PixelFormat);
return setBuffersFormat(format);
}
int Surface::dispatchSetScalingMode(va_list args) {
int mode = va_arg(args, int);
return setScalingMode(mode);
}
int Surface::dispatchSetBuffersTransform(va_list args) {
uint32_t transform = va_arg(args, uint32_t);
return setBuffersTransform(transform);
}
int Surface::dispatchSetBuffersStickyTransform(va_list args) {
uint32_t transform = va_arg(args, uint32_t);
return setBuffersStickyTransform(transform);
}
int Surface::dispatchSetBuffersTimestamp(va_list args) {
int64_t timestamp = va_arg(args, int64_t);
return setBuffersTimestamp(timestamp);
}
int Surface::dispatchLock(va_list args) {
ANativeWindow_Buffer* outBuffer = va_arg(args, ANativeWindow_Buffer*);
ARect* inOutDirtyBounds = va_arg(args, ARect*);
return lock(outBuffer, inOutDirtyBounds);
}
int Surface::dispatchUnlockAndPost(va_list args __attribute__((unused))) {
return unlockAndPost();
}
int Surface::dispatchSetSidebandStream(va_list args) {
native_handle_t* sH = va_arg(args, native_handle_t*);
sp<NativeHandle> sidebandHandle = NativeHandle::create(sH, false);
setSidebandStream(sidebandHandle);
return OK;
}
int Surface::dispatchSetBuffersDataSpace(va_list args) {
Dataspace dataspace = static_cast<Dataspace>(va_arg(args, int));
return setBuffersDataSpace(dataspace);
}
int Surface::dispatchSetBuffersSmpte2086Metadata(va_list args) {
const android_smpte2086_metadata* metadata =
va_arg(args, const android_smpte2086_metadata*);
return setBuffersSmpte2086Metadata(metadata);
}
int Surface::dispatchSetBuffersCta8613Metadata(va_list args) {
const android_cta861_3_metadata* metadata =
va_arg(args, const android_cta861_3_metadata*);
return setBuffersCta8613Metadata(metadata);
}
int Surface::dispatchSetBuffersHdr10PlusMetadata(va_list args) {
const size_t size = va_arg(args, size_t);
const uint8_t* metadata = va_arg(args, const uint8_t*);
return setBuffersHdr10PlusMetadata(size, metadata);
}
int Surface::dispatchSetSurfaceDamage(va_list args) {
android_native_rect_t* rects = va_arg(args, android_native_rect_t*);
size_t numRects = va_arg(args, size_t);
setSurfaceDamage(rects, numRects);
return NO_ERROR;
}
int Surface::dispatchSetSharedBufferMode(va_list args) {
bool sharedBufferMode = va_arg(args, int);
return setSharedBufferMode(sharedBufferMode);
}
int Surface::dispatchSetAutoRefresh(va_list args) {
bool autoRefresh = va_arg(args, int);
return setAutoRefresh(autoRefresh);
}
int Surface::dispatchGetDisplayRefreshCycleDuration(va_list args) {
nsecs_t* outRefreshDuration = va_arg(args, int64_t*);
return getDisplayRefreshCycleDuration(outRefreshDuration);
}
int Surface::dispatchGetNextFrameId(va_list args) {
uint64_t* nextFrameId = va_arg(args, uint64_t*);
*nextFrameId = getNextFrameNumber();
return NO_ERROR;
}
int Surface::dispatchEnableFrameTimestamps(va_list args) {
bool enable = va_arg(args, int);
enableFrameTimestamps(enable);
return NO_ERROR;
}
int Surface::dispatchGetCompositorTiming(va_list args) {
nsecs_t* compositeDeadline = va_arg(args, int64_t*);
nsecs_t* compositeInterval = va_arg(args, int64_t*);
nsecs_t* compositeToPresentLatency = va_arg(args, int64_t*);
return getCompositorTiming(compositeDeadline, compositeInterval,
compositeToPresentLatency);
}
int Surface::dispatchGetFrameTimestamps(va_list args) {
uint64_t frameId = va_arg(args, uint64_t);
nsecs_t* outRequestedPresentTime = va_arg(args, int64_t*);
nsecs_t* outAcquireTime = va_arg(args, int64_t*);
nsecs_t* outLatchTime = va_arg(args, int64_t*);
nsecs_t* outFirstRefreshStartTime = va_arg(args, int64_t*);
nsecs_t* outLastRefreshStartTime = va_arg(args, int64_t*);
nsecs_t* outGpuCompositionDoneTime = va_arg(args, int64_t*);
nsecs_t* outDisplayPresentTime = va_arg(args, int64_t*);
nsecs_t* outDequeueReadyTime = va_arg(args, int64_t*);
nsecs_t* outReleaseTime = va_arg(args, int64_t*);
return getFrameTimestamps(frameId,
outRequestedPresentTime, outAcquireTime, outLatchTime,
outFirstRefreshStartTime, outLastRefreshStartTime,
outGpuCompositionDoneTime, outDisplayPresentTime,
outDequeueReadyTime, outReleaseTime);
}
int Surface::dispatchGetWideColorSupport(va_list args) {
bool* outSupport = va_arg(args, bool*);
return getWideColorSupport(outSupport);
}
int Surface::dispatchGetHdrSupport(va_list args) {
bool* outSupport = va_arg(args, bool*);
return getHdrSupport(outSupport);
}
int Surface::dispatchGetConsumerUsage64(va_list args) {
uint64_t* usage = va_arg(args, uint64_t*);
return getConsumerUsage(usage);
}
int Surface::dispatchSetAutoPrerotation(va_list args) {
bool autoPrerotation = va_arg(args, int);
return setAutoPrerotation(autoPrerotation);
}
int Surface::dispatchGetLastDequeueStartTime(va_list args) {
int64_t* lastDequeueStartTime = va_arg(args, int64_t*);
*lastDequeueStartTime = mLastDequeueStartTime;
return NO_ERROR;
}
int Surface::dispatchSetDequeueTimeout(va_list args) {
nsecs_t timeout = va_arg(args, int64_t);
return setDequeueTimeout(timeout);
}
int Surface::dispatchGetLastDequeueDuration(va_list args) {
int64_t* lastDequeueDuration = va_arg(args, int64_t*);
*lastDequeueDuration = mLastDequeueDuration;
return NO_ERROR;
}
int Surface::dispatchGetLastQueueDuration(va_list args) {
int64_t* lastQueueDuration = va_arg(args, int64_t*);
*lastQueueDuration = mLastQueueDuration;
return NO_ERROR;
}
int Surface::dispatchSetFrameRate(va_list args) {
float frameRate = static_cast<float>(va_arg(args, double));
int8_t compatibility = static_cast<int8_t>(va_arg(args, int));
return setFrameRate(frameRate, compatibility);
}
int Surface::dispatchAddCancelInterceptor(va_list args) {
ANativeWindow_cancelBufferInterceptor interceptor =
va_arg(args, ANativeWindow_cancelBufferInterceptor);
void* data = va_arg(args, void*);
std::lock_guard<std::shared_mutex> lock(mInterceptorMutex);
mCancelInterceptor = interceptor;
mCancelInterceptorData = data;
return NO_ERROR;
}
int Surface::dispatchAddDequeueInterceptor(va_list args) {
ANativeWindow_dequeueBufferInterceptor interceptor =
va_arg(args, ANativeWindow_dequeueBufferInterceptor);
void* data = va_arg(args, void*);
std::lock_guard<std::shared_mutex> lock(mInterceptorMutex);
mDequeueInterceptor = interceptor;
mDequeueInterceptorData = data;
return NO_ERROR;
}
int Surface::dispatchAddPerformInterceptor(va_list args) {
ANativeWindow_performInterceptor interceptor = va_arg(args, ANativeWindow_performInterceptor);
void* data = va_arg(args, void*);
std::lock_guard<std::shared_mutex> lock(mInterceptorMutex);
mPerformInterceptor = interceptor;
mPerformInterceptorData = data;
return NO_ERROR;
}
int Surface::dispatchAddQueueInterceptor(va_list args) {
ANativeWindow_queueBufferInterceptor interceptor =
va_arg(args, ANativeWindow_queueBufferInterceptor);
void* data = va_arg(args, void*);
std::lock_guard<std::shared_mutex> lock(mInterceptorMutex);
mQueueInterceptor = interceptor;
mQueueInterceptorData = data;
return NO_ERROR;
}
int Surface::dispatchAddQueryInterceptor(va_list args) {
ANativeWindow_queryInterceptor interceptor = va_arg(args, ANativeWindow_queryInterceptor);
void* data = va_arg(args, void*);
std::lock_guard<std::shared_mutex> lock(mInterceptorMutex);
mQueryInterceptor = interceptor;
mQueryInterceptorData = data;
return NO_ERROR;
}
int Surface::dispatchGetLastQueuedBuffer(va_list args) {
AHardwareBuffer** buffer = va_arg(args, AHardwareBuffer**);
int* fence = va_arg(args, int*);
float* matrix = va_arg(args, float*);
sp<GraphicBuffer> graphicBuffer;
sp<Fence> spFence;
int result = mGraphicBufferProducer->getLastQueuedBuffer(&graphicBuffer, &spFence, matrix);
if (graphicBuffer != nullptr) {
*buffer = reinterpret_cast<AHardwareBuffer*>(graphicBuffer.get());
AHardwareBuffer_acquire(*buffer);
} else {
*buffer = nullptr;
}
if (spFence != nullptr) {
*fence = spFence->dup();
} else {
*fence = -1;
}
return result;
}
bool Surface::transformToDisplayInverse() {
return (mTransform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) ==
NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY;
}
int Surface::connect(int api) {
static sp<IProducerListener> listener = new StubProducerListener();
return connect(api, listener);
}
int Surface::connect(int api, const sp<IProducerListener>& listener) {
return connect(api, listener, false);
}
int Surface::connect(
int api, bool reportBufferRemoval, const sp<SurfaceListener>& sListener) {
if (sListener != nullptr) {
mListenerProxy = new ProducerListenerProxy(this, sListener);
}
return connect(api, mListenerProxy, reportBufferRemoval);
}
int Surface::connect(
int api, const sp<IProducerListener>& listener, bool reportBufferRemoval) {
ATRACE_CALL();
ALOGV("Surface::connect");
Mutex::Autolock lock(mMutex);
IGraphicBufferProducer::QueueBufferOutput output;
mReportRemovedBuffers = reportBufferRemoval;
int err = mGraphicBufferProducer->connect(listener, api, mProducerControlledByApp, &output);
if (err == NO_ERROR) {
mDefaultWidth = output.width;
mDefaultHeight = output.height;
mNextFrameNumber = output.nextFrameNumber;
mMaxBufferCount = output.maxBufferCount;
// Ignore transform hint if sticky transform is set or transform to display inverse flag is
// set. Transform hint should be ignored if the client is expected to always submit buffers
// in the same orientation.
if (mStickyTransform == 0 && !transformToDisplayInverse()) {
mTransformHint = output.transformHint;
}
mConsumerRunningBehind = (output.numPendingBuffers >= 2);
}
if (!err && api == NATIVE_WINDOW_API_CPU) {
mConnectedToCpu = true;
// Clear the dirty region in case we're switching from a non-CPU API
mDirtyRegion.clear();
} else if (!err) {
// Initialize the dirty region for tracking surface damage
mDirtyRegion = Region::INVALID_REGION;
}
return err;
}
int Surface::disconnect(int api, IGraphicBufferProducer::DisconnectMode mode) {
ATRACE_CALL();
ALOGV("Surface::disconnect");
Mutex::Autolock lock(mMutex);
mRemovedBuffers.clear();
mSharedBufferSlot = BufferItem::INVALID_BUFFER_SLOT;
mSharedBufferHasBeenQueued = false;
freeAllBuffers();
int err = mGraphicBufferProducer->disconnect(api, mode);
if (!err) {
mReqFormat = 0;
mReqWidth = 0;
mReqHeight = 0;
mReqUsage = 0;
mCrop.clear();
mScalingMode = NATIVE_WINDOW_SCALING_MODE_FREEZE;
mTransform = 0;
mStickyTransform = 0;
mAutoPrerotation = false;
mEnableFrameTimestamps = false;
mMaxBufferCount = NUM_BUFFER_SLOTS;
if (api == NATIVE_WINDOW_API_CPU) {
mConnectedToCpu = false;
}
}
return err;
}
int Surface::detachNextBuffer(sp<GraphicBuffer>* outBuffer,
sp<Fence>* outFence) {
ATRACE_CALL();
ALOGV("Surface::detachNextBuffer");
if (outBuffer == nullptr || outFence == nullptr) {
return BAD_VALUE;
}
Mutex::Autolock lock(mMutex);
if (mReportRemovedBuffers) {
mRemovedBuffers.clear();
}
sp<GraphicBuffer> buffer(nullptr);
sp<Fence> fence(nullptr);
status_t result = mGraphicBufferProducer->detachNextBuffer(
&buffer, &fence);
if (result != NO_ERROR) {
return result;
}
*outBuffer = buffer;
if (fence != nullptr && fence->isValid()) {
*outFence = fence;
} else {
*outFence = Fence::NO_FENCE;
}
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].buffer != nullptr &&
mSlots[i].buffer->getId() == buffer->getId()) {
if (mReportRemovedBuffers) {
mRemovedBuffers.push_back(mSlots[i].buffer);
}
mSlots[i].buffer = nullptr;
}
}
return NO_ERROR;
}
int Surface::attachBuffer(ANativeWindowBuffer* buffer)
{
ATRACE_CALL();
ALOGV("Surface::attachBuffer");
Mutex::Autolock lock(mMutex);
if (mReportRemovedBuffers) {
mRemovedBuffers.clear();
}
sp<GraphicBuffer> graphicBuffer(static_cast<GraphicBuffer*>(buffer));
uint32_t priorGeneration = graphicBuffer->mGenerationNumber;
graphicBuffer->mGenerationNumber = mGenerationNumber;
int32_t attachedSlot = -1;
status_t result = mGraphicBufferProducer->attachBuffer(&attachedSlot, graphicBuffer);
if (result != NO_ERROR) {
ALOGE("attachBuffer: IGraphicBufferProducer call failed (%d)", result);
graphicBuffer->mGenerationNumber = priorGeneration;
return result;
}
if (mReportRemovedBuffers && (mSlots[attachedSlot].buffer != nullptr)) {
mRemovedBuffers.push_back(mSlots[attachedSlot].buffer);
}
mSlots[attachedSlot].buffer = graphicBuffer;
mDequeuedSlots.insert(attachedSlot);
return NO_ERROR;
}
int Surface::setUsage(uint64_t reqUsage)
{
ALOGV("Surface::setUsage");
Mutex::Autolock lock(mMutex);
if (reqUsage != mReqUsage) {
mSharedBufferSlot = BufferItem::INVALID_BUFFER_SLOT;
}
mReqUsage = reqUsage;
return OK;
}
int Surface::setCrop(Rect const* rect)
{
ATRACE_CALL();
Rect realRect(Rect::EMPTY_RECT);
if (rect == nullptr || rect->isEmpty()) {
realRect.clear();
} else {
realRect = *rect;
}
ALOGV("Surface::setCrop rect=[%d %d %d %d]",
realRect.left, realRect.top, realRect.right, realRect.bottom);
Mutex::Autolock lock(mMutex);
mCrop = realRect;
return NO_ERROR;
}
int Surface::setBufferCount(int bufferCount)
{
ATRACE_CALL();
ALOGV("Surface::setBufferCount");
Mutex::Autolock lock(mMutex);
status_t err = NO_ERROR;
if (bufferCount == 0) {
err = mGraphicBufferProducer->setMaxDequeuedBufferCount(1);
} else {
int minUndequeuedBuffers = 0;
err = mGraphicBufferProducer->query(
NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &minUndequeuedBuffers);
if (err == NO_ERROR) {
err = mGraphicBufferProducer->setMaxDequeuedBufferCount(
bufferCount - minUndequeuedBuffers);
}
}
ALOGE_IF(err, "IGraphicBufferProducer::setBufferCount(%d) returned %s",
bufferCount, strerror(-err));
return err;
}
int Surface::setMaxDequeuedBufferCount(int maxDequeuedBuffers) {
ATRACE_CALL();
ALOGV("Surface::setMaxDequeuedBufferCount");
Mutex::Autolock lock(mMutex);
status_t err = mGraphicBufferProducer->setMaxDequeuedBufferCount(
maxDequeuedBuffers);
ALOGE_IF(err, "IGraphicBufferProducer::setMaxDequeuedBufferCount(%d) "
"returned %s", maxDequeuedBuffers, strerror(-err));
return err;
}
int Surface::setAsyncMode(bool async) {
ATRACE_CALL();
ALOGV("Surface::setAsyncMode");
Mutex::Autolock lock(mMutex);
status_t err = mGraphicBufferProducer->setAsyncMode(async);
ALOGE_IF(err, "IGraphicBufferProducer::setAsyncMode(%d) returned %s",
async, strerror(-err));
return err;
}
int Surface::setSharedBufferMode(bool sharedBufferMode) {
ATRACE_CALL();
ALOGV("Surface::setSharedBufferMode (%d)", sharedBufferMode);
Mutex::Autolock lock(mMutex);
status_t err = mGraphicBufferProducer->setSharedBufferMode(
sharedBufferMode);
if (err == NO_ERROR) {
mSharedBufferMode = sharedBufferMode;
}
ALOGE_IF(err, "IGraphicBufferProducer::setSharedBufferMode(%d) returned"
"%s", sharedBufferMode, strerror(-err));
return err;
}
int Surface::setAutoRefresh(bool autoRefresh) {
ATRACE_CALL();
ALOGV("Surface::setAutoRefresh (%d)", autoRefresh);
Mutex::Autolock lock(mMutex);
status_t err = mGraphicBufferProducer->setAutoRefresh(autoRefresh);
if (err == NO_ERROR) {
mAutoRefresh = autoRefresh;
}
ALOGE_IF(err, "IGraphicBufferProducer::setAutoRefresh(%d) returned %s",
autoRefresh, strerror(-err));
return err;
}
int Surface::setBuffersDimensions(uint32_t width, uint32_t height)
{
ATRACE_CALL();
ALOGV("Surface::setBuffersDimensions");
if ((width && !height) || (!width && height))
return BAD_VALUE;
Mutex::Autolock lock(mMutex);
if (width != mReqWidth || height != mReqHeight) {
mSharedBufferSlot = BufferItem::INVALID_BUFFER_SLOT;
}
mReqWidth = width;
mReqHeight = height;
return NO_ERROR;
}
int Surface::setBuffersUserDimensions(uint32_t width, uint32_t height)
{
ATRACE_CALL();
ALOGV("Surface::setBuffersUserDimensions");
if ((width && !height) || (!width && height))
return BAD_VALUE;
Mutex::Autolock lock(mMutex);
if (width != mUserWidth || height != mUserHeight) {
mSharedBufferSlot = BufferItem::INVALID_BUFFER_SLOT;
}
mUserWidth = width;
mUserHeight = height;
return NO_ERROR;
}
int Surface::setBuffersFormat(PixelFormat format)
{
ALOGV("Surface::setBuffersFormat");
Mutex::Autolock lock(mMutex);
if (format != mReqFormat) {
mSharedBufferSlot = BufferItem::INVALID_BUFFER_SLOT;
}
mReqFormat = format;
return NO_ERROR;
}
int Surface::setScalingMode(int mode)
{
ATRACE_CALL();
ALOGV("Surface::setScalingMode(%d)", mode);
switch (mode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE:
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP:
case NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP:
break;
default:
ALOGE("unknown scaling mode: %d", mode);
return BAD_VALUE;
}
Mutex::Autolock lock(mMutex);
mScalingMode = mode;
return NO_ERROR;
}
int Surface::setBuffersTransform(uint32_t transform)
{
ATRACE_CALL();
ALOGV("Surface::setBuffersTransform");
Mutex::Autolock lock(mMutex);
// Ensure NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY is sticky. If the client sets the flag, do not
// override it until the surface is disconnected. This is a temporary workaround for camera
// until they switch to using Buffer State Layers. Currently if client sets the buffer transform
// it may be overriden by the buffer producer when the producer sets the buffer transform.
if (transformToDisplayInverse()) {
transform |= NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY;
}
mTransform = transform;
return NO_ERROR;
}
int Surface::setBuffersStickyTransform(uint32_t transform)
{
ATRACE_CALL();
ALOGV("Surface::setBuffersStickyTransform");
Mutex::Autolock lock(mMutex);
mStickyTransform = transform;
return NO_ERROR;
}
int Surface::setBuffersTimestamp(int64_t timestamp)
{
ALOGV("Surface::setBuffersTimestamp");
Mutex::Autolock lock(mMutex);
mTimestamp = timestamp;
return NO_ERROR;
}
int Surface::setBuffersDataSpace(Dataspace dataSpace)
{
ALOGV("Surface::setBuffersDataSpace");
Mutex::Autolock lock(mMutex);
mDataSpace = dataSpace;
return NO_ERROR;
}
int Surface::setBuffersSmpte2086Metadata(const android_smpte2086_metadata* metadata) {
ALOGV("Surface::setBuffersSmpte2086Metadata");
Mutex::Autolock lock(mMutex);
if (metadata) {
mHdrMetadata.smpte2086 = *metadata;
mHdrMetadata.validTypes |= HdrMetadata::SMPTE2086;
} else {
mHdrMetadata.validTypes &= ~HdrMetadata::SMPTE2086;
}
return NO_ERROR;
}
int Surface::setBuffersCta8613Metadata(const android_cta861_3_metadata* metadata) {
ALOGV("Surface::setBuffersCta8613Metadata");
Mutex::Autolock lock(mMutex);
if (metadata) {
mHdrMetadata.cta8613 = *metadata;
mHdrMetadata.validTypes |= HdrMetadata::CTA861_3;
} else {
mHdrMetadata.validTypes &= ~HdrMetadata::CTA861_3;
}
return NO_ERROR;
}
int Surface::setBuffersHdr10PlusMetadata(const size_t size, const uint8_t* metadata) {
ALOGV("Surface::setBuffersBlobMetadata");
Mutex::Autolock lock(mMutex);
if (size > 0) {
mHdrMetadata.hdr10plus.assign(metadata, metadata + size);
mHdrMetadata.validTypes |= HdrMetadata::HDR10PLUS;
} else {
mHdrMetadata.validTypes &= ~HdrMetadata::HDR10PLUS;
mHdrMetadata.hdr10plus.clear();
}
return NO_ERROR;
}
Dataspace Surface::getBuffersDataSpace() {
ALOGV("Surface::getBuffersDataSpace");
Mutex::Autolock lock(mMutex);
return mDataSpace;
}
void Surface::freeAllBuffers() {
if (!mDequeuedSlots.empty()) {
ALOGE("%s: %zu buffers were freed while being dequeued!",
__FUNCTION__, mDequeuedSlots.size());
}
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
mSlots[i].buffer = nullptr;
}
}
status_t Surface::getAndFlushBuffersFromSlots(const std::vector<int32_t>& slots,
std::vector<sp<GraphicBuffer>>* outBuffers) {
ALOGV("Surface::getAndFlushBuffersFromSlots");
for (int32_t i : slots) {
if (i < 0 || i >= NUM_BUFFER_SLOTS) {
ALOGE("%s: Invalid slotIndex: %d", __FUNCTION__, i);
return BAD_VALUE;
}
}
Mutex::Autolock lock(mMutex);
for (int32_t i : slots) {
if (mSlots[i].buffer == nullptr) {
ALOGW("%s: Discarded slot %d doesn't contain buffer!", __FUNCTION__, i);
continue;
}
// Don't flush currently dequeued buffers
if (mDequeuedSlots.count(i) > 0) {
continue;
}
outBuffers->push_back(mSlots[i].buffer);
mSlots[i].buffer = nullptr;
}
return OK;
}
void Surface::setSurfaceDamage(android_native_rect_t* rects, size_t numRects) {
ATRACE_CALL();
ALOGV("Surface::setSurfaceDamage");
Mutex::Autolock lock(mMutex);
if (mConnectedToCpu || numRects == 0) {
mDirtyRegion = Region::INVALID_REGION;
return;
}
mDirtyRegion.clear();
for (size_t r = 0; r < numRects; ++r) {
// We intentionally flip top and bottom here, since because they're
// specified with a bottom-left origin, top > bottom, which fails
// validation in the Region class. We will fix this up when we flip to a
// top-left origin in queueBuffer.
Rect rect(rects[r].left, rects[r].bottom, rects[r].right, rects[r].top);
mDirtyRegion.orSelf(rect);
}
}
// ----------------------------------------------------------------------
// the lock/unlock APIs must be used from the same thread
static status_t copyBlt(
const sp<GraphicBuffer>& dst,
const sp<GraphicBuffer>& src,
const Region& reg,
int *dstFenceFd)
{
if (dst->getId() == src->getId())
return OK;
// src and dst with, height and format must be identical. no verification
// is done here.
status_t err;
uint8_t* src_bits = nullptr;
err = src->lock(GRALLOC_USAGE_SW_READ_OFTEN, reg.bounds(),
reinterpret_cast<void**>(&src_bits));
ALOGE_IF(err, "error locking src buffer %s", strerror(-err));
uint8_t* dst_bits = nullptr;
err = dst->lockAsync(GRALLOC_USAGE_SW_WRITE_OFTEN, reg.bounds(),
reinterpret_cast<void**>(&dst_bits), *dstFenceFd);
ALOGE_IF(err, "error locking dst buffer %s", strerror(-err));
*dstFenceFd = -1;
Region::const_iterator head(reg.begin());
Region::const_iterator tail(reg.end());
if (head != tail && src_bits && dst_bits) {
const size_t bpp = bytesPerPixel(src->format);
const size_t dbpr = static_cast<uint32_t>(dst->stride) * bpp;
const size_t sbpr = static_cast<uint32_t>(src->stride) * bpp;
while (head != tail) {
const Rect& r(*head++);
int32_t h = r.height();
if (h <= 0) continue;
size_t size = static_cast<uint32_t>(r.width()) * bpp;
uint8_t const * s = src_bits +
static_cast<uint32_t>(r.left + src->stride * r.top) * bpp;
uint8_t * d = dst_bits +
static_cast<uint32_t>(r.left + dst->stride * r.top) * bpp;
if (dbpr==sbpr && size==sbpr) {
size *= static_cast<size_t>(h);
h = 1;
}
do {
memcpy(d, s, size);
d += dbpr;
s += sbpr;
} while (--h > 0);
}
}
if (src_bits)
src->unlock();
if (dst_bits)
dst->unlockAsync(dstFenceFd);
return err;
}
// ----------------------------------------------------------------------------
status_t Surface::lock(
ANativeWindow_Buffer* outBuffer, ARect* inOutDirtyBounds)
{
if (mLockedBuffer != nullptr) {
ALOGE("Surface::lock failed, already locked");
return INVALID_OPERATION;
}
if (!mConnectedToCpu) {
int err = Surface::connect(NATIVE_WINDOW_API_CPU);
if (err) {
return err;
}
// we're intending to do software rendering from this point
setUsage(GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN);
}
ANativeWindowBuffer* out;
int fenceFd = -1;
status_t err = dequeueBuffer(&out, &fenceFd);
ALOGE_IF(err, "dequeueBuffer failed (%s)", strerror(-err));
if (err == NO_ERROR) {
sp<GraphicBuffer> backBuffer(GraphicBuffer::getSelf(out));
const Rect bounds(backBuffer->width, backBuffer->height);
Region newDirtyRegion;
if (inOutDirtyBounds) {
newDirtyRegion.set(static_cast<Rect const&>(*inOutDirtyBounds));
newDirtyRegion.andSelf(bounds);
} else {
newDirtyRegion.set(bounds);
}
// figure out if we can copy the frontbuffer back
const sp<GraphicBuffer>& frontBuffer(mPostedBuffer);
const bool canCopyBack = (frontBuffer != nullptr &&
backBuffer->width == frontBuffer->width &&
backBuffer->height == frontBuffer->height &&
backBuffer->format == frontBuffer->format);
if (canCopyBack) {
// copy the area that is invalid and not repainted this round
const Region copyback(mDirtyRegion.subtract(newDirtyRegion));
if (!copyback.isEmpty()) {
copyBlt(backBuffer, frontBuffer, copyback, &fenceFd);
}
} else {
// if we can't copy-back anything, modify the user's dirty
// region to make sure they redraw the whole buffer
newDirtyRegion.set(bounds);
mDirtyRegion.clear();
Mutex::Autolock lock(mMutex);
for (size_t i=0 ; i<NUM_BUFFER_SLOTS ; i++) {
mSlots[i].dirtyRegion.clear();
}
}
{ // scope for the lock
Mutex::Autolock lock(mMutex);
int backBufferSlot(getSlotFromBufferLocked(backBuffer.get()));
if (backBufferSlot >= 0) {
Region& dirtyRegion(mSlots[backBufferSlot].dirtyRegion);
mDirtyRegion.subtract(dirtyRegion);
dirtyRegion = newDirtyRegion;
}
}
mDirtyRegion.orSelf(newDirtyRegion);
if (inOutDirtyBounds) {
*inOutDirtyBounds = newDirtyRegion.getBounds();
}
void* vaddr;
status_t res = backBuffer->lockAsync(
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN,
newDirtyRegion.bounds(), &vaddr, fenceFd);
ALOGW_IF(res, "failed locking buffer (handle = %p)",
backBuffer->handle);
if (res != 0) {
err = INVALID_OPERATION;
} else {
mLockedBuffer = backBuffer;
outBuffer->width = backBuffer->width;
outBuffer->height = backBuffer->height;
outBuffer->stride = backBuffer->stride;
outBuffer->format = backBuffer->format;
outBuffer->bits = vaddr;
}
}
return err;
}
status_t Surface::unlockAndPost()
{
if (mLockedBuffer == nullptr) {
ALOGE("Surface::unlockAndPost failed, no locked buffer");
return INVALID_OPERATION;
}
int fd = -1;
status_t err = mLockedBuffer->unlockAsync(&fd);
ALOGE_IF(err, "failed unlocking buffer (%p)", mLockedBuffer->handle);
err = queueBuffer(mLockedBuffer.get(), fd);
ALOGE_IF(err, "queueBuffer (handle=%p) failed (%s)",
mLockedBuffer->handle, strerror(-err));
mPostedBuffer = mLockedBuffer;
mLockedBuffer = nullptr;
return err;
}
bool Surface::waitForNextFrame(uint64_t lastFrame, nsecs_t timeout) {
Mutex::Autolock lock(mMutex);
if (mNextFrameNumber > lastFrame) {
return true;
}
return mQueueBufferCondition.waitRelative(mMutex, timeout) == OK;
}
status_t Surface::getUniqueId(uint64_t* outId) const {
Mutex::Autolock lock(mMutex);
return mGraphicBufferProducer->getUniqueId(outId);
}
int Surface::getConsumerUsage(uint64_t* outUsage) const {
Mutex::Autolock lock(mMutex);
return mGraphicBufferProducer->getConsumerUsage(outUsage);
}
status_t Surface::getAndFlushRemovedBuffers(std::vector<sp<GraphicBuffer>>* out) {
if (out == nullptr) {
ALOGE("%s: out must not be null!", __FUNCTION__);
return BAD_VALUE;
}
Mutex::Autolock lock(mMutex);
*out = mRemovedBuffers;
mRemovedBuffers.clear();
return OK;
}
status_t Surface::attachAndQueueBufferWithDataspace(Surface* surface, sp<GraphicBuffer> buffer,
Dataspace dataspace) {
if (buffer == nullptr) {
return BAD_VALUE;
}
int err = static_cast<ANativeWindow*>(surface)->perform(surface, NATIVE_WINDOW_API_CONNECT,
NATIVE_WINDOW_API_CPU);
if (err != OK) {
return err;
}
ui::Dataspace tmpDataspace = surface->getBuffersDataSpace();
err = surface->setBuffersDataSpace(dataspace);
if (err != OK) {
return err;
}
err = surface->attachBuffer(buffer->getNativeBuffer());
if (err != OK) {
return err;
}
err = static_cast<ANativeWindow*>(surface)->queueBuffer(surface, buffer->getNativeBuffer(), -1);
if (err != OK) {
return err;
}
err = surface->setBuffersDataSpace(tmpDataspace);
if (err != OK) {
return err;
}
err = surface->disconnect(NATIVE_WINDOW_API_CPU);
return err;
}
int Surface::setAutoPrerotation(bool autoPrerotation) {
ATRACE_CALL();
ALOGV("Surface::setAutoPrerotation (%d)", autoPrerotation);
Mutex::Autolock lock(mMutex);
if (mAutoPrerotation == autoPrerotation) {
return OK;
}
status_t err = mGraphicBufferProducer->setAutoPrerotation(autoPrerotation);
if (err == NO_ERROR) {
mAutoPrerotation = autoPrerotation;
}
ALOGE_IF(err, "IGraphicBufferProducer::setAutoPrerotation(%d) returned %s", autoPrerotation,
strerror(-err));
return err;
}
void Surface::ProducerListenerProxy::onBuffersDiscarded(const std::vector<int32_t>& slots) {
ATRACE_CALL();
sp<Surface> parent = mParent.promote();
if (parent == nullptr) {
return;
}
std::vector<sp<GraphicBuffer>> discardedBufs;
status_t res = parent->getAndFlushBuffersFromSlots(slots, &discardedBufs);
if (res != OK) {
ALOGE("%s: Failed to get buffers from slots: %s(%d)", __FUNCTION__,
strerror(-res), res);
return;
}
mSurfaceListener->onBuffersDiscarded(discardedBufs);
}
status_t Surface::setFrameRate(float frameRate, int8_t compatibility) {
ATRACE_CALL();
ALOGV("Surface::setFrameRate");
if (!ValidateFrameRate(frameRate, compatibility, "Surface::setFrameRate")) {
return BAD_VALUE;
}
return composerService()->setFrameRate(mGraphicBufferProducer, frameRate, compatibility);
}
}; // namespace android