blob: 5e5618b9aade8214dae3fc81dba0469027b1feca [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "RenderEngine"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "SkiaGLRenderEngine.h"
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GrContextOptions.h>
#include <SkCanvas.h>
#include <SkColorFilter.h>
#include <SkColorMatrix.h>
#include <SkColorSpace.h>
#include <SkGraphics.h>
#include <SkImage.h>
#include <SkImageFilters.h>
#include <SkRegion.h>
#include <SkShadowUtils.h>
#include <SkSurface.h>
#include <android-base/stringprintf.h>
#include <gl/GrGLInterface.h>
#include <gui/TraceUtils.h>
#include <sync/sync.h>
#include <ui/BlurRegion.h>
#include <ui/DebugUtils.h>
#include <ui/GraphicBuffer.h>
#include <utils/Trace.h>
#include <cmath>
#include <cstdint>
#include <memory>
#include <numeric>
#include "../gl/GLExtensions.h"
#include "Cache.h"
#include "ColorSpaces.h"
#include "SkBlendMode.h"
#include "SkImageInfo.h"
#include "filters/BlurFilter.h"
#include "filters/GaussianBlurFilter.h"
#include "filters/KawaseBlurFilter.h"
#include "filters/LinearEffect.h"
#include "log/log_main.h"
#include "skia/debug/SkiaCapture.h"
#include "skia/debug/SkiaMemoryReporter.h"
#include "skia/filters/StretchShaderFactory.h"
#include "system/graphics-base-v1.0.h"
namespace {
// Debugging settings
static const bool kPrintLayerSettings = false;
static const bool kFlushAfterEveryLayer = false;
} // namespace
bool checkGlError(const char* op, int lineNumber);
namespace android {
namespace renderengine {
namespace skia {
using base::StringAppendF;
static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute,
EGLint wanted, EGLConfig* outConfig) {
EGLint numConfigs = -1, n = 0;
eglGetConfigs(dpy, nullptr, 0, &numConfigs);
std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR);
eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n);
configs.resize(n);
if (!configs.empty()) {
if (attribute != EGL_NONE) {
for (EGLConfig config : configs) {
EGLint value = 0;
eglGetConfigAttrib(dpy, config, attribute, &value);
if (wanted == value) {
*outConfig = config;
return NO_ERROR;
}
}
} else {
// just pick the first one
*outConfig = configs[0];
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType,
EGLConfig* config) {
// select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
// it is to be used with WIFI displays
status_t err;
EGLint wantedAttribute;
EGLint wantedAttributeValue;
std::vector<EGLint> attribs;
if (renderableType) {
const ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(format);
const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102;
// Default to 8 bits per channel.
const EGLint tmpAttribs[] = {
EGL_RENDERABLE_TYPE,
renderableType,
EGL_RECORDABLE_ANDROID,
EGL_TRUE,
EGL_SURFACE_TYPE,
EGL_WINDOW_BIT | EGL_PBUFFER_BIT,
EGL_FRAMEBUFFER_TARGET_ANDROID,
EGL_TRUE,
EGL_RED_SIZE,
is1010102 ? 10 : 8,
EGL_GREEN_SIZE,
is1010102 ? 10 : 8,
EGL_BLUE_SIZE,
is1010102 ? 10 : 8,
EGL_ALPHA_SIZE,
is1010102 ? 2 : 8,
EGL_NONE,
};
std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)),
std::back_inserter(attribs));
wantedAttribute = EGL_NONE;
wantedAttributeValue = EGL_NONE;
} else {
// if no renderable type specified, fallback to a simplified query
wantedAttribute = EGL_NATIVE_VISUAL_ID;
wantedAttributeValue = format;
}
err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue,
config);
if (err == NO_ERROR) {
EGLint caveat;
if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat))
ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
}
return err;
}
std::unique_ptr<SkiaGLRenderEngine> SkiaGLRenderEngine::create(
const RenderEngineCreationArgs& args) {
// initialize EGL for the default display
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (!eglInitialize(display, nullptr, nullptr)) {
LOG_ALWAYS_FATAL("failed to initialize EGL");
}
const auto eglVersion = eglQueryString(display, EGL_VERSION);
if (!eglVersion) {
checkGlError(__FUNCTION__, __LINE__);
LOG_ALWAYS_FATAL("eglQueryString(EGL_VERSION) failed");
}
const auto eglExtensions = eglQueryString(display, EGL_EXTENSIONS);
if (!eglExtensions) {
checkGlError(__FUNCTION__, __LINE__);
LOG_ALWAYS_FATAL("eglQueryString(EGL_EXTENSIONS) failed");
}
auto& extensions = gl::GLExtensions::getInstance();
extensions.initWithEGLStrings(eglVersion, eglExtensions);
// The code assumes that ES2 or later is available if this extension is
// supported.
EGLConfig config = EGL_NO_CONFIG_KHR;
if (!extensions.hasNoConfigContext()) {
config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true);
}
EGLContext protectedContext = EGL_NO_CONTEXT;
const std::optional<RenderEngine::ContextPriority> priority = createContextPriority(args);
if (args.enableProtectedContext && extensions.hasProtectedContent()) {
protectedContext =
createEglContext(display, config, nullptr, priority, Protection::PROTECTED);
ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context");
}
EGLContext ctxt =
createEglContext(display, config, protectedContext, priority, Protection::UNPROTECTED);
// if can't create a GL context, we can only abort.
LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed");
EGLSurface placeholder = EGL_NO_SURFACE;
if (!extensions.hasSurfacelessContext()) {
placeholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat,
Protection::UNPROTECTED);
LOG_ALWAYS_FATAL_IF(placeholder == EGL_NO_SURFACE, "can't create placeholder pbuffer");
}
EGLBoolean success = eglMakeCurrent(display, placeholder, placeholder, ctxt);
LOG_ALWAYS_FATAL_IF(!success, "can't make placeholder pbuffer current");
extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER),
glGetString(GL_VERSION), glGetString(GL_EXTENSIONS));
EGLSurface protectedPlaceholder = EGL_NO_SURFACE;
if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) {
protectedPlaceholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat,
Protection::PROTECTED);
ALOGE_IF(protectedPlaceholder == EGL_NO_SURFACE,
"can't create protected placeholder pbuffer");
}
// initialize the renderer while GL is current
std::unique_ptr<SkiaGLRenderEngine> engine =
std::make_unique<SkiaGLRenderEngine>(args, display, ctxt, placeholder, protectedContext,
protectedPlaceholder);
ALOGI("OpenGL ES informations:");
ALOGI("vendor : %s", extensions.getVendor());
ALOGI("renderer : %s", extensions.getRenderer());
ALOGI("version : %s", extensions.getVersion());
ALOGI("extensions: %s", extensions.getExtensions());
ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize());
ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims());
return engine;
}
std::future<void> SkiaGLRenderEngine::primeCache() {
Cache::primeShaderCache(this);
return {};
}
EGLConfig SkiaGLRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) {
status_t err;
EGLConfig config;
// First try to get an ES3 config
err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config);
if (err != NO_ERROR) {
// If ES3 fails, try to get an ES2 config
err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config);
if (err != NO_ERROR) {
// If ES2 still doesn't work, probably because we're on the emulator.
// try a simplified query
ALOGW("no suitable EGLConfig found, trying a simpler query");
err = selectEGLConfig(display, format, 0, &config);
if (err != NO_ERROR) {
// this EGL is too lame for android
LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up");
}
}
}
if (logConfig) {
// print some debugging info
EGLint r, g, b, a;
eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r);
eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g);
eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b);
eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a);
ALOGI("EGL information:");
ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR));
ALOGI("version : %s", eglQueryString(display, EGL_VERSION));
ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS));
ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported");
ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config);
}
return config;
}
sk_sp<SkData> SkiaGLRenderEngine::SkSLCacheMonitor::load(const SkData& key) {
// This "cache" does not actually cache anything. It just allows us to
// monitor Skia's internal cache. So this method always returns null.
return nullptr;
}
void SkiaGLRenderEngine::SkSLCacheMonitor::store(const SkData& key, const SkData& data,
const SkString& description) {
mShadersCachedSinceLastCall++;
}
void SkiaGLRenderEngine::assertShadersCompiled(int numShaders) {
const int cached = mSkSLCacheMonitor.shadersCachedSinceLastCall();
LOG_ALWAYS_FATAL_IF(cached != numShaders, "Attempted to cache %i shaders; cached %i",
numShaders, cached);
}
int SkiaGLRenderEngine::reportShadersCompiled() {
return mSkSLCacheMonitor.shadersCachedSinceLastCall();
}
SkiaGLRenderEngine::SkiaGLRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display,
EGLContext ctxt, EGLSurface placeholder,
EGLContext protectedContext, EGLSurface protectedPlaceholder)
: SkiaRenderEngine(args.renderEngineType),
mEGLDisplay(display),
mEGLContext(ctxt),
mPlaceholderSurface(placeholder),
mProtectedEGLContext(protectedContext),
mProtectedPlaceholderSurface(protectedPlaceholder),
mDefaultPixelFormat(static_cast<PixelFormat>(args.pixelFormat)),
mUseColorManagement(args.useColorManagement) {
sk_sp<const GrGLInterface> glInterface(GrGLCreateNativeInterface());
LOG_ALWAYS_FATAL_IF(!glInterface.get());
GrContextOptions options;
options.fDisableDriverCorrectnessWorkarounds = true;
options.fDisableDistanceFieldPaths = true;
options.fReducedShaderVariations = true;
options.fPersistentCache = &mSkSLCacheMonitor;
mGrContext = GrDirectContext::MakeGL(glInterface, options);
if (supportsProtectedContent()) {
useProtectedContext(true);
mProtectedGrContext = GrDirectContext::MakeGL(glInterface, options);
useProtectedContext(false);
}
if (args.supportsBackgroundBlur) {
ALOGD("Background Blurs Enabled");
mBlurFilter = new KawaseBlurFilter();
}
mCapture = std::make_unique<SkiaCapture>();
}
SkiaGLRenderEngine::~SkiaGLRenderEngine() {
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (mBlurFilter) {
delete mBlurFilter;
}
mCapture = nullptr;
mGrContext->flushAndSubmit(true);
mGrContext->abandonContext();
if (mProtectedGrContext) {
mProtectedGrContext->flushAndSubmit(true);
mProtectedGrContext->abandonContext();
}
if (mPlaceholderSurface != EGL_NO_SURFACE) {
eglDestroySurface(mEGLDisplay, mPlaceholderSurface);
}
if (mProtectedPlaceholderSurface != EGL_NO_SURFACE) {
eglDestroySurface(mEGLDisplay, mProtectedPlaceholderSurface);
}
if (mEGLContext != EGL_NO_CONTEXT) {
eglDestroyContext(mEGLDisplay, mEGLContext);
}
if (mProtectedEGLContext != EGL_NO_CONTEXT) {
eglDestroyContext(mEGLDisplay, mProtectedEGLContext);
}
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglTerminate(mEGLDisplay);
eglReleaseThread();
}
bool SkiaGLRenderEngine::supportsProtectedContent() const {
return mProtectedEGLContext != EGL_NO_CONTEXT;
}
GrDirectContext* SkiaGLRenderEngine::getActiveGrContext() const {
return mInProtectedContext ? mProtectedGrContext.get() : mGrContext.get();
}
void SkiaGLRenderEngine::useProtectedContext(bool useProtectedContext) {
if (useProtectedContext == mInProtectedContext ||
(useProtectedContext && !supportsProtectedContent())) {
return;
}
// release any scratch resources before switching into a new mode
if (getActiveGrContext()) {
getActiveGrContext()->purgeUnlockedResources(true);
}
const EGLSurface surface =
useProtectedContext ? mProtectedPlaceholderSurface : mPlaceholderSurface;
const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext;
if (eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE) {
mInProtectedContext = useProtectedContext;
// given that we are sharing the same thread between two GrContexts we need to
// make sure that the thread state is reset when switching between the two.
if (getActiveGrContext()) {
getActiveGrContext()->resetContext();
}
}
}
base::unique_fd SkiaGLRenderEngine::flush() {
ATRACE_CALL();
if (!gl::GLExtensions::getInstance().hasNativeFenceSync()) {
return base::unique_fd();
}
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr);
if (sync == EGL_NO_SYNC_KHR) {
ALOGW("failed to create EGL native fence sync: %#x", eglGetError());
return base::unique_fd();
}
// native fence fd will not be populated until flush() is done.
glFlush();
// get the fence fd
base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync));
eglDestroySyncKHR(mEGLDisplay, sync);
if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
ALOGW("failed to dup EGL native fence sync: %#x", eglGetError());
}
return fenceFd;
}
void SkiaGLRenderEngine::waitFence(base::borrowed_fd fenceFd) {
if (fenceFd.get() >= 0 && !waitGpuFence(fenceFd)) {
ATRACE_NAME("SkiaGLRenderEngine::waitFence");
sync_wait(fenceFd.get(), -1);
}
}
bool SkiaGLRenderEngine::waitGpuFence(base::borrowed_fd fenceFd) {
if (!gl::GLExtensions::getInstance().hasNativeFenceSync() ||
!gl::GLExtensions::getInstance().hasWaitSync()) {
return false;
}
// Duplicate the fence for passing to eglCreateSyncKHR.
base::unique_fd fenceDup(dup(fenceFd.get()));
if (fenceDup.get() < 0) {
ALOGE("failed to create duplicate fence fd: %d", fenceDup.get());
return false;
}
// release the fd and transfer the ownership to EGLSync
EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceDup.release(), EGL_NONE};
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
if (sync == EGL_NO_SYNC_KHR) {
ALOGE("failed to create EGL native fence sync: %#x", eglGetError());
return false;
}
// XXX: The spec draft is inconsistent as to whether this should return an
// EGLint or void. Ignore the return value for now, as it's not strictly
// needed.
eglWaitSyncKHR(mEGLDisplay, sync, 0);
EGLint error = eglGetError();
eglDestroySyncKHR(mEGLDisplay, sync);
if (error != EGL_SUCCESS) {
ALOGE("failed to wait for EGL native fence sync: %#x", error);
return false;
}
return true;
}
static float toDegrees(uint32_t transform) {
switch (transform) {
case ui::Transform::ROT_90:
return 90.0;
case ui::Transform::ROT_180:
return 180.0;
case ui::Transform::ROT_270:
return 270.0;
default:
return 0.0;
}
}
static SkColorMatrix toSkColorMatrix(const mat4& matrix) {
return SkColorMatrix(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], 0, matrix[0][1],
matrix[1][1], matrix[2][1], matrix[3][1], 0, matrix[0][2], matrix[1][2],
matrix[2][2], matrix[3][2], 0, matrix[0][3], matrix[1][3], matrix[2][3],
matrix[3][3], 0);
}
static bool needsToneMapping(ui::Dataspace sourceDataspace, ui::Dataspace destinationDataspace) {
int64_t sourceTransfer = sourceDataspace & HAL_DATASPACE_TRANSFER_MASK;
int64_t destTransfer = destinationDataspace & HAL_DATASPACE_TRANSFER_MASK;
// Treat unsupported dataspaces as srgb
if (destTransfer != HAL_DATASPACE_TRANSFER_LINEAR &&
destTransfer != HAL_DATASPACE_TRANSFER_HLG &&
destTransfer != HAL_DATASPACE_TRANSFER_ST2084) {
destTransfer = HAL_DATASPACE_TRANSFER_SRGB;
}
if (sourceTransfer != HAL_DATASPACE_TRANSFER_LINEAR &&
sourceTransfer != HAL_DATASPACE_TRANSFER_HLG &&
sourceTransfer != HAL_DATASPACE_TRANSFER_ST2084) {
sourceTransfer = HAL_DATASPACE_TRANSFER_SRGB;
}
const bool isSourceLinear = sourceTransfer == HAL_DATASPACE_TRANSFER_LINEAR;
const bool isSourceSRGB = sourceTransfer == HAL_DATASPACE_TRANSFER_SRGB;
const bool isDestLinear = destTransfer == HAL_DATASPACE_TRANSFER_LINEAR;
const bool isDestSRGB = destTransfer == HAL_DATASPACE_TRANSFER_SRGB;
return !(isSourceLinear && isDestSRGB) && !(isSourceSRGB && isDestLinear) &&
sourceTransfer != destTransfer;
}
void SkiaGLRenderEngine::mapExternalTextureBuffer(const sp<GraphicBuffer>& buffer,
bool isRenderable) {
// Only run this if RE is running on its own thread. This way the access to GL
// operations is guaranteed to be happening on the same thread.
if (mRenderEngineType != RenderEngineType::SKIA_GL_THREADED) {
return;
}
// We currently don't attempt to map a buffer if the buffer contains protected content
// because GPU resources for protected buffers is much more limited.
const bool isProtectedBuffer = buffer->getUsage() & GRALLOC_USAGE_PROTECTED;
if (isProtectedBuffer) {
return;
}
ATRACE_CALL();
// If we were to support caching protected buffers then we will need to switch the
// currently bound context if we are not already using the protected context (and subsequently
// switch back after the buffer is cached). However, for non-protected content we can bind
// the texture in either GL context because they are initialized with the same share_context
// which allows the texture state to be shared between them.
auto grContext = getActiveGrContext();
auto& cache = mTextureCache;
std::lock_guard<std::mutex> lock(mRenderingMutex);
mGraphicBufferExternalRefs[buffer->getId()]++;
if (const auto& iter = cache.find(buffer->getId()); iter == cache.end()) {
std::shared_ptr<AutoBackendTexture::LocalRef> imageTextureRef =
std::make_shared<AutoBackendTexture::LocalRef>(grContext,
buffer->toAHardwareBuffer(),
isRenderable, mTextureCleanupMgr);
cache.insert({buffer->getId(), imageTextureRef});
}
}
void SkiaGLRenderEngine::unmapExternalTextureBuffer(const sp<GraphicBuffer>& buffer) {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (const auto& iter = mGraphicBufferExternalRefs.find(buffer->getId());
iter != mGraphicBufferExternalRefs.end()) {
if (iter->second == 0) {
ALOGW("Attempted to unmap GraphicBuffer <id: %" PRId64
"> from RenderEngine texture, but the "
"ref count was already zero!",
buffer->getId());
mGraphicBufferExternalRefs.erase(buffer->getId());
return;
}
iter->second--;
// Swap contexts if needed prior to deleting this buffer
// See Issue 1 of
// https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt: even
// when a protected context and an unprotected context are part of the same share group,
// protected surfaces may not be accessed by an unprotected context, implying that protected
// surfaces may only be freed when a protected context is active.
const bool inProtected = mInProtectedContext;
useProtectedContext(buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
if (iter->second == 0) {
mTextureCache.erase(buffer->getId());
mGraphicBufferExternalRefs.erase(buffer->getId());
}
// Swap back to the previous context so that cached values of isProtected in SurfaceFlinger
// are up-to-date.
if (inProtected != mInProtectedContext) {
useProtectedContext(inProtected);
}
}
}
bool SkiaGLRenderEngine::canSkipPostRenderCleanup() const {
std::lock_guard<std::mutex> lock(mRenderingMutex);
return mTextureCleanupMgr.isEmpty();
}
void SkiaGLRenderEngine::cleanupPostRender() {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mRenderingMutex);
mTextureCleanupMgr.cleanup();
}
// Helper class intended to be used on the stack to ensure that texture cleanup
// is deferred until after this class goes out of scope.
class DeferTextureCleanup final {
public:
DeferTextureCleanup(AutoBackendTexture::CleanupManager& mgr) : mMgr(mgr) {
mMgr.setDeferredStatus(true);
}
~DeferTextureCleanup() { mMgr.setDeferredStatus(false); }
private:
DISALLOW_COPY_AND_ASSIGN(DeferTextureCleanup);
AutoBackendTexture::CleanupManager& mMgr;
};
sk_sp<SkShader> SkiaGLRenderEngine::createRuntimeEffectShader(
const RuntimeEffectShaderParameters& parameters) {
// The given surface will be stretched by HWUI via matrix transformation
// which gets similar results for most surfaces
// Determine later on if we need to leverage the stertch shader within
// surface flinger
const auto& stretchEffect = parameters.layer.stretchEffect;
auto shader = parameters.shader;
if (stretchEffect.hasEffect()) {
const auto targetBuffer = parameters.layer.source.buffer.buffer;
const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr;
if (graphicBuffer && parameters.shader) {
shader = mStretchShaderFactory.createSkShader(shader, stretchEffect);
}
}
if (parameters.requiresLinearEffect) {
const ui::Dataspace inputDataspace = mUseColorManagement ? parameters.layer.sourceDataspace
: ui::Dataspace::V0_SRGB_LINEAR;
const ui::Dataspace outputDataspace = mUseColorManagement
? parameters.display.outputDataspace
: ui::Dataspace::V0_SRGB_LINEAR;
auto effect =
shaders::LinearEffect{.inputDataspace = inputDataspace,
.outputDataspace = outputDataspace,
.undoPremultipliedAlpha = parameters.undoPremultipliedAlpha};
auto effectIter = mRuntimeEffects.find(effect);
sk_sp<SkRuntimeEffect> runtimeEffect = nullptr;
if (effectIter == mRuntimeEffects.end()) {
runtimeEffect = buildRuntimeEffect(effect);
mRuntimeEffects.insert({effect, runtimeEffect});
} else {
runtimeEffect = effectIter->second;
}
mat4 colorTransform = parameters.layer.colorTransform;
colorTransform *=
mat4::scale(vec4(parameters.layerDimmingRatio, parameters.layerDimmingRatio,
parameters.layerDimmingRatio, 1.f));
const auto targetBuffer = parameters.layer.source.buffer.buffer;
const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr;
const auto hardwareBuffer = graphicBuffer ? graphicBuffer->toAHardwareBuffer() : nullptr;
return createLinearEffectShader(parameters.shader, effect, runtimeEffect, colorTransform,
parameters.display.maxLuminance,
parameters.display.currentLuminanceNits,
parameters.layer.source.buffer.maxLuminanceNits,
hardwareBuffer);
}
return parameters.shader;
}
void SkiaGLRenderEngine::initCanvas(SkCanvas* canvas, const DisplaySettings& display) {
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
// Record display settings when capture is running.
std::stringstream displaySettings;
PrintTo(display, &displaySettings);
// Store the DisplaySettings in additional information.
canvas->drawAnnotation(SkRect::MakeEmpty(), "DisplaySettings",
SkData::MakeWithCString(displaySettings.str().c_str()));
}
// Before doing any drawing, let's make sure that we'll start at the origin of the display.
// Some displays don't start at 0,0 for example when we're mirroring the screen. Also, virtual
// displays might have different scaling when compared to the physical screen.
canvas->clipRect(getSkRect(display.physicalDisplay));
canvas->translate(display.physicalDisplay.left, display.physicalDisplay.top);
const auto clipWidth = display.clip.width();
const auto clipHeight = display.clip.height();
auto rotatedClipWidth = clipWidth;
auto rotatedClipHeight = clipHeight;
// Scale is contingent on the rotation result.
if (display.orientation & ui::Transform::ROT_90) {
std::swap(rotatedClipWidth, rotatedClipHeight);
}
const auto scaleX = static_cast<SkScalar>(display.physicalDisplay.width()) /
static_cast<SkScalar>(rotatedClipWidth);
const auto scaleY = static_cast<SkScalar>(display.physicalDisplay.height()) /
static_cast<SkScalar>(rotatedClipHeight);
canvas->scale(scaleX, scaleY);
// Canvas rotation is done by centering the clip window at the origin, rotating, translating
// back so that the top left corner of the clip is at (0, 0).
canvas->translate(rotatedClipWidth / 2, rotatedClipHeight / 2);
canvas->rotate(toDegrees(display.orientation));
canvas->translate(-clipWidth / 2, -clipHeight / 2);
canvas->translate(-display.clip.left, -display.clip.top);
}
class AutoSaveRestore {
public:
AutoSaveRestore(SkCanvas* canvas) : mCanvas(canvas) { mSaveCount = canvas->save(); }
~AutoSaveRestore() { restore(); }
void replace(SkCanvas* canvas) {
mCanvas = canvas;
mSaveCount = canvas->save();
}
void restore() {
if (mCanvas) {
mCanvas->restoreToCount(mSaveCount);
mCanvas = nullptr;
}
}
private:
SkCanvas* mCanvas;
int mSaveCount;
};
static SkRRect getBlurRRect(const BlurRegion& region) {
const auto rect = SkRect::MakeLTRB(region.left, region.top, region.right, region.bottom);
const SkVector radii[4] = {SkVector::Make(region.cornerRadiusTL, region.cornerRadiusTL),
SkVector::Make(region.cornerRadiusTR, region.cornerRadiusTR),
SkVector::Make(region.cornerRadiusBR, region.cornerRadiusBR),
SkVector::Make(region.cornerRadiusBL, region.cornerRadiusBL)};
SkRRect roundedRect;
roundedRect.setRectRadii(rect, radii);
return roundedRect;
}
static bool equalsWithinMargin(float expected, float value, float margin) {
LOG_ALWAYS_FATAL_IF(margin < 0.f, "Margin is negative!");
return std::abs(expected - value) < margin;
}
void SkiaGLRenderEngine::drawLayersInternal(
const std::shared_ptr<std::promise<RenderEngineResult>>&& resultPromise,
const DisplaySettings& display, const std::vector<LayerSettings>& layers,
const std::shared_ptr<ExternalTexture>& buffer, const bool /*useFramebufferCache*/,
base::unique_fd&& bufferFence) {
ATRACE_NAME("SkiaGL::drawLayers");
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (layers.empty()) {
ALOGV("Drawing empty layer stack");
resultPromise->set_value({NO_ERROR, base::unique_fd()});
return;
}
if (buffer == nullptr) {
ALOGE("No output buffer provided. Aborting GPU composition.");
resultPromise->set_value({BAD_VALUE, base::unique_fd()});
return;
}
validateOutputBufferUsage(buffer->getBuffer());
auto grContext = getActiveGrContext();
auto& cache = mTextureCache;
// any AutoBackendTexture deletions will now be deferred until cleanupPostRender is called
DeferTextureCleanup dtc(mTextureCleanupMgr);
std::shared_ptr<AutoBackendTexture::LocalRef> surfaceTextureRef;
if (const auto& it = cache.find(buffer->getBuffer()->getId()); it != cache.end()) {
surfaceTextureRef = it->second;
} else {
surfaceTextureRef =
std::make_shared<AutoBackendTexture::LocalRef>(grContext,
buffer->getBuffer()
->toAHardwareBuffer(),
true, mTextureCleanupMgr);
}
// wait on the buffer to be ready to use prior to using it
waitFence(bufferFence);
const ui::Dataspace dstDataspace =
mUseColorManagement ? display.outputDataspace : ui::Dataspace::V0_SRGB_LINEAR;
sk_sp<SkSurface> dstSurface = surfaceTextureRef->getOrCreateSurface(dstDataspace, grContext);
SkCanvas* dstCanvas = mCapture->tryCapture(dstSurface.get());
if (dstCanvas == nullptr) {
ALOGE("Cannot acquire canvas from Skia.");
resultPromise->set_value({BAD_VALUE, base::unique_fd()});
return;
}
// setup color filter if necessary
sk_sp<SkColorFilter> displayColorTransform;
if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) {
displayColorTransform = SkColorFilters::Matrix(toSkColorMatrix(display.colorTransform));
}
const bool ctModifiesAlpha =
displayColorTransform && !displayColorTransform->isAlphaUnchanged();
// Find the max layer white point to determine the max luminance of the scene...
const float maxLayerWhitePoint = std::transform_reduce(
layers.cbegin(), layers.cend(), 0.f,
[](float left, float right) { return std::max(left, right); },
[&](const auto& l) { return l.whitePointNits; });
// ...and compute the dimming ratio if dimming is requested
const float displayDimmingRatio = display.targetLuminanceNits > 0.f &&
maxLayerWhitePoint > 0.f && display.targetLuminanceNits > maxLayerWhitePoint
? maxLayerWhitePoint / display.targetLuminanceNits
: 1.f;
// Find if any layers have requested blur, we'll use that info to decide when to render to an
// offscreen buffer and when to render to the native buffer.
sk_sp<SkSurface> activeSurface(dstSurface);
SkCanvas* canvas = dstCanvas;
SkiaCapture::OffscreenState offscreenCaptureState;
const LayerSettings* blurCompositionLayer = nullptr;
if (mBlurFilter) {
bool requiresCompositionLayer = false;
for (const auto& layer : layers) {
// if the layer doesn't have blur or it is not visible then continue
if (!layerHasBlur(layer, ctModifiesAlpha)) {
continue;
}
if (layer.backgroundBlurRadius > 0 &&
layer.backgroundBlurRadius < mBlurFilter->getMaxCrossFadeRadius()) {
requiresCompositionLayer = true;
}
for (auto region : layer.blurRegions) {
if (region.blurRadius < mBlurFilter->getMaxCrossFadeRadius()) {
requiresCompositionLayer = true;
}
}
if (requiresCompositionLayer) {
activeSurface = dstSurface->makeSurface(dstSurface->imageInfo());
canvas = mCapture->tryOffscreenCapture(activeSurface.get(), &offscreenCaptureState);
blurCompositionLayer = &layer;
break;
}
}
}
AutoSaveRestore surfaceAutoSaveRestore(canvas);
// Clear the entire canvas with a transparent black to prevent ghost images.
canvas->clear(SK_ColorTRANSPARENT);
initCanvas(canvas, display);
for (const auto& layer : layers) {
ATRACE_FORMAT("DrawLayer: %s", layer.name.c_str());
if (kPrintLayerSettings) {
std::stringstream ls;
PrintTo(layer, &ls);
auto debugs = ls.str();
int pos = 0;
while (pos < debugs.size()) {
ALOGD("cache_debug %s", debugs.substr(pos, 1000).c_str());
pos += 1000;
}
}
sk_sp<SkImage> blurInput;
if (blurCompositionLayer == &layer) {
LOG_ALWAYS_FATAL_IF(activeSurface == dstSurface);
LOG_ALWAYS_FATAL_IF(canvas == dstCanvas);
// save a snapshot of the activeSurface to use as input to the blur shaders
blurInput = activeSurface->makeImageSnapshot();
// TODO we could skip this step if we know the blur will cover the entire image
// blit the offscreen framebuffer into the destination AHB
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
uint64_t id = mCapture->endOffscreenCapture(&offscreenCaptureState);
dstCanvas->drawAnnotation(SkRect::Make(dstCanvas->imageInfo().dimensions()),
String8::format("SurfaceID|%" PRId64, id).c_str(),
nullptr);
dstCanvas->drawImage(blurInput, 0, 0, SkSamplingOptions(), &paint);
} else {
activeSurface->draw(dstCanvas, 0, 0, SkSamplingOptions(), &paint);
}
// assign dstCanvas to canvas and ensure that the canvas state is up to date
canvas = dstCanvas;
surfaceAutoSaveRestore.replace(canvas);
initCanvas(canvas, display);
LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getSaveCount() !=
dstSurface->getCanvas()->getSaveCount());
LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getTotalMatrix() !=
dstSurface->getCanvas()->getTotalMatrix());
// assign dstSurface to activeSurface
activeSurface = dstSurface;
}
SkAutoCanvasRestore layerAutoSaveRestore(canvas, true);
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
// Record the name of the layer if the capture is running.
std::stringstream layerSettings;
PrintTo(layer, &layerSettings);
// Store the LayerSettings in additional information.
canvas->drawAnnotation(SkRect::MakeEmpty(), layer.name.c_str(),
SkData::MakeWithCString(layerSettings.str().c_str()));
}
// Layers have a local transform that should be applied to them
canvas->concat(getSkM44(layer.geometry.positionTransform).asM33());
const auto [bounds, roundRectClip] =
getBoundsAndClip(layer.geometry.boundaries, layer.geometry.roundedCornersCrop,
layer.geometry.roundedCornersRadius);
if (mBlurFilter && layerHasBlur(layer, ctModifiesAlpha)) {
std::unordered_map<uint32_t, sk_sp<SkImage>> cachedBlurs;
// if multiple layers have blur, then we need to take a snapshot now because
// only the lowest layer will have blurImage populated earlier
if (!blurInput) {
blurInput = activeSurface->makeImageSnapshot();
}
// rect to be blurred in the coordinate space of blurInput
const auto blurRect = canvas->getTotalMatrix().mapRect(bounds.rect());
// if the clip needs to be applied then apply it now and make sure
// it is restored before we attempt to draw any shadows.
SkAutoCanvasRestore acr(canvas, true);
if (!roundRectClip.isEmpty()) {
canvas->clipRRect(roundRectClip, true);
}
// TODO(b/182216890): Filter out empty layers earlier
if (blurRect.width() > 0 && blurRect.height() > 0) {
if (layer.backgroundBlurRadius > 0) {
ATRACE_NAME("BackgroundBlur");
auto blurredImage = mBlurFilter->generate(grContext, layer.backgroundBlurRadius,
blurInput, blurRect);
cachedBlurs[layer.backgroundBlurRadius] = blurredImage;
mBlurFilter->drawBlurRegion(canvas, bounds, layer.backgroundBlurRadius, 1.0f,
blurRect, blurredImage, blurInput);
}
canvas->concat(getSkM44(layer.blurRegionTransform).asM33());
for (auto region : layer.blurRegions) {
if (cachedBlurs[region.blurRadius] == nullptr) {
ATRACE_NAME("BlurRegion");
cachedBlurs[region.blurRadius] =
mBlurFilter->generate(grContext, region.blurRadius, blurInput,
blurRect);
}
mBlurFilter->drawBlurRegion(canvas, getBlurRRect(region), region.blurRadius,
region.alpha, blurRect,
cachedBlurs[region.blurRadius], blurInput);
}
}
}
if (layer.shadow.length > 0) {
// This would require a new parameter/flag to SkShadowUtils::DrawShadow
LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with a shadow");
SkRRect shadowBounds, shadowClip;
if (layer.geometry.boundaries == layer.shadow.boundaries) {
shadowBounds = bounds;
shadowClip = roundRectClip;
} else {
std::tie(shadowBounds, shadowClip) =
getBoundsAndClip(layer.shadow.boundaries, layer.geometry.roundedCornersCrop,
layer.geometry.roundedCornersRadius);
}
// Technically, if bounds is a rect and roundRectClip is not empty,
// it means that the bounds and roundedCornersCrop were different
// enough that we should intersect them to find the proper shadow.
// In practice, this often happens when the two rectangles appear to
// not match due to rounding errors. Draw the rounded version, which
// looks more like the intent.
const auto& rrect =
shadowBounds.isRect() && !shadowClip.isEmpty() ? shadowClip : shadowBounds;
drawShadow(canvas, rrect, layer.shadow);
}
const float layerDimmingRatio = layer.whitePointNits <= 0.f
? displayDimmingRatio
: (layer.whitePointNits / maxLayerWhitePoint) * displayDimmingRatio;
const bool requiresLinearEffect = layer.colorTransform != mat4() ||
(mUseColorManagement &&
needsToneMapping(layer.sourceDataspace, display.outputDataspace)) ||
!equalsWithinMargin(1.f, layerDimmingRatio, 0.001f);
// quick abort from drawing the remaining portion of the layer
if (layer.skipContentDraw ||
(layer.alpha == 0 && !requiresLinearEffect && !layer.disableBlending &&
(!displayColorTransform || displayColorTransform->isAlphaUnchanged()))) {
continue;
}
// If we need to map to linear space or color management is disabled, then mark the source
// image with the same colorspace as the destination surface so that Skia's color
// management is a no-op.
const ui::Dataspace layerDataspace = (!mUseColorManagement || requiresLinearEffect)
? dstDataspace
: layer.sourceDataspace;
SkPaint paint;
if (layer.source.buffer.buffer) {
ATRACE_NAME("DrawImage");
validateInputBufferUsage(layer.source.buffer.buffer->getBuffer());
const auto& item = layer.source.buffer;
std::shared_ptr<AutoBackendTexture::LocalRef> imageTextureRef = nullptr;
if (const auto& iter = cache.find(item.buffer->getBuffer()->getId());
iter != cache.end()) {
imageTextureRef = iter->second;
} else {
// If we didn't find the image in the cache, then create a local ref but don't cache
// it. If we're using skia, we're guaranteed to run on a dedicated GPU thread so if
// we didn't find anything in the cache then we intentionally did not cache this
// buffer's resources.
imageTextureRef = std::make_shared<
AutoBackendTexture::LocalRef>(grContext,
item.buffer->getBuffer()->toAHardwareBuffer(),
false, mTextureCleanupMgr);
}
// if the layer's buffer has a fence, then we must must respect the fence prior to using
// the buffer.
if (layer.source.buffer.fence != nullptr) {
waitFence(layer.source.buffer.fence->get());
}
// isOpaque means we need to ignore the alpha in the image,
// replacing it with the alpha specified by the LayerSettings. See
// https://developer.android.com/reference/android/view/SurfaceControl.Builder#setOpaque(boolean)
// The proper way to do this is to use an SkColorType that ignores
// alpha, like kRGB_888x_SkColorType, and that is used if the
// incoming image is kRGBA_8888_SkColorType. However, the incoming
// image may be kRGBA_F16_SkColorType, for which there is no RGBX
// SkColorType, or kRGBA_1010102_SkColorType, for which we have
// kRGB_101010x_SkColorType, but it is not yet supported as a source
// on the GPU. (Adding both is tracked in skbug.com/12048.) In the
// meantime, we'll use a workaround that works unless we need to do
// any color conversion. The workaround requires that we pretend the
// image is already premultiplied, so that we do not premultiply it
// before applying SkBlendMode::kPlus.
const bool useIsOpaqueWorkaround = item.isOpaque &&
(imageTextureRef->colorType() == kRGBA_1010102_SkColorType ||
imageTextureRef->colorType() == kRGBA_F16_SkColorType);
const auto alphaType = useIsOpaqueWorkaround ? kPremul_SkAlphaType
: item.isOpaque ? kOpaque_SkAlphaType
: item.usePremultipliedAlpha ? kPremul_SkAlphaType
: kUnpremul_SkAlphaType;
sk_sp<SkImage> image = imageTextureRef->makeImage(layerDataspace, alphaType, grContext);
auto texMatrix = getSkM44(item.textureTransform).asM33();
// textureTansform was intended to be passed directly into a shader, so when
// building the total matrix with the textureTransform we need to first
// normalize it, then apply the textureTransform, then scale back up.
texMatrix.preScale(1.0f / bounds.width(), 1.0f / bounds.height());
texMatrix.postScale(image->width(), image->height());
SkMatrix matrix;
if (!texMatrix.invert(&matrix)) {
matrix = texMatrix;
}
// The shader does not respect the translation, so we add it to the texture
// transform for the SkImage. This will make sure that the correct layer contents
// are drawn in the correct part of the screen.
matrix.postTranslate(bounds.rect().fLeft, bounds.rect().fTop);
sk_sp<SkShader> shader;
if (layer.source.buffer.useTextureFiltering) {
shader = image->makeShader(SkTileMode::kClamp, SkTileMode::kClamp,
SkSamplingOptions(
{SkFilterMode::kLinear, SkMipmapMode::kNone}),
&matrix);
} else {
shader = image->makeShader(SkSamplingOptions(), matrix);
}
if (useIsOpaqueWorkaround) {
shader = SkShaders::Blend(SkBlendMode::kPlus, shader,
SkShaders::Color(SkColors::kBlack,
toSkColorSpace(layerDataspace)));
}
paint.setShader(createRuntimeEffectShader(
RuntimeEffectShaderParameters{.shader = shader,
.layer = layer,
.display = display,
.undoPremultipliedAlpha = !item.isOpaque &&
item.usePremultipliedAlpha,
.requiresLinearEffect = requiresLinearEffect,
.layerDimmingRatio = layerDimmingRatio}));
// Turn on dithering when dimming beyond this threshold.
static constexpr float kDimmingThreshold = 0.2f;
if (layerDimmingRatio <= kDimmingThreshold) {
paint.setDither(true);
}
paint.setAlphaf(layer.alpha);
if (imageTextureRef->colorType() == kAlpha_8_SkColorType) {
LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with A8");
// SysUI creates the alpha layer as a coverage layer, which is
// appropriate for the DPU. Use a color matrix to convert it to
// a mask.
// TODO (b/219525258): Handle input as a mask.
//
// The color matrix will convert A8 pixels with no alpha to
// black, as described by this vector. If the display handles
// the color transform, we need to invert it to find the color
// that will result in black after the DPU applies the transform.
SkV4 black{0.0f, 0.0f, 0.0f, 1.0f}; // r, g, b, a
if (display.colorTransform != mat4() && display.deviceHandlesColorTransform) {
SkM44 colorSpaceMatrix = getSkM44(display.colorTransform);
if (colorSpaceMatrix.invert(&colorSpaceMatrix)) {
black = colorSpaceMatrix * black;
} else {
// We'll just have to use 0,0,0 as black, which should
// be close to correct.
ALOGI("Could not invert colorTransform!");
}
}
SkColorMatrix colorMatrix(0, 0, 0, 0, black[0],
0, 0, 0, 0, black[1],
0, 0, 0, 0, black[2],
0, 0, 0, -1, 1);
if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) {
// On the other hand, if the device doesn't handle it, we
// have to apply it ourselves.
colorMatrix.postConcat(toSkColorMatrix(display.colorTransform));
}
paint.setColorFilter(SkColorFilters::Matrix(colorMatrix));
}
} else {
ATRACE_NAME("DrawColor");
const auto color = layer.source.solidColor;
sk_sp<SkShader> shader = SkShaders::Color(SkColor4f{.fR = color.r,
.fG = color.g,
.fB = color.b,
.fA = layer.alpha},
toSkColorSpace(layerDataspace));
paint.setShader(createRuntimeEffectShader(
RuntimeEffectShaderParameters{.shader = shader,
.layer = layer,
.display = display,
.undoPremultipliedAlpha = false,
.requiresLinearEffect = requiresLinearEffect,
.layerDimmingRatio = layerDimmingRatio}));
}
if (layer.disableBlending) {
paint.setBlendMode(SkBlendMode::kSrc);
}
// An A8 buffer will already have the proper color filter attached to
// its paint, including the displayColorTransform as needed.
if (!paint.getColorFilter()) {
paint.setColorFilter(displayColorTransform);
}
if (!roundRectClip.isEmpty()) {
canvas->clipRRect(roundRectClip, true);
}
if (!bounds.isRect()) {
paint.setAntiAlias(true);
canvas->drawRRect(bounds, paint);
} else {
canvas->drawRect(bounds.rect(), paint);
}
if (kFlushAfterEveryLayer) {
ATRACE_NAME("flush surface");
activeSurface->flush();
}
}
surfaceAutoSaveRestore.restore();
mCapture->endCapture();
{
ATRACE_NAME("flush surface");
LOG_ALWAYS_FATAL_IF(activeSurface != dstSurface);
activeSurface->flush();
}
base::unique_fd drawFence = flush();
// If flush failed or we don't support native fences, we need to force the
// gl command stream to be executed.
bool requireSync = drawFence.get() < 0;
if (requireSync) {
ATRACE_BEGIN("Submit(sync=true)");
} else {
ATRACE_BEGIN("Submit(sync=false)");
}
bool success = grContext->submit(requireSync);
ATRACE_END();
if (!success) {
ALOGE("Failed to flush RenderEngine commands");
// Chances are, something illegal happened (either the caller passed
// us bad parameters, or we messed up our shader generation).
resultPromise->set_value({INVALID_OPERATION, std::move(drawFence)});
return;
}
// checkErrors();
resultPromise->set_value({NO_ERROR, std::move(drawFence)});
return;
}
inline SkRect SkiaGLRenderEngine::getSkRect(const FloatRect& rect) {
return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom);
}
inline SkRect SkiaGLRenderEngine::getSkRect(const Rect& rect) {
return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom);
}
/**
* Verifies that common, simple bounds + clip combinations can be converted into
* a single RRect draw call returning true if possible. If true the radii parameter
* will be filled with the correct radii values that combined with bounds param will
* produce the insected roundRect. If false, the returned state of the radii param is undefined.
*/
static bool intersectionIsRoundRect(const SkRect& bounds, const SkRect& crop,
const SkRect& insetCrop, float cornerRadius,
SkVector radii[4]) {
const bool leftEqual = bounds.fLeft == crop.fLeft;
const bool topEqual = bounds.fTop == crop.fTop;
const bool rightEqual = bounds.fRight == crop.fRight;
const bool bottomEqual = bounds.fBottom == crop.fBottom;
// In the event that the corners of the bounds only partially align with the crop we
// need to ensure that the resulting shape can still be represented as a round rect.
// In particular the round rect implementation will scale the value of all corner radii
// if the sum of the radius along any edge is greater than the length of that edge.
// See https://www.w3.org/TR/css-backgrounds-3/#corner-overlap
const bool requiredWidth = bounds.width() > (cornerRadius * 2);
const bool requiredHeight = bounds.height() > (cornerRadius * 2);
if (!requiredWidth || !requiredHeight) {
return false;
}
// Check each cropped corner to ensure that it exactly matches the crop or its corner is
// contained within the cropped shape and does not need rounded.
// compute the UpperLeft corner radius
if (leftEqual && topEqual) {
radii[0].set(cornerRadius, cornerRadius);
} else if ((leftEqual && bounds.fTop >= insetCrop.fTop) ||
(topEqual && bounds.fLeft >= insetCrop.fLeft)) {
radii[0].set(0, 0);
} else {
return false;
}
// compute the UpperRight corner radius
if (rightEqual && topEqual) {
radii[1].set(cornerRadius, cornerRadius);
} else if ((rightEqual && bounds.fTop >= insetCrop.fTop) ||
(topEqual && bounds.fRight <= insetCrop.fRight)) {
radii[1].set(0, 0);
} else {
return false;
}
// compute the BottomRight corner radius
if (rightEqual && bottomEqual) {
radii[2].set(cornerRadius, cornerRadius);
} else if ((rightEqual && bounds.fBottom <= insetCrop.fBottom) ||
(bottomEqual && bounds.fRight <= insetCrop.fRight)) {
radii[2].set(0, 0);
} else {
return false;
}
// compute the BottomLeft corner radius
if (leftEqual && bottomEqual) {
radii[3].set(cornerRadius, cornerRadius);
} else if ((leftEqual && bounds.fBottom <= insetCrop.fBottom) ||
(bottomEqual && bounds.fLeft >= insetCrop.fLeft)) {
radii[3].set(0, 0);
} else {
return false;
}
return true;
}
inline std::pair<SkRRect, SkRRect> SkiaGLRenderEngine::getBoundsAndClip(const FloatRect& boundsRect,
const FloatRect& cropRect,
const float cornerRadius) {
const SkRect bounds = getSkRect(boundsRect);
const SkRect crop = getSkRect(cropRect);
SkRRect clip;
if (cornerRadius > 0) {
// it the crop and the bounds are equivalent or there is no crop then we don't need a clip
if (bounds == crop || crop.isEmpty()) {
return {SkRRect::MakeRectXY(bounds, cornerRadius, cornerRadius), clip};
}
// This makes an effort to speed up common, simple bounds + clip combinations by
// converting them to a single RRect draw. It is possible there are other cases
// that can be converted.
if (crop.contains(bounds)) {
const auto insetCrop = crop.makeInset(cornerRadius, cornerRadius);
if (insetCrop.contains(bounds)) {
return {SkRRect::MakeRect(bounds), clip}; // clip is empty - no rounding required
}
SkVector radii[4];
if (intersectionIsRoundRect(bounds, crop, insetCrop, cornerRadius, radii)) {
SkRRect intersectionBounds;
intersectionBounds.setRectRadii(bounds, radii);
return {intersectionBounds, clip};
}
}
// we didn't hit any of our fast paths so set the clip to the cropRect
clip.setRectXY(crop, cornerRadius, cornerRadius);
}
// if we hit this point then we either don't have rounded corners or we are going to rely
// on the clip to round the corners for us
return {SkRRect::MakeRect(bounds), clip};
}
inline bool SkiaGLRenderEngine::layerHasBlur(const LayerSettings& layer,
bool colorTransformModifiesAlpha) {
if (layer.backgroundBlurRadius > 0 || layer.blurRegions.size()) {
// return false if the content is opaque and would therefore occlude the blur
const bool opaqueContent = !layer.source.buffer.buffer || layer.source.buffer.isOpaque;
const bool opaqueAlpha = layer.alpha == 1.0f && !colorTransformModifiesAlpha;
return layer.skipContentDraw || !(opaqueContent && opaqueAlpha);
}
return false;
}
inline SkColor SkiaGLRenderEngine::getSkColor(const vec4& color) {
return SkColorSetARGB(color.a * 255, color.r * 255, color.g * 255, color.b * 255);
}
inline SkM44 SkiaGLRenderEngine::getSkM44(const mat4& matrix) {
return SkM44(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0],
matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1],
matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2],
matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3]);
}
inline SkPoint3 SkiaGLRenderEngine::getSkPoint3(const vec3& vector) {
return SkPoint3::Make(vector.x, vector.y, vector.z);
}
size_t SkiaGLRenderEngine::getMaxTextureSize() const {
return mGrContext->maxTextureSize();
}
size_t SkiaGLRenderEngine::getMaxViewportDims() const {
return mGrContext->maxRenderTargetSize();
}
void SkiaGLRenderEngine::drawShadow(SkCanvas* canvas, const SkRRect& casterRRect,
const ShadowSettings& settings) {
ATRACE_CALL();
const float casterZ = settings.length / 2.0f;
const auto flags =
settings.casterIsTranslucent ? kTransparentOccluder_ShadowFlag : kNone_ShadowFlag;
SkShadowUtils::DrawShadow(canvas, SkPath::RRect(casterRRect), SkPoint3::Make(0, 0, casterZ),
getSkPoint3(settings.lightPos), settings.lightRadius,
getSkColor(settings.ambientColor), getSkColor(settings.spotColor),
flags);
}
EGLContext SkiaGLRenderEngine::createEglContext(EGLDisplay display, EGLConfig config,
EGLContext shareContext,
std::optional<ContextPriority> contextPriority,
Protection protection) {
EGLint renderableType = 0;
if (config == EGL_NO_CONFIG_KHR) {
renderableType = EGL_OPENGL_ES3_BIT;
} else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) {
LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE");
}
EGLint contextClientVersion = 0;
if (renderableType & EGL_OPENGL_ES3_BIT) {
contextClientVersion = 3;
} else if (renderableType & EGL_OPENGL_ES2_BIT) {
contextClientVersion = 2;
} else if (renderableType & EGL_OPENGL_ES_BIT) {
contextClientVersion = 1;
} else {
LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs");
}
std::vector<EGLint> contextAttributes;
contextAttributes.reserve(7);
contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION);
contextAttributes.push_back(contextClientVersion);
if (contextPriority) {
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG);
switch (*contextPriority) {
case ContextPriority::REALTIME:
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_REALTIME_NV);
break;
case ContextPriority::MEDIUM:
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_MEDIUM_IMG);
break;
case ContextPriority::LOW:
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LOW_IMG);
break;
case ContextPriority::HIGH:
default:
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG);
break;
}
}
if (protection == Protection::PROTECTED) {
contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT);
contextAttributes.push_back(EGL_TRUE);
}
contextAttributes.push_back(EGL_NONE);
EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data());
if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) {
// eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus
// EGL_NO_CONTEXT so that we can abort.
if (config != EGL_NO_CONFIG_KHR) {
return context;
}
// If |config| is EGL_NO_CONFIG_KHR, we speculatively try to create GLES 3 context, so we
// should try to fall back to GLES 2.
contextAttributes[1] = 2;
context = eglCreateContext(display, config, shareContext, contextAttributes.data());
}
return context;
}
std::optional<RenderEngine::ContextPriority> SkiaGLRenderEngine::createContextPriority(
const RenderEngineCreationArgs& args) {
if (!gl::GLExtensions::getInstance().hasContextPriority()) {
return std::nullopt;
}
switch (args.contextPriority) {
case RenderEngine::ContextPriority::REALTIME:
if (gl::GLExtensions::getInstance().hasRealtimePriority()) {
return RenderEngine::ContextPriority::REALTIME;
} else {
ALOGI("Realtime priority unsupported, degrading gracefully to high priority");
return RenderEngine::ContextPriority::HIGH;
}
case RenderEngine::ContextPriority::HIGH:
case RenderEngine::ContextPriority::MEDIUM:
case RenderEngine::ContextPriority::LOW:
return args.contextPriority;
default:
return std::nullopt;
}
}
EGLSurface SkiaGLRenderEngine::createPlaceholderEglPbufferSurface(EGLDisplay display,
EGLConfig config, int hwcFormat,
Protection protection) {
EGLConfig placeholderConfig = config;
if (placeholderConfig == EGL_NO_CONFIG_KHR) {
placeholderConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
}
std::vector<EGLint> attributes;
attributes.reserve(7);
attributes.push_back(EGL_WIDTH);
attributes.push_back(1);
attributes.push_back(EGL_HEIGHT);
attributes.push_back(1);
if (protection == Protection::PROTECTED) {
attributes.push_back(EGL_PROTECTED_CONTENT_EXT);
attributes.push_back(EGL_TRUE);
}
attributes.push_back(EGL_NONE);
return eglCreatePbufferSurface(display, placeholderConfig, attributes.data());
}
int SkiaGLRenderEngine::getContextPriority() {
int value;
eglQueryContext(mEGLDisplay, mEGLContext, EGL_CONTEXT_PRIORITY_LEVEL_IMG, &value);
return value;
}
void SkiaGLRenderEngine::onActiveDisplaySizeChanged(ui::Size size) {
// This cache multiplier was selected based on review of cache sizes relative
// to the screen resolution. Looking at the worst case memory needed by blur (~1.5x),
// shadows (~1x), and general data structures (e.g. vertex buffers) we selected this as a
// conservative default based on that analysis.
const float SURFACE_SIZE_MULTIPLIER = 3.5f * bytesPerPixel(mDefaultPixelFormat);
const int maxResourceBytes = size.width * size.height * SURFACE_SIZE_MULTIPLIER;
// start by resizing the current context
getActiveGrContext()->setResourceCacheLimit(maxResourceBytes);
// if it is possible to switch contexts then we will resize the other context
const bool originalProtectedState = mInProtectedContext;
useProtectedContext(!mInProtectedContext);
if (mInProtectedContext != originalProtectedState) {
getActiveGrContext()->setResourceCacheLimit(maxResourceBytes);
// reset back to the initial context that was active when this method was called
useProtectedContext(originalProtectedState);
}
}
void SkiaGLRenderEngine::dump(std::string& result) {
const gl::GLExtensions& extensions = gl::GLExtensions::getInstance();
StringAppendF(&result, "\n ------------RE-----------------\n");
StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion());
StringAppendF(&result, "%s\n", extensions.getEGLExtensions());
StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(),
extensions.getVersion());
StringAppendF(&result, "%s\n", extensions.getExtensions());
StringAppendF(&result, "RenderEngine supports protected context: %d\n",
supportsProtectedContent());
StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext);
StringAppendF(&result, "RenderEngine shaders cached since last dump/primeCache: %d\n",
mSkSLCacheMonitor.shadersCachedSinceLastCall());
std::vector<ResourcePair> cpuResourceMap = {
{"skia/sk_resource_cache/bitmap_", "Bitmaps"},
{"skia/sk_resource_cache/rrect-blur_", "Masks"},
{"skia/sk_resource_cache/rects-blur_", "Masks"},
{"skia/sk_resource_cache/tessellated", "Shadows"},
{"skia", "Other"},
};
SkiaMemoryReporter cpuReporter(cpuResourceMap, false);
SkGraphics::DumpMemoryStatistics(&cpuReporter);
StringAppendF(&result, "Skia CPU Caches: ");
cpuReporter.logTotals(result);
cpuReporter.logOutput(result);
{
std::lock_guard<std::mutex> lock(mRenderingMutex);
std::vector<ResourcePair> gpuResourceMap = {
{"texture_renderbuffer", "Texture/RenderBuffer"},
{"texture", "Texture"},
{"gr_text_blob_cache", "Text"},
{"skia", "Other"},
};
SkiaMemoryReporter gpuReporter(gpuResourceMap, true);
mGrContext->dumpMemoryStatistics(&gpuReporter);
StringAppendF(&result, "Skia's GPU Caches: ");
gpuReporter.logTotals(result);
gpuReporter.logOutput(result);
StringAppendF(&result, "Skia's Wrapped Objects:\n");
gpuReporter.logOutput(result, true);
StringAppendF(&result, "RenderEngine tracked buffers: %zu\n",
mGraphicBufferExternalRefs.size());
StringAppendF(&result, "Dumping buffer ids...\n");
for (const auto& [id, refCounts] : mGraphicBufferExternalRefs) {
StringAppendF(&result, "- 0x%" PRIx64 " - %d refs \n", id, refCounts);
}
StringAppendF(&result, "RenderEngine AHB/BackendTexture cache size: %zu\n",
mTextureCache.size());
StringAppendF(&result, "Dumping buffer ids...\n");
// TODO(178539829): It would be nice to know which layer these are coming from and what
// the texture sizes are.
for (const auto& [id, unused] : mTextureCache) {
StringAppendF(&result, "- 0x%" PRIx64 "\n", id);
}
StringAppendF(&result, "\n");
SkiaMemoryReporter gpuProtectedReporter(gpuResourceMap, true);
if (mProtectedGrContext) {
mProtectedGrContext->dumpMemoryStatistics(&gpuProtectedReporter);
}
StringAppendF(&result, "Skia's GPU Protected Caches: ");
gpuProtectedReporter.logTotals(result);
gpuProtectedReporter.logOutput(result);
StringAppendF(&result, "Skia's Protected Wrapped Objects:\n");
gpuProtectedReporter.logOutput(result, true);
StringAppendF(&result, "\n");
StringAppendF(&result, "RenderEngine runtime effects: %zu\n", mRuntimeEffects.size());
for (const auto& [linearEffect, unused] : mRuntimeEffects) {
StringAppendF(&result, "- inputDataspace: %s\n",
dataspaceDetails(
static_cast<android_dataspace>(linearEffect.inputDataspace))
.c_str());
StringAppendF(&result, "- outputDataspace: %s\n",
dataspaceDetails(
static_cast<android_dataspace>(linearEffect.outputDataspace))
.c_str());
StringAppendF(&result, "undoPremultipliedAlpha: %s\n",
linearEffect.undoPremultipliedAlpha ? "true" : "false");
}
}
StringAppendF(&result, "\n");
}
} // namespace skia
} // namespace renderengine
} // namespace android