Jason Sams | fcf7231 | 2011-04-20 15:09:01 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2011 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "rsMatrix2x2.h" |
| 18 | #include "rsMatrix3x3.h" |
| 19 | #include "rsMatrix4x4.h" |
| 20 | |
| 21 | #include "stdlib.h" |
| 22 | #include "string.h" |
| 23 | #include "math.h" |
| 24 | |
| 25 | using namespace android; |
| 26 | using namespace android::renderscript; |
| 27 | |
| 28 | ////////////////////////////////////////////////////////////////////////////// |
| 29 | // Heavy math functions |
| 30 | ////////////////////////////////////////////////////////////////////////////// |
| 31 | |
| 32 | |
| 33 | |
| 34 | |
| 35 | |
| 36 | // Returns true if the matrix was successfully inversed |
| 37 | bool Matrix4x4::inverse() { |
| 38 | rs_matrix4x4 result; |
| 39 | |
| 40 | int i, j; |
| 41 | for (i = 0; i < 4; ++i) { |
| 42 | for (j = 0; j < 4; ++j) { |
| 43 | // computeCofactor for int i, int j |
| 44 | int c0 = (i+1) % 4; |
| 45 | int c1 = (i+2) % 4; |
| 46 | int c2 = (i+3) % 4; |
| 47 | int r0 = (j+1) % 4; |
| 48 | int r1 = (j+2) % 4; |
| 49 | int r2 = (j+3) % 4; |
| 50 | |
| 51 | float minor = |
| 52 | (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) |
| 53 | - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) |
| 54 | + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); |
| 55 | |
| 56 | float cofactor = (i+j) & 1 ? -minor : minor; |
| 57 | |
| 58 | result.m[4*i + j] = cofactor; |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | // Dot product of 0th column of source and 0th row of result |
| 63 | float det = m[0]*result.m[0] + m[4]*result.m[1] + |
| 64 | m[8]*result.m[2] + m[12]*result.m[3]; |
| 65 | |
| 66 | if (fabs(det) < 1e-6) { |
| 67 | return false; |
| 68 | } |
| 69 | |
| 70 | det = 1.0f / det; |
| 71 | for (i = 0; i < 16; ++i) { |
| 72 | m[i] = result.m[i] * det; |
| 73 | } |
| 74 | |
| 75 | return true; |
| 76 | } |
| 77 | |
| 78 | // Returns true if the matrix was successfully inversed |
| 79 | bool Matrix4x4::inverseTranspose() { |
| 80 | rs_matrix4x4 result; |
| 81 | |
| 82 | int i, j; |
| 83 | for (i = 0; i < 4; ++i) { |
| 84 | for (j = 0; j < 4; ++j) { |
| 85 | // computeCofactor for int i, int j |
| 86 | int c0 = (i+1) % 4; |
| 87 | int c1 = (i+2) % 4; |
| 88 | int c2 = (i+3) % 4; |
| 89 | int r0 = (j+1) % 4; |
| 90 | int r1 = (j+2) % 4; |
| 91 | int r2 = (j+3) % 4; |
| 92 | |
| 93 | float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) |
| 94 | - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) |
| 95 | + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); |
| 96 | |
| 97 | float cofactor = (i+j) & 1 ? -minor : minor; |
| 98 | |
| 99 | result.m[4*j + i] = cofactor; |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | // Dot product of 0th column of source and 0th column of result |
| 104 | float det = m[0]*result.m[0] + m[4]*result.m[4] + |
| 105 | m[8]*result.m[8] + m[12]*result.m[12]; |
| 106 | |
| 107 | if (fabs(det) < 1e-6) { |
| 108 | return false; |
| 109 | } |
| 110 | |
| 111 | det = 1.0f / det; |
| 112 | for (i = 0; i < 16; ++i) { |
| 113 | m[i] = result.m[i] * det; |
| 114 | } |
| 115 | |
| 116 | return true; |
| 117 | } |
| 118 | |
| 119 | void Matrix4x4::transpose() { |
| 120 | int i, j; |
| 121 | float temp; |
| 122 | for (i = 0; i < 3; ++i) { |
| 123 | for (j = i + 1; j < 4; ++j) { |
| 124 | temp = m[i*4 + j]; |
| 125 | m[i*4 + j] = m[j*4 + i]; |
| 126 | m[j*4 + i] = temp; |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | |
| 132 | /////////////////////////////////////////////////////////////////////////////////// |
| 133 | |
| 134 | void Matrix4x4::loadIdentity() { |
| 135 | m[0] = 1.f; |
| 136 | m[1] = 0.f; |
| 137 | m[2] = 0.f; |
| 138 | m[3] = 0.f; |
| 139 | m[4] = 0.f; |
| 140 | m[5] = 1.f; |
| 141 | m[6] = 0.f; |
| 142 | m[7] = 0.f; |
| 143 | m[8] = 0.f; |
| 144 | m[9] = 0.f; |
| 145 | m[10] = 1.f; |
| 146 | m[11] = 0.f; |
| 147 | m[12] = 0.f; |
| 148 | m[13] = 0.f; |
| 149 | m[14] = 0.f; |
| 150 | m[15] = 1.f; |
| 151 | } |
| 152 | |
| 153 | void Matrix4x4::load(const float *v) { |
| 154 | memcpy(m, v, sizeof(m)); |
| 155 | } |
| 156 | |
| 157 | void Matrix4x4::load(const rs_matrix4x4 *v) { |
| 158 | memcpy(m, v->m, sizeof(m)); |
| 159 | } |
| 160 | |
| 161 | void Matrix4x4::load(const rs_matrix3x3 *v) { |
| 162 | m[0] = v->m[0]; |
| 163 | m[1] = v->m[1]; |
| 164 | m[2] = v->m[2]; |
| 165 | m[3] = 0.f; |
| 166 | m[4] = v->m[3]; |
| 167 | m[5] = v->m[4]; |
| 168 | m[6] = v->m[5]; |
| 169 | m[7] = 0.f; |
| 170 | m[8] = v->m[6]; |
| 171 | m[9] = v->m[7]; |
| 172 | m[10] = v->m[8]; |
| 173 | m[11] = 0.f; |
| 174 | m[12] = 0.f; |
| 175 | m[13] = 0.f; |
| 176 | m[14] = 0.f; |
| 177 | m[15] = 1.f; |
| 178 | } |
| 179 | |
| 180 | void Matrix4x4::load(const rs_matrix2x2 *v) { |
| 181 | m[0] = v->m[0]; |
| 182 | m[1] = v->m[1]; |
| 183 | m[2] = 0.f; |
| 184 | m[3] = 0.f; |
| 185 | m[4] = v->m[2]; |
| 186 | m[5] = v->m[3]; |
| 187 | m[6] = 0.f; |
| 188 | m[7] = 0.f; |
| 189 | m[8] = 0.f; |
| 190 | m[9] = 0.f; |
| 191 | m[10] = 1.f; |
| 192 | m[11] = 0.f; |
| 193 | m[12] = 0.f; |
| 194 | m[13] = 0.f; |
| 195 | m[14] = 0.f; |
| 196 | m[15] = 1.f; |
| 197 | } |
| 198 | |
| 199 | |
| 200 | void Matrix4x4::loadRotate(float rot, float x, float y, float z) { |
| 201 | float c, s; |
| 202 | m[3] = 0; |
| 203 | m[7] = 0; |
| 204 | m[11]= 0; |
| 205 | m[12]= 0; |
| 206 | m[13]= 0; |
| 207 | m[14]= 0; |
| 208 | m[15]= 1; |
| 209 | rot *= float(M_PI / 180.0f); |
| 210 | c = cosf(rot); |
| 211 | s = sinf(rot); |
| 212 | |
| 213 | const float len = x*x + y*y + z*z; |
| 214 | if (len != 1) { |
| 215 | const float recipLen = 1.f / sqrtf(len); |
| 216 | x *= recipLen; |
| 217 | y *= recipLen; |
| 218 | z *= recipLen; |
| 219 | } |
| 220 | const float nc = 1.0f - c; |
| 221 | const float xy = x * y; |
| 222 | const float yz = y * z; |
| 223 | const float zx = z * x; |
| 224 | const float xs = x * s; |
| 225 | const float ys = y * s; |
| 226 | const float zs = z * s; |
| 227 | m[ 0] = x*x*nc + c; |
| 228 | m[ 4] = xy*nc - zs; |
| 229 | m[ 8] = zx*nc + ys; |
| 230 | m[ 1] = xy*nc + zs; |
| 231 | m[ 5] = y*y*nc + c; |
| 232 | m[ 9] = yz*nc - xs; |
| 233 | m[ 2] = zx*nc - ys; |
| 234 | m[ 6] = yz*nc + xs; |
| 235 | m[10] = z*z*nc + c; |
| 236 | } |
| 237 | |
| 238 | void Matrix4x4::loadScale(float x, float y, float z) { |
| 239 | loadIdentity(); |
| 240 | set(0, 0, x); |
| 241 | set(1, 1, y); |
| 242 | set(2, 2, z); |
| 243 | } |
| 244 | |
| 245 | void Matrix4x4::loadTranslate(float x, float y, float z) { |
| 246 | loadIdentity(); |
| 247 | m[12] = x; |
| 248 | m[13] = y; |
| 249 | m[14] = z; |
| 250 | } |
| 251 | |
| 252 | void Matrix4x4::loadMultiply(const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs) { |
| 253 | for (int i=0 ; i<4 ; i++) { |
| 254 | float ri0 = 0; |
| 255 | float ri1 = 0; |
| 256 | float ri2 = 0; |
| 257 | float ri3 = 0; |
| 258 | for (int j=0 ; j<4 ; j++) { |
| 259 | const float rhs_ij = ((const Matrix4x4 *)rhs)->get(i,j); |
| 260 | ri0 += ((const Matrix4x4 *)lhs)->get(j,0) * rhs_ij; |
| 261 | ri1 += ((const Matrix4x4 *)lhs)->get(j,1) * rhs_ij; |
| 262 | ri2 += ((const Matrix4x4 *)lhs)->get(j,2) * rhs_ij; |
| 263 | ri3 += ((const Matrix4x4 *)lhs)->get(j,3) * rhs_ij; |
| 264 | } |
| 265 | set(i,0, ri0); |
| 266 | set(i,1, ri1); |
| 267 | set(i,2, ri2); |
| 268 | set(i,3, ri3); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | void Matrix4x4::loadOrtho(float left, float right, float bottom, float top, float near, float far) { |
| 273 | loadIdentity(); |
| 274 | m[0] = 2.f / (right - left); |
| 275 | m[5] = 2.f / (top - bottom); |
| 276 | m[10]= -2.f / (far - near); |
| 277 | m[12]= -(right + left) / (right - left); |
| 278 | m[13]= -(top + bottom) / (top - bottom); |
| 279 | m[14]= -(far + near) / (far - near); |
| 280 | } |
| 281 | |
| 282 | void Matrix4x4::loadFrustum(float left, float right, float bottom, float top, float near, float far) { |
| 283 | loadIdentity(); |
| 284 | m[0] = 2.f * near / (right - left); |
| 285 | m[5] = 2.f * near / (top - bottom); |
| 286 | m[8] = (right + left) / (right - left); |
| 287 | m[9] = (top + bottom) / (top - bottom); |
| 288 | m[10]= -(far + near) / (far - near); |
| 289 | m[11]= -1.f; |
| 290 | m[14]= -2.f * far * near / (far - near); |
| 291 | m[15]= 0.f; |
| 292 | } |
| 293 | |
| 294 | void Matrix4x4::loadPerspective(float fovy, float aspect, float near, float far) { |
| 295 | float top = near * tan((float) (fovy * M_PI / 360.0f)); |
| 296 | float bottom = -top; |
| 297 | float left = bottom * aspect; |
| 298 | float right = top * aspect; |
| 299 | loadFrustum(left, right, bottom, top, near, far); |
| 300 | } |
| 301 | |
| 302 | void Matrix4x4::vectorMultiply(float *out, const float *in) const { |
| 303 | out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12]; |
| 304 | out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13]; |
| 305 | out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14]; |
| 306 | out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15]; |
| 307 | } |
Jason Sams | 21cd43c | 2011-04-22 14:24:17 -0700 | [diff] [blame] | 308 | |
| 309 | void Matrix4x4::logv(const char *s) const { |
| 310 | LOGV("%s {%f, %f, %f, %f", s, m[0], m[4], m[8], m[12]); |
| 311 | LOGV("%s %f, %f, %f, %f", s, m[1], m[5], m[9], m[13]); |
| 312 | LOGV("%s %f, %f, %f, %f", s, m[2], m[6], m[10], m[14]); |
| 313 | LOGV("%s %f, %f, %f, %f}", s, m[3], m[7], m[11], m[15]); |
| 314 | } |