blob: 1f5d26c4dad4b830b53d952f962557f8ee627857 [file] [log] [blame]
ztenghui55bfb4e2013-12-03 10:38:55 -08001/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#include <math.h>
20#include <utils/Log.h>
Chris Craik564acf72014-01-02 16:46:18 -080021#include <utils/Vector.h>
ztenghui55bfb4e2013-12-03 10:38:55 -080022
23#include "AmbientShadow.h"
24#include "Vertex.h"
25
26namespace android {
27namespace uirenderer {
28
29/**
30 * Calculate the shadows as a triangle strips while alpha value as the
31 * shadow values.
32 *
33 * @param vertices The shadow caster's polygon, which is represented in a Vector3
34 * array.
35 * @param vertexCount The length of caster's polygon in terms of number of
36 * vertices.
37 * @param rays The number of rays shooting out from the centroid.
38 * @param layers The number of rings outside the polygon.
39 * @param strength The darkness of the shadow, the higher, the darker.
40 * @param heightFactor The factor showing the higher the object, the lighter the
41 * shadow.
42 * @param geomFactor The factor scaling the geometry expansion along the normal.
43 *
44 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
45 * triangle strips mode.
46 */
47void AmbientShadow::createAmbientShadow(const Vector3* vertices, int vertexCount,
48 int rays, int layers, float strength, float heightFactor, float geomFactor,
49 VertexBuffer& shadowVertexBuffer) {
50
51 // Validate the inputs.
52 if (strength <= 0 || heightFactor <= 0 || layers <= 0 || rays <= 0
53 || geomFactor <= 0) {
54#if DEBUG_SHADOW
55 ALOGE("Invalid input for createAmbientShadow(), early return!");
56#endif
57 return;
58 }
59 int rings = layers + 1;
60 int size = rays * rings;
61 Vector2 centroid;
62 calculatePolygonCentroid(vertices, vertexCount, centroid);
63
Chris Craik564acf72014-01-02 16:46:18 -080064 Vector<Vector2> dir; // TODO: use C++11 unique_ptr
65 dir.setCapacity(rays);
ztenghui55bfb4e2013-12-03 10:38:55 -080066 float rayDist[rays];
67 float rayHeight[rays];
Chris Craik564acf72014-01-02 16:46:18 -080068 calculateRayDirections(rays, dir.editArray());
ztenghui55bfb4e2013-12-03 10:38:55 -080069
70 // Calculate the length and height of the points along the edge.
71 //
72 // The math here is:
73 // Intersect each ray (starting from the centroid) with the polygon.
74 for (int i = 0; i < rays; i++) {
75 int edgeIndex;
76 float edgeFraction;
77 float rayDistance;
78 calculateIntersection(vertices, vertexCount, centroid, dir[i], edgeIndex,
79 edgeFraction, rayDistance);
80 rayDist[i] = rayDistance;
81 if (edgeIndex < 0 || edgeIndex >= vertexCount) {
82#if DEBUG_SHADOW
83 ALOGE("Invalid edgeIndex!");
84#endif
85 edgeIndex = 0;
86 }
87 float h1 = vertices[edgeIndex].z;
88 float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
89 rayHeight[i] = h1 + edgeFraction * (h2 - h1);
90 }
91
92 // The output buffer length basically is roughly rays * layers, but since we
93 // need triangle strips, so we need to duplicate vertices to accomplish that.
94 const int shadowVertexCount = (2 + rays + ((layers) * 2 * (rays + 1)));
95 AlphaVertex* shadowVertices = shadowVertexBuffer.alloc<AlphaVertex>(shadowVertexCount);
96
97 // Calculate the vertex of the shadows.
98 //
99 // The math here is:
100 // Along the edges of the polygon, for each intersection point P (generated above),
101 // calculate the normal N, which should be perpendicular to the edge of the
102 // polygon (represented by the neighbor intersection points) .
103 // Shadow's vertices will be generated as : P + N * scale.
104 int currentIndex = 0;
105 for (int r = 0; r < layers; r++) {
106 int firstInLayer = currentIndex;
107 for (int i = 0; i < rays; i++) {
108
109 Vector2 normal(1.0f, 0.0f);
Chris Craik564acf72014-01-02 16:46:18 -0800110 calculateNormal(rays, i, dir.array(), rayDist, normal);
ztenghui55bfb4e2013-12-03 10:38:55 -0800111
112 float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
113
114 // The vertex should be start from rayDist[i] then scale the
115 // normalizeNormal!
116 Vector2 intersection = dir[i] * rayDist[i] + centroid;
117
118 // Use 2 rings' vertices to complete one layer's strip
119 for (int j = r; j < (r + 2); j++) {
120 float jf = j / (float)(rings - 1);
121
122 float expansionDist = rayHeight[i] / heightFactor * geomFactor * jf;
123 AlphaVertex::set(&shadowVertices[currentIndex],
124 intersection.x + normal.x * expansionDist,
125 intersection.y + normal.y * expansionDist,
126 (1 - jf) * opacity);
127 currentIndex++;
128 }
129 }
130
131 // From one layer to the next, we need to duplicate the vertex to
132 // continue as a single strip.
133 shadowVertices[currentIndex] = shadowVertices[firstInLayer];
134 currentIndex++;
135 shadowVertices[currentIndex] = shadowVertices[firstInLayer + 1];
136 currentIndex++;
137 }
138
139 // After all rings are done, we need to jump into the polygon.
140 // In order to keep everything in a strip, we need to duplicate the last one
141 // of the rings and the first one inside the polygon.
142 int lastInRings = currentIndex - 1;
143 shadowVertices[currentIndex] = shadowVertices[lastInRings];
144 currentIndex++;
145
146 // We skip one and fill it back after we finish the internal triangles.
147 currentIndex++;
148 int firstInternal = currentIndex;
149
150 // Combine the internal area of the polygon into a triangle strip, too.
151 // The basic idea is zig zag between the intersection points.
152 // 0 -> (n - 1) -> 1 -> (n - 2) ...
153 for (int k = 0; k < rays; k++) {
154 int i = k / 2;
155 if ((k & 1) == 1) { // traverse the inside in a zig zag pattern for strips
156 i = rays - i - 1;
157 }
158 float cast = rayDist[i] * (1 + rayHeight[i] / heightFactor);
159 float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
160 float t = rayDist[i];
161
162 AlphaVertex::set(&shadowVertices[currentIndex], dir[i].x * t + centroid.x,
163 dir[i].y * t + centroid.y, opacity);
164 currentIndex++;
165 }
166
167 currentIndex = firstInternal - 1;
168 shadowVertices[currentIndex] = shadowVertices[firstInternal];
169}
170
171/**
172 * Calculate the centroid of a given polygon.
173 *
174 * @param vertices The shadow caster's polygon, which is represented in a
175 * straight Vector3 array.
176 * @param vertexCount The length of caster's polygon in terms of number of vertices.
177 *
178 * @param centroid Return the centroid of the polygon.
179 */
180void AmbientShadow::calculatePolygonCentroid(const Vector3* vertices, int vertexCount,
181 Vector2& centroid) {
182 float sumx = 0;
183 float sumy = 0;
184 int p1 = vertexCount - 1;
185 float area = 0;
186 for (int p2 = 0; p2 < vertexCount; p2++) {
187 float x1 = vertices[p1].x;
188 float y1 = vertices[p1].y;
189 float x2 = vertices[p2].x;
190 float y2 = vertices[p2].y;
191 float a = (x1 * y2 - x2 * y1);
192 sumx += (x1 + x2) * a;
193 sumy += (y1 + y2) * a;
194 area += a;
195 p1 = p2;
196 }
197
198 if (area == 0) {
199#if DEBUG_SHADOW
200 ALOGE("Area is 0!");
201#endif
202 centroid.x = vertices[0].x;
203 centroid.y = vertices[0].y;
204 } else {
205 centroid.x = sumx / (3 * area);
206 centroid.y = sumy / (3 * area);
207 }
208}
209
210/**
211 * Generate an array of rays' direction vectors.
212 *
213 * @param rays The number of rays shooting out from the centroid.
214 * @param dir Return the array of ray vectors.
215 */
216void AmbientShadow::calculateRayDirections(int rays, Vector2* dir) {
217 float deltaAngle = 2 * M_PI / rays;
218
219 for (int i = 0; i < rays; i++) {
220 dir[i].x = sinf(deltaAngle * i);
221 dir[i].y = cosf(deltaAngle * i);
222 }
223}
224
225/**
226 * Calculate the intersection of a ray hitting the polygon.
227 *
228 * @param vertices The shadow caster's polygon, which is represented in a
229 * Vector3 array.
230 * @param vertexCount The length of caster's polygon in terms of number of vertices.
231 * @param start The starting point of the ray.
232 * @param dir The direction vector of the ray.
233 *
234 * @param outEdgeIndex Return the index of the segment (or index of the starting
235 * vertex) that ray intersect with.
236 * @param outEdgeFraction Return the fraction offset from the segment starting
237 * index.
238 * @param outRayDist Return the ray distance from centroid to the intersection.
239 */
240void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
241 const Vector2& start, const Vector2& dir, int& outEdgeIndex,
242 float& outEdgeFraction, float& outRayDist) {
243 float startX = start.x;
244 float startY = start.y;
245 float dirX = dir.x;
246 float dirY = dir.y;
247 // Start the search from the last edge from poly[len-1] to poly[0].
248 int p1 = vertexCount - 1;
249
250 for (int p2 = 0; p2 < vertexCount; p2++) {
251 float p1x = vertices[p1].x;
252 float p1y = vertices[p1].y;
253 float p2x = vertices[p2].x;
254 float p2y = vertices[p2].y;
255
256 // The math here is derived from:
257 // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
258 // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
259 float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
260 if (div != 0) {
261 float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
262 if (t > 0 && t <= 1) {
263 float t2 = (p1x * (startY - p2y)
264 + p2x * (p1y - startY)
265 + startX * (p2y - p1y)) / div;
266 if (t2 > 0) {
267 outEdgeIndex = p1;
268 outRayDist = t2;
269 outEdgeFraction = t;
270 return;
271 }
272 }
273 }
274 p1 = p2;
275 }
276 return;
277};
278
279/**
280 * Calculate the normal at the intersection point between a ray and the polygon.
281 *
282 * @param rays The total number of rays.
283 * @param currentRayIndex The index of the ray which the normal is based on.
284 * @param dir The array of the all the rays directions.
285 * @param rayDist The pre-computed ray distances array.
286 *
287 * @param normal Return the normal.
288 */
289void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
290 const Vector2* dir, const float* rayDist, Vector2& normal) {
291 int preIndex = (currentRayIndex - 1 + rays) % rays;
292 int postIndex = (currentRayIndex + 1) % rays;
293 Vector2 p1 = dir[preIndex] * rayDist[preIndex];
294 Vector2 p2 = dir[postIndex] * rayDist[postIndex];
295
296 // Now the V (deltaX, deltaY) is the vector going CW around the poly.
297 Vector2 delta = p2 - p1;
298 if (delta.length() != 0) {
299 delta.normalize();
300 // Calculate the normal , which is CCW 90 rotate to the V.
301 // 90 degrees CCW about z-axis: (x, y, z) -> (-y, x, z)
302 normal.x = -delta.y;
303 normal.y = delta.x;
304 }
305}
306
307}; // namespace uirenderer
308}; // namespace android