| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <utils/String8.h> |
| |
| #include "Caches.h" |
| #include "ProgramCache.h" |
| #include "Properties.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Defines |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define MODULATE_OP_NO_MODULATE 0 |
| #define MODULATE_OP_MODULATE 1 |
| #define MODULATE_OP_MODULATE_A8 2 |
| |
| #define STR(x) STR1(x) |
| #define STR1(x) #x |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Vertex shaders snippets |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| const char* gVS_Header_Start = |
| "#version 100\n" |
| "attribute vec4 position;\n"; |
| const char* gVS_Header_Attributes_TexCoords = "attribute vec2 texCoords;\n"; |
| const char* gVS_Header_Attributes_Colors = "attribute vec4 colors;\n"; |
| const char* gVS_Header_Attributes_VertexAlphaParameters = "attribute float vtxAlpha;\n"; |
| const char* gVS_Header_Uniforms_TextureTransform = "uniform mat4 mainTextureTransform;\n"; |
| const char* gVS_Header_Uniforms = |
| "uniform mat4 projection;\n" |
| "uniform mat4 transform;\n"; |
| const char* gVS_Header_Uniforms_HasGradient = "uniform mat4 screenSpace;\n"; |
| const char* gVS_Header_Uniforms_HasBitmap = |
| "uniform mat4 textureTransform;\n" |
| "uniform mediump vec2 textureDimension;\n"; |
| const char* gVS_Header_Uniforms_HasRoundRectClip = |
| "uniform mat4 roundRectInvTransform;\n" |
| "uniform mediump vec4 roundRectInnerRectLTWH;\n" |
| "uniform mediump float roundRectRadius;\n"; |
| const char* gVS_Header_Varyings_HasTexture = "varying highp vec2 outTexCoords;\n"; |
| const char* gVS_Header_Varyings_HasColors = "varying vec4 outColors;\n"; |
| const char* gVS_Header_Varyings_HasVertexAlpha = "varying float alpha;\n"; |
| const char* gVS_Header_Varyings_HasBitmap = "varying highp vec2 outBitmapTexCoords;\n"; |
| const char* gVS_Header_Varyings_HasGradient[6] = { |
| // Linear |
| "varying highp vec2 linear;\n", "varying float linear;\n", |
| |
| // Circular |
| "varying highp vec2 circular;\n", "varying highp vec2 circular;\n", |
| |
| // Sweep |
| "varying highp vec2 sweep;\n", "varying highp vec2 sweep;\n", |
| }; |
| const char* gVS_Header_Varyings_HasRoundRectClip = "varying mediump vec2 roundRectPos;\n"; |
| const char* gVS_Main = "\nvoid main(void) {\n"; |
| const char* gVS_Main_OutTexCoords = " outTexCoords = texCoords;\n"; |
| const char* gVS_Main_OutColors = " outColors = colors;\n"; |
| const char* gVS_Main_OutTransformedTexCoords = |
| " outTexCoords = (mainTextureTransform * vec4(texCoords, 0.0, 1.0)).xy;\n"; |
| const char* gVS_Main_OutGradient[6] = { |
| // Linear |
| " linear = vec2((screenSpace * position).x, 0.5);\n", |
| " linear = (screenSpace * position).x;\n", |
| |
| // Circular |
| " circular = (screenSpace * position).xy;\n", |
| " circular = (screenSpace * position).xy;\n", |
| |
| // Sweep |
| " sweep = (screenSpace * position).xy;\n", " sweep = (screenSpace * position).xy;\n"}; |
| const char* gVS_Main_OutBitmapTexCoords = |
| " outBitmapTexCoords = (textureTransform * position).xy * textureDimension;\n"; |
| const char* gVS_Main_Position = |
| " vec4 transformedPosition = projection * transform * position;\n" |
| " gl_Position = transformedPosition;\n"; |
| |
| const char* gVS_Main_VertexAlpha = " alpha = vtxAlpha;\n"; |
| |
| const char* gVS_Main_HasRoundRectClip = |
| " roundRectPos = ((roundRectInvTransform * transformedPosition).xy / roundRectRadius) - " |
| "roundRectInnerRectLTWH.xy;\n"; |
| const char* gVS_Footer = "}\n\n"; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Fragment shaders snippets |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| const char* gFS_Header_Start = "#version 100\n"; |
| const char* gFS_Header_Extension_FramebufferFetch = |
| "#extension GL_NV_shader_framebuffer_fetch : enable\n\n"; |
| const char* gFS_Header_Extension_ExternalTexture = |
| "#extension GL_OES_EGL_image_external : require\n\n"; |
| const char* gFS_Header = "precision mediump float;\n\n"; |
| const char* gFS_Uniforms_Color = "uniform vec4 color;\n"; |
| const char* gFS_Uniforms_TextureSampler = "uniform sampler2D baseSampler;\n"; |
| const char* gFS_Uniforms_ExternalTextureSampler = "uniform samplerExternalOES baseSampler;\n"; |
| const char* gFS_Uniforms_GradientSampler[2] = { |
| "uniform vec2 screenSize;\n" |
| "uniform sampler2D gradientSampler;\n", |
| |
| "uniform vec2 screenSize;\n" |
| "uniform vec4 startColor;\n" |
| "uniform vec4 endColor;\n"}; |
| const char* gFS_Uniforms_BitmapSampler = "uniform sampler2D bitmapSampler;\n"; |
| const char* gFS_Uniforms_BitmapExternalSampler = "uniform samplerExternalOES bitmapSampler;\n"; |
| const char* gFS_Uniforms_ColorOp[3] = { |
| // None |
| "", |
| // Matrix |
| "uniform mat4 colorMatrix;\n" |
| "uniform vec4 colorMatrixVector;\n", |
| // PorterDuff |
| "uniform vec4 colorBlend;\n"}; |
| |
| const char* gFS_Uniforms_HasRoundRectClip = |
| "uniform mediump vec4 roundRectInnerRectLTWH;\n" |
| "uniform mediump float roundRectRadius;\n"; |
| |
| const char* gFS_Uniforms_ColorSpaceConversion = |
| // TODO: Should we use a 3D LUT to combine the matrix and transfer functions? |
| // 32x32x32 fp16 LUTs (for scRGB output) are large and heavy to generate... |
| "uniform mat3 colorSpaceMatrix;\n"; |
| |
| const char* gFS_Uniforms_TransferFunction[4] = { |
| // In this order: g, a, b, c, d, e, f |
| // See ColorSpace::TransferParameters |
| // We'll use hardware sRGB conversion as much as possible |
| "", "uniform float transferFunction[7];\n", "uniform float transferFunction[5];\n", |
| "uniform float transferFunctionGamma;\n"}; |
| |
| const char* gFS_OETF[2] = { |
| R"__SHADER__( |
| vec4 OETF(const vec4 linear) { |
| return linear; |
| } |
| )__SHADER__", |
| // We expect linear data to be scRGB so we mirror the gamma function |
| R"__SHADER__( |
| vec4 OETF(const vec4 linear) { |
| return vec4(sign(linear.rgb) * OETF_sRGB(abs(linear.rgb)), linear.a); |
| } |
| )__SHADER__"}; |
| |
| const char* gFS_ColorConvert[3] = { |
| // Just OETF |
| R"__SHADER__( |
| vec4 colorConvert(const vec4 color) { |
| return OETF(color); |
| } |
| )__SHADER__", |
| // Full color conversion for opaque bitmaps |
| R"__SHADER__( |
| vec4 colorConvert(const vec4 color) { |
| return OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a)); |
| } |
| )__SHADER__", |
| // Full color conversion for translucent bitmaps |
| // Note: 0.5/256=0.0019 |
| R"__SHADER__( |
| vec4 colorConvert(in vec4 color) { |
| color.rgb /= color.a + 0.0019; |
| color = OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a)); |
| color.rgb *= color.a + 0.0019; |
| return color; |
| } |
| )__SHADER__", |
| }; |
| |
| const char* gFS_sRGB_TransferFunctions = R"__SHADER__( |
| float OETF_sRGB(const float linear) { |
| // IEC 61966-2-1:1999 |
| return linear <= 0.0031308 ? linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055; |
| } |
| |
| vec3 OETF_sRGB(const vec3 linear) { |
| return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b)); |
| } |
| |
| float EOTF_sRGB(float srgb) { |
| // IEC 61966-2-1:1999 |
| return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4); |
| } |
| )__SHADER__"; |
| |
| const char* gFS_TransferFunction[4] = { |
| // Conversion done by the texture unit (sRGB) |
| R"__SHADER__( |
| vec3 EOTF_Parametric(const vec3 x) { |
| return x; |
| } |
| )__SHADER__", |
| // Full transfer function |
| // TODO: We should probably use a 1D LUT (256x1 with texelFetch() since input is 8 bit) |
| // TODO: That would cause 3 dependent texture fetches. Is it worth it? |
| R"__SHADER__( |
| float EOTF_Parametric(float x) { |
| return x <= transferFunction[4] |
| ? transferFunction[3] * x + transferFunction[6] |
| : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0]) |
| + transferFunction[5]; |
| } |
| |
| vec3 EOTF_Parametric(const vec3 x) { |
| return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b)); |
| } |
| )__SHADER__", |
| // Limited transfer function, e = f = 0.0 |
| R"__SHADER__( |
| float EOTF_Parametric(float x) { |
| return x <= transferFunction[4] |
| ? transferFunction[3] * x |
| : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0]); |
| } |
| |
| vec3 EOTF_Parametric(const vec3 x) { |
| return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b)); |
| } |
| )__SHADER__", |
| // Gamma transfer function, e = f = 0.0 |
| R"__SHADER__( |
| vec3 EOTF_Parametric(const vec3 x) { |
| return vec3(pow(x.r, transferFunctionGamma), |
| pow(x.g, transferFunctionGamma), |
| pow(x.b, transferFunctionGamma)); |
| } |
| )__SHADER__"}; |
| |
| // Dithering must be done in the quantization space |
| // When we are writing to an sRGB framebuffer, we must do the following: |
| // EOTF(OETF(color) + dither) |
| // The dithering pattern is generated with a triangle noise generator in the range [-1.0,1.0] |
| // TODO: Handle linear fp16 render targets |
| const char* gFS_GradientFunctions = R"__SHADER__( |
| float triangleNoise(const highp vec2 n) { |
| highp vec2 p = fract(n * vec2(5.3987, 5.4421)); |
| p += dot(p.yx, p.xy + vec2(21.5351, 14.3137)); |
| highp float xy = p.x * p.y; |
| return fract(xy * 95.4307) + fract(xy * 75.04961) - 1.0; |
| } |
| )__SHADER__"; |
| |
| const char* gFS_GradientPreamble[2] = { |
| // Linear framebuffer |
| R"__SHADER__( |
| vec4 dither(const vec4 color) { |
| return color + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0); |
| } |
| )__SHADER__", |
| // sRGB framebuffer |
| R"__SHADER__( |
| vec4 dither(const vec4 color) { |
| vec3 dithered = sqrt(color.rgb) + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0); |
| return vec4(dithered * dithered, color.a); |
| } |
| )__SHADER__", |
| }; |
| |
| // Uses luminance coefficients from Rec.709 to choose the appropriate gamma |
| // The gamma() function assumes that bright text will be displayed on a dark |
| // background and that dark text will be displayed on bright background |
| // The gamma coefficient is chosen to thicken or thin the text accordingly |
| // The dot product used to compute the luminance could be approximated with |
| // a simple max(color.r, color.g, color.b) |
| const char* gFS_Gamma_Preamble = R"__SHADER__( |
| #define GAMMA (%.2f) |
| #define GAMMA_INV (%.2f) |
| |
| float gamma(float a, const vec3 color) { |
| float luminance = dot(color, vec3(0.2126, 0.7152, 0.0722)); |
| return pow(a, luminance < 0.5 ? GAMMA_INV : GAMMA); |
| } |
| )__SHADER__"; |
| |
| const char* gFS_Main = |
| "\nvoid main(void) {\n" |
| " vec4 fragColor;\n"; |
| |
| const char* gFS_Main_AddDither = " fragColor = dither(fragColor);\n"; |
| |
| // General case |
| const char* gFS_Main_FetchColor = " fragColor = color;\n"; |
| const char* gFS_Main_ModulateColor = " fragColor *= color.a;\n"; |
| const char* gFS_Main_ApplyVertexAlphaLinearInterp = " fragColor *= alpha;\n"; |
| const char* gFS_Main_ApplyVertexAlphaShadowInterp = |
| // map alpha through shadow alpha sampler |
| " fragColor *= texture2D(baseSampler, vec2(alpha, 0.5)).a;\n"; |
| const char* gFS_Main_FetchTexture[2] = { |
| // Don't modulate |
| " fragColor = colorConvert(texture2D(baseSampler, outTexCoords));\n", |
| // Modulate |
| " fragColor = color * colorConvert(texture2D(baseSampler, outTexCoords));\n"}; |
| const char* gFS_Main_FetchA8Texture[4] = { |
| // Don't modulate |
| " fragColor = texture2D(baseSampler, outTexCoords);\n", |
| " fragColor = texture2D(baseSampler, outTexCoords);\n", |
| // Modulate |
| " fragColor = color * texture2D(baseSampler, outTexCoords).a;\n", |
| " fragColor = color * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n", |
| }; |
| const char* gFS_Main_FetchGradient[6] = { |
| // Linear |
| " vec4 gradientColor = texture2D(gradientSampler, linear);\n", |
| |
| " vec4 gradientColor = mix(startColor, endColor, clamp(linear, 0.0, 1.0));\n", |
| |
| // Circular |
| " vec4 gradientColor = texture2D(gradientSampler, vec2(length(circular), 0.5));\n", |
| |
| " vec4 gradientColor = mix(startColor, endColor, clamp(length(circular), 0.0, 1.0));\n", |
| |
| // Sweep |
| " highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n" |
| " vec4 gradientColor = texture2D(gradientSampler, vec2(index - floor(index), 0.5));\n", |
| |
| " highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n" |
| " vec4 gradientColor = mix(startColor, endColor, clamp(index - floor(index), 0.0, " |
| "1.0));\n"}; |
| const char* gFS_Main_FetchBitmap = |
| " vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, outBitmapTexCoords));\n"; |
| const char* gFS_Main_FetchBitmapNpot = |
| " vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, " |
| "wrap(outBitmapTexCoords)));\n"; |
| const char* gFS_Main_BlendShadersBG = " fragColor = blendShaders(gradientColor, bitmapColor)"; |
| const char* gFS_Main_BlendShadersGB = " fragColor = blendShaders(bitmapColor, gradientColor)"; |
| const char* gFS_Main_BlendShaders_Modulate[6] = { |
| // Don't modulate |
| ";\n", ";\n", |
| // Modulate |
| " * color.a;\n", " * color.a;\n", |
| // Modulate with alpha 8 texture |
| " * texture2D(baseSampler, outTexCoords).a;\n", |
| " * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n", |
| }; |
| const char* gFS_Main_GradientShader_Modulate[6] = { |
| // Don't modulate |
| " fragColor = gradientColor;\n", " fragColor = gradientColor;\n", |
| // Modulate |
| " fragColor = gradientColor * color.a;\n", " fragColor = gradientColor * color.a;\n", |
| // Modulate with alpha 8 texture |
| " fragColor = gradientColor * texture2D(baseSampler, outTexCoords).a;\n", |
| " fragColor = gradientColor * gamma(texture2D(baseSampler, outTexCoords).a, " |
| "gradientColor.rgb);\n", |
| }; |
| const char* gFS_Main_BitmapShader_Modulate[6] = { |
| // Don't modulate |
| " fragColor = bitmapColor;\n", " fragColor = bitmapColor;\n", |
| // Modulate |
| " fragColor = bitmapColor * color.a;\n", " fragColor = bitmapColor * color.a;\n", |
| // Modulate with alpha 8 texture |
| " fragColor = bitmapColor * texture2D(baseSampler, outTexCoords).a;\n", |
| " fragColor = bitmapColor * gamma(texture2D(baseSampler, outTexCoords).a, " |
| "bitmapColor.rgb);\n", |
| }; |
| const char* gFS_Main_FragColor = " gl_FragColor = fragColor;\n"; |
| const char* gFS_Main_FragColor_HasColors = " gl_FragColor *= outColors;\n"; |
| const char* gFS_Main_FragColor_Blend = |
| " gl_FragColor = blendFramebuffer(fragColor, gl_LastFragColor);\n"; |
| const char* gFS_Main_FragColor_Blend_Swap = |
| " gl_FragColor = blendFramebuffer(gl_LastFragColor, fragColor);\n"; |
| const char* gFS_Main_ApplyColorOp[3] = { |
| // None |
| "", |
| // Matrix |
| " fragColor.rgb /= (fragColor.a + 0.0019);\n" // un-premultiply |
| " fragColor *= colorMatrix;\n" |
| " fragColor += colorMatrixVector;\n" |
| " fragColor.rgb *= (fragColor.a + 0.0019);\n", // re-premultiply |
| // PorterDuff |
| " fragColor = blendColors(colorBlend, fragColor);\n"}; |
| |
| // Note: LTWH (left top width height) -> xyzw |
| // roundRectPos is now divided by roundRectRadius in vertex shader |
| // after we also subtract roundRectInnerRectLTWH.xy from roundRectPos |
| const char* gFS_Main_FragColor_HasRoundRectClip = |
| " mediump vec2 fragToLT = -roundRectPos;\n" |
| " mediump vec2 fragFromRB = roundRectPos - roundRectInnerRectLTWH.zw;\n" |
| |
| // since distance is divided by radius, it's in [0;1] so precision is not an issue |
| // this also lets us clamp(0.0, 1.0) instead of max() which is cheaper on GPUs |
| " mediump vec2 dist = clamp(max(fragToLT, fragFromRB), 0.0, 1.0);\n" |
| " mediump float linearDist = clamp(roundRectRadius - (length(dist) * roundRectRadius), " |
| "0.0, 1.0);\n" |
| " gl_FragColor *= linearDist;\n"; |
| |
| const char* gFS_Main_DebugHighlight = " gl_FragColor.rgb = vec3(0.0, gl_FragColor.a, 0.0);\n"; |
| const char* gFS_Footer = "}\n\n"; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // PorterDuff snippets |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| const char* gBlendOps[18] = { |
| // Clear |
| "return vec4(0.0, 0.0, 0.0, 0.0);\n", |
| // Src |
| "return src;\n", |
| // Dst |
| "return dst;\n", |
| // SrcOver |
| "return src + dst * (1.0 - src.a);\n", |
| // DstOver |
| "return dst + src * (1.0 - dst.a);\n", |
| // SrcIn |
| "return src * dst.a;\n", |
| // DstIn |
| "return dst * src.a;\n", |
| // SrcOut |
| "return src * (1.0 - dst.a);\n", |
| // DstOut |
| "return dst * (1.0 - src.a);\n", |
| // SrcAtop |
| "return vec4(src.rgb * dst.a + (1.0 - src.a) * dst.rgb, dst.a);\n", |
| // DstAtop |
| "return vec4(dst.rgb * src.a + (1.0 - dst.a) * src.rgb, src.a);\n", |
| // Xor |
| "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb, " |
| "src.a + dst.a - 2.0 * src.a * dst.a);\n", |
| // Plus |
| "return min(src + dst, 1.0);\n", |
| // Modulate |
| "return src * dst;\n", |
| // Screen |
| "return src + dst - src * dst;\n", |
| // Overlay |
| "return clamp(vec4(mix(" |
| "2.0 * src.rgb * dst.rgb + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), " |
| "src.a * dst.a - 2.0 * (dst.a - dst.rgb) * (src.a - src.rgb) + src.rgb * (1.0 - dst.a) + " |
| "dst.rgb * (1.0 - src.a), " |
| "step(dst.a, 2.0 * dst.rgb)), " |
| "src.a + dst.a - src.a * dst.a), 0.0, 1.0);\n", |
| // Darken |
| "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + " |
| "min(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n", |
| // Lighten |
| "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + " |
| "max(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n", |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Constructors/destructors |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| ProgramCache::ProgramCache(const Extensions& extensions) |
| : mHasES3(extensions.getMajorGlVersion() >= 3) |
| , mHasLinearBlending(extensions.hasLinearBlending()) {} |
| |
| ProgramCache::~ProgramCache() { |
| clear(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Cache management |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void ProgramCache::clear() { |
| PROGRAM_LOGD("Clearing program cache"); |
| mCache.clear(); |
| } |
| |
| Program* ProgramCache::get(const ProgramDescription& description) { |
| programid key = description.key(); |
| if (key == (PROGRAM_KEY_TEXTURE | PROGRAM_KEY_A8_TEXTURE)) { |
| // program for A8, unmodulated, texture w/o shader (black text/path textures) is equivalent |
| // to standard texture program (bitmaps, patches). Consider them equivalent. |
| key = PROGRAM_KEY_TEXTURE; |
| } |
| |
| auto iter = mCache.find(key); |
| Program* program = nullptr; |
| if (iter == mCache.end()) { |
| description.log("Could not find program"); |
| program = generateProgram(description, key); |
| mCache[key] = std::unique_ptr<Program>(program); |
| } else { |
| program = iter->second.get(); |
| } |
| return program; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Program generation |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| Program* ProgramCache::generateProgram(const ProgramDescription& description, programid key) { |
| String8 vertexShader = generateVertexShader(description); |
| String8 fragmentShader = generateFragmentShader(description); |
| |
| return new Program(description, vertexShader.string(), fragmentShader.string()); |
| } |
| |
| static inline size_t gradientIndex(const ProgramDescription& description) { |
| return description.gradientType * 2 + description.isSimpleGradient; |
| } |
| |
| String8 ProgramCache::generateVertexShader(const ProgramDescription& description) { |
| // Add attributes |
| String8 shader(gVS_Header_Start); |
| if (description.hasTexture || description.hasExternalTexture) { |
| shader.append(gVS_Header_Attributes_TexCoords); |
| } |
| if (description.hasVertexAlpha) { |
| shader.append(gVS_Header_Attributes_VertexAlphaParameters); |
| } |
| if (description.hasColors) { |
| shader.append(gVS_Header_Attributes_Colors); |
| } |
| // Uniforms |
| shader.append(gVS_Header_Uniforms); |
| if (description.hasTextureTransform) { |
| shader.append(gVS_Header_Uniforms_TextureTransform); |
| } |
| if (description.hasGradient) { |
| shader.append(gVS_Header_Uniforms_HasGradient); |
| } |
| if (description.hasBitmap) { |
| shader.append(gVS_Header_Uniforms_HasBitmap); |
| } |
| if (description.hasRoundRectClip) { |
| shader.append(gVS_Header_Uniforms_HasRoundRectClip); |
| } |
| // Varyings |
| if (description.hasTexture || description.hasExternalTexture) { |
| shader.append(gVS_Header_Varyings_HasTexture); |
| } |
| if (description.hasVertexAlpha) { |
| shader.append(gVS_Header_Varyings_HasVertexAlpha); |
| } |
| if (description.hasColors) { |
| shader.append(gVS_Header_Varyings_HasColors); |
| } |
| if (description.hasGradient) { |
| shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]); |
| } |
| if (description.hasBitmap) { |
| shader.append(gVS_Header_Varyings_HasBitmap); |
| } |
| if (description.hasRoundRectClip) { |
| shader.append(gVS_Header_Varyings_HasRoundRectClip); |
| } |
| |
| // Begin the shader |
| shader.append(gVS_Main); |
| { |
| if (description.hasTextureTransform) { |
| shader.append(gVS_Main_OutTransformedTexCoords); |
| } else if (description.hasTexture || description.hasExternalTexture) { |
| shader.append(gVS_Main_OutTexCoords); |
| } |
| if (description.hasVertexAlpha) { |
| shader.append(gVS_Main_VertexAlpha); |
| } |
| if (description.hasColors) { |
| shader.append(gVS_Main_OutColors); |
| } |
| if (description.hasBitmap) { |
| shader.append(gVS_Main_OutBitmapTexCoords); |
| } |
| // Output transformed position |
| shader.append(gVS_Main_Position); |
| if (description.hasGradient) { |
| shader.append(gVS_Main_OutGradient[gradientIndex(description)]); |
| } |
| if (description.hasRoundRectClip) { |
| shader.append(gVS_Main_HasRoundRectClip); |
| } |
| } |
| // End the shader |
| shader.append(gVS_Footer); |
| |
| PROGRAM_LOGD("*** Generated vertex shader:\n\n%s", shader.string()); |
| |
| return shader; |
| } |
| |
| static bool shaderOp(const ProgramDescription& description, String8& shader, const int modulateOp, |
| const char** snippets) { |
| int op = description.hasAlpha8Texture ? MODULATE_OP_MODULATE_A8 : modulateOp; |
| op = op * 2 + description.hasGammaCorrection; |
| shader.append(snippets[op]); |
| return description.hasAlpha8Texture; |
| } |
| |
| String8 ProgramCache::generateFragmentShader(const ProgramDescription& description) { |
| String8 shader(gFS_Header_Start); |
| |
| const bool blendFramebuffer = description.framebufferMode >= SkBlendMode::kPlus; |
| if (blendFramebuffer) { |
| shader.append(gFS_Header_Extension_FramebufferFetch); |
| } |
| if (description.hasExternalTexture || |
| (description.hasBitmap && description.isShaderBitmapExternal)) { |
| shader.append(gFS_Header_Extension_ExternalTexture); |
| } |
| |
| shader.append(gFS_Header); |
| |
| // Varyings |
| if (description.hasTexture || description.hasExternalTexture) { |
| shader.append(gVS_Header_Varyings_HasTexture); |
| } |
| if (description.hasVertexAlpha) { |
| shader.append(gVS_Header_Varyings_HasVertexAlpha); |
| } |
| if (description.hasColors) { |
| shader.append(gVS_Header_Varyings_HasColors); |
| } |
| if (description.hasGradient) { |
| shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]); |
| } |
| if (description.hasBitmap) { |
| shader.append(gVS_Header_Varyings_HasBitmap); |
| } |
| if (description.hasRoundRectClip) { |
| shader.append(gVS_Header_Varyings_HasRoundRectClip); |
| } |
| |
| // Uniforms |
| int modulateOp = MODULATE_OP_NO_MODULATE; |
| const bool singleColor = !description.hasTexture && !description.hasExternalTexture && |
| !description.hasGradient && !description.hasBitmap; |
| |
| if (description.modulate || singleColor) { |
| shader.append(gFS_Uniforms_Color); |
| if (!singleColor) modulateOp = MODULATE_OP_MODULATE; |
| } |
| if (description.hasTexture || description.useShadowAlphaInterp) { |
| shader.append(gFS_Uniforms_TextureSampler); |
| } else if (description.hasExternalTexture) { |
| shader.append(gFS_Uniforms_ExternalTextureSampler); |
| } |
| if (description.hasGradient) { |
| shader.append(gFS_Uniforms_GradientSampler[description.isSimpleGradient]); |
| } |
| if (description.hasRoundRectClip) { |
| shader.append(gFS_Uniforms_HasRoundRectClip); |
| } |
| |
| if (description.hasGammaCorrection) { |
| shader.appendFormat(gFS_Gamma_Preamble, Properties::textGamma, |
| 1.0f / Properties::textGamma); |
| } |
| |
| if (description.hasBitmap) { |
| if (description.isShaderBitmapExternal) { |
| shader.append(gFS_Uniforms_BitmapExternalSampler); |
| } else { |
| shader.append(gFS_Uniforms_BitmapSampler); |
| } |
| } |
| shader.append(gFS_Uniforms_ColorOp[static_cast<int>(description.colorOp)]); |
| |
| if (description.hasColorSpaceConversion) { |
| shader.append(gFS_Uniforms_ColorSpaceConversion); |
| } |
| shader.append(gFS_Uniforms_TransferFunction[static_cast<int>(description.transferFunction)]); |
| |
| // Generate required functions |
| if (description.hasGradient && description.hasBitmap) { |
| generateBlend(shader, "blendShaders", description.shadersMode); |
| } |
| if (description.colorOp == ProgramDescription::ColorFilterMode::Blend) { |
| generateBlend(shader, "blendColors", description.colorMode); |
| } |
| if (blendFramebuffer) { |
| generateBlend(shader, "blendFramebuffer", description.framebufferMode); |
| } |
| if (description.useShaderBasedWrap) { |
| generateTextureWrap(shader, description.bitmapWrapS, description.bitmapWrapT); |
| } |
| if (description.hasGradient || description.hasLinearTexture || |
| description.hasColorSpaceConversion) { |
| shader.append(gFS_sRGB_TransferFunctions); |
| } |
| if (description.hasBitmap || ((description.hasTexture || description.hasExternalTexture) && |
| !description.hasAlpha8Texture)) { |
| shader.append(gFS_TransferFunction[static_cast<int>(description.transferFunction)]); |
| shader.append( |
| gFS_OETF[(description.hasLinearTexture || description.hasColorSpaceConversion) && |
| !mHasLinearBlending]); |
| shader.append(gFS_ColorConvert[description.hasColorSpaceConversion |
| ? 1 + description.hasTranslucentConversion |
| : 0]); |
| } |
| if (description.hasGradient) { |
| shader.append(gFS_GradientFunctions); |
| shader.append(gFS_GradientPreamble[mHasLinearBlending]); |
| } |
| |
| // Begin the shader |
| shader.append(gFS_Main); |
| { |
| // Stores the result in fragColor directly |
| if (description.hasTexture || description.hasExternalTexture) { |
| if (description.hasAlpha8Texture) { |
| if (!description.hasGradient && !description.hasBitmap) { |
| shader.append(gFS_Main_FetchA8Texture[modulateOp * 2 + |
| description.hasGammaCorrection]); |
| } |
| } else { |
| shader.append(gFS_Main_FetchTexture[modulateOp]); |
| } |
| } else { |
| if (!description.hasGradient && !description.hasBitmap) { |
| shader.append(gFS_Main_FetchColor); |
| } |
| } |
| if (description.hasGradient) { |
| shader.append(gFS_Main_FetchGradient[gradientIndex(description)]); |
| } |
| if (description.hasBitmap) { |
| if (!description.useShaderBasedWrap) { |
| shader.append(gFS_Main_FetchBitmap); |
| } else { |
| shader.append(gFS_Main_FetchBitmapNpot); |
| } |
| } |
| bool applyModulate = false; |
| // Case when we have two shaders set |
| if (description.hasGradient && description.hasBitmap) { |
| if (description.isBitmapFirst) { |
| shader.append(gFS_Main_BlendShadersBG); |
| } else { |
| shader.append(gFS_Main_BlendShadersGB); |
| } |
| applyModulate = |
| shaderOp(description, shader, modulateOp, gFS_Main_BlendShaders_Modulate); |
| } else { |
| if (description.hasGradient) { |
| applyModulate = |
| shaderOp(description, shader, modulateOp, gFS_Main_GradientShader_Modulate); |
| } else if (description.hasBitmap) { |
| applyModulate = |
| shaderOp(description, shader, modulateOp, gFS_Main_BitmapShader_Modulate); |
| } |
| } |
| |
| if (description.modulate && applyModulate) { |
| shader.append(gFS_Main_ModulateColor); |
| } |
| |
| // Apply the color op if needed |
| shader.append(gFS_Main_ApplyColorOp[static_cast<int>(description.colorOp)]); |
| |
| if (description.hasVertexAlpha) { |
| if (description.useShadowAlphaInterp) { |
| shader.append(gFS_Main_ApplyVertexAlphaShadowInterp); |
| } else { |
| shader.append(gFS_Main_ApplyVertexAlphaLinearInterp); |
| } |
| } |
| |
| if (description.hasGradient) { |
| shader.append(gFS_Main_AddDither); |
| } |
| |
| // Output the fragment |
| if (!blendFramebuffer) { |
| shader.append(gFS_Main_FragColor); |
| } else { |
| shader.append(!description.swapSrcDst ? gFS_Main_FragColor_Blend |
| : gFS_Main_FragColor_Blend_Swap); |
| } |
| if (description.hasColors) { |
| shader.append(gFS_Main_FragColor_HasColors); |
| } |
| if (description.hasRoundRectClip) { |
| shader.append(gFS_Main_FragColor_HasRoundRectClip); |
| } |
| if (description.hasDebugHighlight) { |
| shader.append(gFS_Main_DebugHighlight); |
| } |
| } |
| // End the shader |
| shader.append(gFS_Footer); |
| |
| #if DEBUG_PROGRAMS |
| PROGRAM_LOGD("*** Generated fragment shader:\n\n"); |
| printLongString(shader); |
| #endif |
| |
| return shader; |
| } |
| |
| void ProgramCache::generateBlend(String8& shader, const char* name, SkBlendMode mode) { |
| shader.append("\nvec4 "); |
| shader.append(name); |
| shader.append("(vec4 src, vec4 dst) {\n"); |
| shader.append(" "); |
| shader.append(gBlendOps[(int)mode]); |
| shader.append("}\n"); |
| } |
| |
| void ProgramCache::generateTextureWrap(String8& shader, GLenum wrapS, GLenum wrapT) { |
| shader.append("\nhighp vec2 wrap(highp vec2 texCoords) {\n"); |
| if (wrapS == GL_MIRRORED_REPEAT) { |
| shader.append(" highp float xMod2 = mod(texCoords.x, 2.0);\n"); |
| shader.append(" if (xMod2 > 1.0) xMod2 = 2.0 - xMod2;\n"); |
| } |
| if (wrapT == GL_MIRRORED_REPEAT) { |
| shader.append(" highp float yMod2 = mod(texCoords.y, 2.0);\n"); |
| shader.append(" if (yMod2 > 1.0) yMod2 = 2.0 - yMod2;\n"); |
| } |
| shader.append(" return vec2("); |
| switch (wrapS) { |
| case GL_CLAMP_TO_EDGE: |
| shader.append("texCoords.x"); |
| break; |
| case GL_REPEAT: |
| shader.append("mod(texCoords.x, 1.0)"); |
| break; |
| case GL_MIRRORED_REPEAT: |
| shader.append("xMod2"); |
| break; |
| } |
| shader.append(", "); |
| switch (wrapT) { |
| case GL_CLAMP_TO_EDGE: |
| shader.append("texCoords.y"); |
| break; |
| case GL_REPEAT: |
| shader.append("mod(texCoords.y, 1.0)"); |
| break; |
| case GL_MIRRORED_REPEAT: |
| shader.append("yMod2"); |
| break; |
| } |
| shader.append(");\n"); |
| shader.append("}\n"); |
| } |
| |
| void ProgramCache::printLongString(const String8& shader) const { |
| ssize_t index = 0; |
| ssize_t lastIndex = 0; |
| const char* str = shader.string(); |
| while ((index = shader.find("\n", index)) > -1) { |
| String8 line(str, index - lastIndex); |
| if (line.length() == 0) line.append("\n"); |
| ALOGD("%s", line.string()); |
| index++; |
| str += (index - lastIndex); |
| lastIndex = index; |
| } |
| } |
| |
| }; // namespace uirenderer |
| }; // namespace android |