blob: 1d58d96223d48fa6e0f7a094550007d376c8d9d8 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include <utils/Log.h>
#include <utils/String8.h>
#include "Caches.h"
#include "DisplayListRenderer.h"
#include "Properties.h"
#include "LayerRenderer.h"
#include "ShadowTessellator.h"
namespace android {
#ifdef USE_OPENGL_RENDERER
using namespace uirenderer;
ANDROID_SINGLETON_STATIC_INSTANCE(Caches);
#endif
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Macros
///////////////////////////////////////////////////////////////////////////////
#if DEBUG_CACHE_FLUSH
#define FLUSH_LOGD(...) ALOGD(__VA_ARGS__)
#else
#define FLUSH_LOGD(...)
#endif
///////////////////////////////////////////////////////////////////////////////
// Constructors/destructor
///////////////////////////////////////////////////////////////////////////////
Caches::Caches(): Singleton<Caches>(),
mExtensions(Extensions::getInstance()), mInitialized(false) {
init();
initFont();
initConstraints();
initProperties();
initStaticProperties();
initExtensions();
initTempProperties();
mDebugLevel = readDebugLevel();
ALOGD("Enabling debug mode %d", mDebugLevel);
}
bool Caches::init() {
if (mInitialized) return false;
glGenBuffers(1, &meshBuffer);
glBindBuffer(GL_ARRAY_BUFFER, meshBuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(gMeshVertices), gMeshVertices, GL_STATIC_DRAW);
mCurrentBuffer = meshBuffer;
mCurrentIndicesBuffer = 0;
mCurrentPositionPointer = this;
mCurrentPositionStride = 0;
mCurrentTexCoordsPointer = this;
mCurrentPixelBuffer = 0;
mTexCoordsArrayEnabled = false;
glDisable(GL_SCISSOR_TEST);
scissorEnabled = false;
mScissorX = mScissorY = mScissorWidth = mScissorHeight = 0;
glActiveTexture(gTextureUnits[0]);
mTextureUnit = 0;
mRegionMesh = NULL;
mMeshIndices = 0;
mShadowStripsIndices = 0;
blend = false;
lastSrcMode = GL_ZERO;
lastDstMode = GL_ZERO;
currentProgram = NULL;
mFunctorsCount = 0;
debugLayersUpdates = false;
debugOverdraw = false;
debugStencilClip = kStencilHide;
patchCache.init(*this);
mInitialized = true;
resetBoundTextures();
return true;
}
void Caches::initFont() {
fontRenderer = GammaFontRenderer::createRenderer();
}
void Caches::initExtensions() {
if (mExtensions.hasDebugMarker()) {
eventMark = glInsertEventMarkerEXT;
startMark = glPushGroupMarkerEXT;
endMark = glPopGroupMarkerEXT;
} else {
eventMark = eventMarkNull;
startMark = startMarkNull;
endMark = endMarkNull;
}
if (mExtensions.hasDebugLabel() && (drawDeferDisabled || drawReorderDisabled)) {
setLabel = glLabelObjectEXT;
getLabel = glGetObjectLabelEXT;
} else {
setLabel = setLabelNull;
getLabel = getLabelNull;
}
}
void Caches::initConstraints() {
GLint maxTextureUnits;
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &maxTextureUnits);
if (maxTextureUnits < REQUIRED_TEXTURE_UNITS_COUNT) {
ALOGW("At least %d texture units are required!", REQUIRED_TEXTURE_UNITS_COUNT);
}
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize);
}
void Caches::initStaticProperties() {
gpuPixelBuffersEnabled = false;
// OpenGL ES 3.0+ specific features
if (mExtensions.hasPixelBufferObjects()) {
char property[PROPERTY_VALUE_MAX];
if (property_get(PROPERTY_ENABLE_GPU_PIXEL_BUFFERS, property, "true") > 0) {
gpuPixelBuffersEnabled = !strcmp(property, "true");
}
}
}
bool Caches::initProperties() {
bool prevDebugLayersUpdates = debugLayersUpdates;
bool prevDebugOverdraw = debugOverdraw;
StencilClipDebug prevDebugStencilClip = debugStencilClip;
char property[PROPERTY_VALUE_MAX];
if (property_get(PROPERTY_DEBUG_LAYERS_UPDATES, property, NULL) > 0) {
INIT_LOGD(" Layers updates debug enabled: %s", property);
debugLayersUpdates = !strcmp(property, "true");
} else {
debugLayersUpdates = false;
}
debugOverdraw = false;
if (property_get(PROPERTY_DEBUG_OVERDRAW, property, NULL) > 0) {
INIT_LOGD(" Overdraw debug enabled: %s", property);
if (!strcmp(property, "show")) {
debugOverdraw = true;
mOverdrawDebugColorSet = kColorSet_Default;
} else if (!strcmp(property, "show_deuteranomaly")) {
debugOverdraw = true;
mOverdrawDebugColorSet = kColorSet_Deuteranomaly;
}
}
// See Properties.h for valid values
if (property_get(PROPERTY_DEBUG_STENCIL_CLIP, property, NULL) > 0) {
INIT_LOGD(" Stencil clip debug enabled: %s", property);
if (!strcmp(property, "hide")) {
debugStencilClip = kStencilHide;
} else if (!strcmp(property, "highlight")) {
debugStencilClip = kStencilShowHighlight;
} else if (!strcmp(property, "region")) {
debugStencilClip = kStencilShowRegion;
}
} else {
debugStencilClip = kStencilHide;
}
if (property_get(PROPERTY_DISABLE_DRAW_DEFER, property, "false")) {
drawDeferDisabled = !strcasecmp(property, "true");
INIT_LOGD(" Draw defer %s", drawDeferDisabled ? "disabled" : "enabled");
} else {
INIT_LOGD(" Draw defer enabled");
}
if (property_get(PROPERTY_DISABLE_DRAW_REORDER, property, "false")) {
drawReorderDisabled = !strcasecmp(property, "true");
INIT_LOGD(" Draw reorder %s", drawReorderDisabled ? "disabled" : "enabled");
} else {
INIT_LOGD(" Draw reorder enabled");
}
return (prevDebugLayersUpdates != debugLayersUpdates) ||
(prevDebugOverdraw != debugOverdraw) ||
(prevDebugStencilClip != debugStencilClip);
}
void Caches::terminate() {
if (!mInitialized) return;
glDeleteBuffers(1, &meshBuffer);
mCurrentBuffer = 0;
glDeleteBuffers(1, &mMeshIndices);
delete[] mRegionMesh;
mMeshIndices = 0;
mRegionMesh = NULL;
glDeleteBuffers(1, &mShadowStripsIndices);
mShadowStripsIndices = 0;
fboCache.clear();
programCache.clear();
currentProgram = NULL;
assetAtlas.terminate();
patchCache.clear();
clearGarbage();
mInitialized = false;
}
///////////////////////////////////////////////////////////////////////////////
// Debug
///////////////////////////////////////////////////////////////////////////////
uint32_t Caches::getOverdrawColor(uint32_t amount) const {
static uint32_t sOverdrawColors[2][4] = {
{ 0x2f0000ff, 0x2f00ff00, 0x3fff0000, 0x7fff0000 },
{ 0x2f0000ff, 0x4fffff00, 0x5fff8ad8, 0x7fff0000 }
};
if (amount < 1) amount = 1;
if (amount > 4) amount = 4;
return sOverdrawColors[mOverdrawDebugColorSet][amount - 1];
}
void Caches::dumpMemoryUsage() {
String8 stringLog;
dumpMemoryUsage(stringLog);
ALOGD("%s", stringLog.string());
}
void Caches::dumpMemoryUsage(String8 &log) {
log.appendFormat("Current memory usage / total memory usage (bytes):\n");
log.appendFormat(" TextureCache %8d / %8d\n",
textureCache.getSize(), textureCache.getMaxSize());
log.appendFormat(" LayerCache %8d / %8d\n",
layerCache.getSize(), layerCache.getMaxSize());
log.appendFormat(" RenderBufferCache %8d / %8d\n",
renderBufferCache.getSize(), renderBufferCache.getMaxSize());
log.appendFormat(" GradientCache %8d / %8d\n",
gradientCache.getSize(), gradientCache.getMaxSize());
log.appendFormat(" PathCache %8d / %8d\n",
pathCache.getSize(), pathCache.getMaxSize());
log.appendFormat(" TextDropShadowCache %8d / %8d\n", dropShadowCache.getSize(),
dropShadowCache.getMaxSize());
log.appendFormat(" PatchCache %8d / %8d\n",
patchCache.getSize(), patchCache.getMaxSize());
for (uint32_t i = 0; i < fontRenderer->getFontRendererCount(); i++) {
const uint32_t sizeA8 = fontRenderer->getFontRendererSize(i, GL_ALPHA);
const uint32_t sizeRGBA = fontRenderer->getFontRendererSize(i, GL_RGBA);
log.appendFormat(" FontRenderer %d A8 %8d / %8d\n", i, sizeA8, sizeA8);
log.appendFormat(" FontRenderer %d RGBA %8d / %8d\n", i, sizeRGBA, sizeRGBA);
log.appendFormat(" FontRenderer %d total %8d / %8d\n", i, sizeA8 + sizeRGBA,
sizeA8 + sizeRGBA);
}
log.appendFormat("Other:\n");
log.appendFormat(" FboCache %8d / %8d\n",
fboCache.getSize(), fboCache.getMaxSize());
uint32_t total = 0;
total += textureCache.getSize();
total += layerCache.getSize();
total += renderBufferCache.getSize();
total += gradientCache.getSize();
total += pathCache.getSize();
total += dropShadowCache.getSize();
total += patchCache.getSize();
for (uint32_t i = 0; i < fontRenderer->getFontRendererCount(); i++) {
total += fontRenderer->getFontRendererSize(i, GL_ALPHA);
total += fontRenderer->getFontRendererSize(i, GL_RGBA);
}
log.appendFormat("Total memory usage:\n");
log.appendFormat(" %d bytes, %.2f MB\n", total, total / 1024.0f / 1024.0f);
}
///////////////////////////////////////////////////////////////////////////////
// Memory management
///////////////////////////////////////////////////////////////////////////////
void Caches::clearGarbage() {
textureCache.clearGarbage();
pathCache.clearGarbage();
patchCache.clearGarbage();
Vector<DisplayList*> displayLists;
Vector<Layer*> layers;
{ // scope for the lock
Mutex::Autolock _l(mGarbageLock);
displayLists = mDisplayListGarbage;
layers = mLayerGarbage;
mDisplayListGarbage.clear();
mLayerGarbage.clear();
}
size_t count = displayLists.size();
for (size_t i = 0; i < count; i++) {
DisplayList* displayList = displayLists.itemAt(i);
delete displayList;
}
count = layers.size();
for (size_t i = 0; i < count; i++) {
Layer* layer = layers.itemAt(i);
delete layer;
}
layers.clear();
}
void Caches::deleteLayerDeferred(Layer* layer) {
Mutex::Autolock _l(mGarbageLock);
mLayerGarbage.push(layer);
}
void Caches::deleteDisplayListDeferred(DisplayList* displayList) {
Mutex::Autolock _l(mGarbageLock);
mDisplayListGarbage.push(displayList);
}
void Caches::flush(FlushMode mode) {
FLUSH_LOGD("Flushing caches (mode %d)", mode);
// We must stop tasks before clearing caches
if (mode > kFlushMode_Layers) {
tasks.stop();
}
switch (mode) {
case kFlushMode_Full:
textureCache.clear();
patchCache.clear();
dropShadowCache.clear();
gradientCache.clear();
fontRenderer->clear();
fboCache.clear();
dither.clear();
// fall through
case kFlushMode_Moderate:
fontRenderer->flush();
textureCache.flush();
pathCache.clear();
// fall through
case kFlushMode_Layers:
layerCache.clear();
renderBufferCache.clear();
break;
}
clearGarbage();
}
///////////////////////////////////////////////////////////////////////////////
// VBO
///////////////////////////////////////////////////////////////////////////////
bool Caches::bindMeshBuffer() {
return bindMeshBuffer(meshBuffer);
}
bool Caches::bindMeshBuffer(const GLuint buffer) {
if (mCurrentBuffer != buffer) {
glBindBuffer(GL_ARRAY_BUFFER, buffer);
mCurrentBuffer = buffer;
return true;
}
return false;
}
bool Caches::unbindMeshBuffer() {
if (mCurrentBuffer) {
glBindBuffer(GL_ARRAY_BUFFER, 0);
mCurrentBuffer = 0;
return true;
}
return false;
}
bool Caches::bindIndicesBufferInternal(const GLuint buffer) {
if (mCurrentIndicesBuffer != buffer) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer);
mCurrentIndicesBuffer = buffer;
return true;
}
return false;
}
bool Caches::bindQuadIndicesBuffer() {
if (!mMeshIndices) {
uint16_t* regionIndices = new uint16_t[gMaxNumberOfQuads * 6];
for (uint32_t i = 0; i < gMaxNumberOfQuads; i++) {
uint16_t quad = i * 4;
int index = i * 6;
regionIndices[index ] = quad; // top-left
regionIndices[index + 1] = quad + 1; // top-right
regionIndices[index + 2] = quad + 2; // bottom-left
regionIndices[index + 3] = quad + 2; // bottom-left
regionIndices[index + 4] = quad + 1; // top-right
regionIndices[index + 5] = quad + 3; // bottom-right
}
glGenBuffers(1, &mMeshIndices);
bool force = bindIndicesBufferInternal(mMeshIndices);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, gMaxNumberOfQuads * 6 * sizeof(uint16_t),
regionIndices, GL_STATIC_DRAW);
delete[] regionIndices;
return force;
}
return bindIndicesBufferInternal(mMeshIndices);
}
bool Caches::bindShadowIndicesBuffer() {
if (!mShadowStripsIndices) {
uint16_t* shadowIndices = new uint16_t[SHADOW_INDEX_COUNT];
ShadowTessellator::generateShadowIndices(shadowIndices);
glGenBuffers(1, &mShadowStripsIndices);
bool force = bindIndicesBufferInternal(mShadowStripsIndices);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, SHADOW_INDEX_COUNT * sizeof(uint16_t),
shadowIndices, GL_STATIC_DRAW);
delete[] shadowIndices;
return force;
}
return bindIndicesBufferInternal(mShadowStripsIndices);
}
bool Caches::unbindIndicesBuffer() {
if (mCurrentIndicesBuffer) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
mCurrentIndicesBuffer = 0;
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
// PBO
///////////////////////////////////////////////////////////////////////////////
bool Caches::bindPixelBuffer(const GLuint buffer) {
if (mCurrentPixelBuffer != buffer) {
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, buffer);
mCurrentPixelBuffer = buffer;
return true;
}
return false;
}
bool Caches::unbindPixelBuffer() {
if (mCurrentPixelBuffer) {
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
mCurrentPixelBuffer = 0;
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
// Meshes and textures
///////////////////////////////////////////////////////////////////////////////
void Caches::bindPositionVertexPointer(bool force, const GLvoid* vertices, GLsizei stride) {
if (force || vertices != mCurrentPositionPointer || stride != mCurrentPositionStride) {
GLuint slot = currentProgram->position;
glVertexAttribPointer(slot, 2, GL_FLOAT, GL_FALSE, stride, vertices);
mCurrentPositionPointer = vertices;
mCurrentPositionStride = stride;
}
}
void Caches::bindTexCoordsVertexPointer(bool force, const GLvoid* vertices, GLsizei stride) {
if (force || vertices != mCurrentTexCoordsPointer || stride != mCurrentTexCoordsStride) {
GLuint slot = currentProgram->texCoords;
glVertexAttribPointer(slot, 2, GL_FLOAT, GL_FALSE, stride, vertices);
mCurrentTexCoordsPointer = vertices;
mCurrentTexCoordsStride = stride;
}
}
void Caches::resetVertexPointers() {
mCurrentPositionPointer = this;
mCurrentTexCoordsPointer = this;
}
void Caches::resetTexCoordsVertexPointer() {
mCurrentTexCoordsPointer = this;
}
void Caches::enableTexCoordsVertexArray() {
if (!mTexCoordsArrayEnabled) {
glEnableVertexAttribArray(Program::kBindingTexCoords);
mCurrentTexCoordsPointer = this;
mTexCoordsArrayEnabled = true;
}
}
void Caches::disableTexCoordsVertexArray() {
if (mTexCoordsArrayEnabled) {
glDisableVertexAttribArray(Program::kBindingTexCoords);
mTexCoordsArrayEnabled = false;
}
}
void Caches::activeTexture(GLuint textureUnit) {
if (mTextureUnit != textureUnit) {
glActiveTexture(gTextureUnits[textureUnit]);
mTextureUnit = textureUnit;
}
}
void Caches::resetActiveTexture() {
mTextureUnit = -1;
}
void Caches::bindTexture(GLuint texture) {
if (mBoundTextures[mTextureUnit] != texture) {
glBindTexture(GL_TEXTURE_2D, texture);
mBoundTextures[mTextureUnit] = texture;
}
}
void Caches::bindTexture(GLenum target, GLuint texture) {
if (mBoundTextures[mTextureUnit] != texture) {
glBindTexture(target, texture);
mBoundTextures[mTextureUnit] = texture;
}
}
void Caches::deleteTexture(GLuint texture) {
// When glDeleteTextures() is called on a currently bound texture,
// OpenGL ES specifies that the texture is then considered unbound
// Consider the following series of calls:
//
// glGenTextures -> creates texture name 2
// glBindTexture(2)
// glDeleteTextures(2) -> 2 is now unbound
// glGenTextures -> can return 2 again
//
// If we don't call glBindTexture(2) after the second glGenTextures
// call, any texture operation will be performed on the default
// texture (name=0)
for (int i = 0; i < REQUIRED_TEXTURE_UNITS_COUNT; i++) {
if (mBoundTextures[i] == texture) {
mBoundTextures[i] = 0;
}
}
glDeleteTextures(1, &texture);
}
void Caches::resetBoundTextures() {
memset(mBoundTextures, 0, REQUIRED_TEXTURE_UNITS_COUNT * sizeof(GLuint));
}
///////////////////////////////////////////////////////////////////////////////
// Scissor
///////////////////////////////////////////////////////////////////////////////
bool Caches::setScissor(GLint x, GLint y, GLint width, GLint height) {
if (scissorEnabled && (x != mScissorX || y != mScissorY ||
width != mScissorWidth || height != mScissorHeight)) {
if (x < 0) {
width += x;
x = 0;
}
if (y < 0) {
height += y;
y = 0;
}
if (width < 0) {
width = 0;
}
if (height < 0) {
height = 0;
}
glScissor(x, y, width, height);
mScissorX = x;
mScissorY = y;
mScissorWidth = width;
mScissorHeight = height;
return true;
}
return false;
}
bool Caches::enableScissor() {
if (!scissorEnabled) {
glEnable(GL_SCISSOR_TEST);
scissorEnabled = true;
resetScissor();
return true;
}
return false;
}
bool Caches::disableScissor() {
if (scissorEnabled) {
glDisable(GL_SCISSOR_TEST);
scissorEnabled = false;
return true;
}
return false;
}
void Caches::setScissorEnabled(bool enabled) {
if (scissorEnabled != enabled) {
if (enabled) glEnable(GL_SCISSOR_TEST);
else glDisable(GL_SCISSOR_TEST);
scissorEnabled = enabled;
}
}
void Caches::resetScissor() {
mScissorX = mScissorY = mScissorWidth = mScissorHeight = 0;
}
///////////////////////////////////////////////////////////////////////////////
// Tiling
///////////////////////////////////////////////////////////////////////////////
void Caches::startTiling(GLuint x, GLuint y, GLuint width, GLuint height, bool discard) {
if (mExtensions.hasTiledRendering() && !debugOverdraw) {
glStartTilingQCOM(x, y, width, height, (discard ? GL_NONE : GL_COLOR_BUFFER_BIT0_QCOM));
}
}
void Caches::endTiling() {
if (mExtensions.hasTiledRendering() && !debugOverdraw) {
glEndTilingQCOM(GL_COLOR_BUFFER_BIT0_QCOM);
}
}
bool Caches::hasRegisteredFunctors() {
return mFunctorsCount > 0;
}
void Caches::registerFunctors(uint32_t functorCount) {
mFunctorsCount += functorCount;
}
void Caches::unregisterFunctors(uint32_t functorCount) {
if (functorCount > mFunctorsCount) {
mFunctorsCount = 0;
} else {
mFunctorsCount -= functorCount;
}
}
///////////////////////////////////////////////////////////////////////////////
// Regions
///////////////////////////////////////////////////////////////////////////////
TextureVertex* Caches::getRegionMesh() {
// Create the mesh, 2 triangles and 4 vertices per rectangle in the region
if (!mRegionMesh) {
mRegionMesh = new TextureVertex[gMaxNumberOfQuads * 4];
}
return mRegionMesh;
}
///////////////////////////////////////////////////////////////////////////////
// Temporary Properties
///////////////////////////////////////////////////////////////////////////////
void Caches::initTempProperties() {
propertyDirtyViewport = false;
propertyEnable3d = false;
propertyCameraDistance = 1.0f;
propertyAmbientShadowStrength = 0x3f;
propertySpotShadowStrength = 0x3f;
propertyLightPosXScale = 0.5f;
propertyLightPosYScale = 0.0f;
propertyLightPosZScale = 1.0f;
}
void Caches::setTempProperty(const char* name, const char* value) {
ALOGD("setting property %s to %s", name, value);
if (!strcmp(name, "enable3d")) {
propertyEnable3d = !strcmp(value, "true");
propertyDirtyViewport = true;
ALOGD("enable3d = %d", propertyEnable3d);
return;
} else if (!strcmp(name, "cameraDistance")) {
propertyCameraDistance = fmin(fmax(atof(value), 0.001), 10);
propertyDirtyViewport = true;
ALOGD("camera dist multiplier = %.2f", propertyCameraDistance);
return;
} else if (!strcmp(name, "ambientShadowStrength")) {
propertyAmbientShadowStrength = atoi(value);
ALOGD("ambient shadow strength = 0x%x out of 0xff", propertyAmbientShadowStrength);
return;
} else if (!strcmp(name, "spotShadowStrength")) {
propertySpotShadowStrength = atoi(value);
ALOGD("spot shadow strength = 0x%x out of 0xff", propertySpotShadowStrength);
return;
} else if (!strcmp(name, "lightPosXScale")) {
propertyLightPosXScale = fmin(fmax(atof(value), 0.0), 1.0);
propertyDirtyViewport = true;
ALOGD("lightPos X Scale = %.2f", propertyLightPosXScale);
return;
} else if (!strcmp(name, "lightPosYScale")) {
propertyLightPosYScale = fmin(fmax(atof(value), 0.0), 1.0);
propertyDirtyViewport = true;
ALOGD("lightPos Y Scale = %.2f", propertyLightPosXScale);
return;
} else if (!strcmp(name, "lightPosZScale")) {
propertyLightPosZScale = fmin(fmax(atof(value), 0.0), 1.0);
propertyDirtyViewport = true;
ALOGD("lightPos Z Scale = %.2f", propertyLightPosXScale);
return;
}
ALOGD(" failed");
}
}; // namespace uirenderer
}; // namespace android