blob: 0fc1c5d83db57a727ffca3f72e62a38ab1e014c1 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compile/Image.h"
#include "util/StringPiece.h"
#include "util/Util.h"
#include <androidfw/ResourceTypes.h>
#include <sstream>
#include <string>
#include <vector>
namespace aapt {
// Colors in the format 0xAARRGGBB (the way 9-patch expects it).
constexpr static const uint32_t kColorOpaqueWhite = 0xffffffffu;
constexpr static const uint32_t kColorOpaqueBlack = 0xff000000u;
constexpr static const uint32_t kColorOpaqueRed = 0xffff0000u;
constexpr static const uint32_t kPrimaryColor = kColorOpaqueBlack;
constexpr static const uint32_t kSecondaryColor = kColorOpaqueRed;
/**
* Returns the alpha value encoded in the 0xAARRGBB encoded pixel.
*/
static uint32_t getAlpha(uint32_t color);
/**
* Determines whether a color on an ImageLine is valid.
* A 9patch image may use a transparent color as neutral,
* or a fully opaque white color as neutral, based on the
* pixel color at (0,0) of the image. One or the other is fine,
* but we need to ensure consistency throughout the image.
*/
class ColorValidator {
public:
virtual ~ColorValidator() = default;
/**
* Returns true if the color specified is a neutral color
* (no padding, stretching, or optical bounds).
*/
virtual bool isNeutralColor(uint32_t color) const = 0;
/**
* Returns true if the color is either a neutral color
* or one denoting padding, stretching, or optical bounds.
*/
bool isValidColor(uint32_t color) const {
switch (color) {
case kPrimaryColor:
case kSecondaryColor:
return true;
}
return isNeutralColor(color);
}
};
// Walks an ImageLine and records Ranges of primary and secondary colors.
// The primary color is black and is used to denote a padding or stretching range,
// depending on which border we're iterating over.
// The secondary color is red and is used to denote optical bounds.
//
// An ImageLine is a templated-interface that would look something like this if it
// were polymorphic:
//
// class ImageLine {
// public:
// virtual int32_t getLength() const = 0;
// virtual uint32_t getColor(int32_t idx) const = 0;
// };
//
template <typename ImageLine>
static bool fillRanges(const ImageLine* imageLine,
const ColorValidator* colorValidator,
std::vector<Range>* primaryRanges,
std::vector<Range>* secondaryRanges,
std::string* err) {
const int32_t length = imageLine->getLength();
uint32_t lastColor = 0xffffffffu;
for (int32_t idx = 1; idx < length - 1; idx++) {
const uint32_t color = imageLine->getColor(idx);
if (!colorValidator->isValidColor(color)) {
*err = "found an invalid color";
return false;
}
if (color != lastColor) {
// We are ending a range. Which range?
// note: encode the x offset without the final 1 pixel border.
if (lastColor == kPrimaryColor) {
primaryRanges->back().end = idx - 1;
} else if (lastColor == kSecondaryColor) {
secondaryRanges->back().end = idx - 1;
}
// We are starting a range. Which range?
// note: encode the x offset without the final 1 pixel border.
if (color == kPrimaryColor) {
primaryRanges->push_back(Range(idx - 1, length - 2));
} else if (color == kSecondaryColor) {
secondaryRanges->push_back(Range(idx - 1, length - 2));
}
lastColor = color;
}
}
return true;
}
/**
* Iterates over a row in an image. Implements the templated ImageLine interface.
*/
class HorizontalImageLine {
public:
explicit HorizontalImageLine(uint8_t** rows, int32_t xOffset, int32_t yOffset,
int32_t length) :
mRows(rows), mXOffset(xOffset), mYOffset(yOffset), mLength(length) {
}
inline int32_t getLength() const {
return mLength;
}
inline uint32_t getColor(int32_t idx) const {
return NinePatch::packRGBA(mRows[mYOffset] + (idx + mXOffset) * 4);
}
private:
uint8_t** mRows;
int32_t mXOffset, mYOffset, mLength;
DISALLOW_COPY_AND_ASSIGN(HorizontalImageLine);
};
/**
* Iterates over a column in an image. Implements the templated ImageLine interface.
*/
class VerticalImageLine {
public:
explicit VerticalImageLine(uint8_t** rows, int32_t xOffset, int32_t yOffset,
int32_t length) :
mRows(rows), mXOffset(xOffset), mYOffset(yOffset), mLength(length) {
}
inline int32_t getLength() const {
return mLength;
}
inline uint32_t getColor(int32_t idx) const {
return NinePatch::packRGBA(mRows[mYOffset + idx] + (mXOffset * 4));
}
private:
uint8_t** mRows;
int32_t mXOffset, mYOffset, mLength;
DISALLOW_COPY_AND_ASSIGN(VerticalImageLine);
};
class DiagonalImageLine {
public:
explicit DiagonalImageLine(uint8_t** rows, int32_t xOffset, int32_t yOffset,
int32_t xStep, int32_t yStep, int32_t length) :
mRows(rows), mXOffset(xOffset), mYOffset(yOffset), mXStep(xStep), mYStep(yStep),
mLength(length) {
}
inline int32_t getLength() const {
return mLength;
}
inline uint32_t getColor(int32_t idx) const {
return NinePatch::packRGBA(
mRows[mYOffset + (idx * mYStep)] + ((idx + mXOffset) * mXStep) * 4);
}
private:
uint8_t** mRows;
int32_t mXOffset, mYOffset, mXStep, mYStep, mLength;
DISALLOW_COPY_AND_ASSIGN(DiagonalImageLine);
};
class TransparentNeutralColorValidator : public ColorValidator {
public:
bool isNeutralColor(uint32_t color) const override {
return getAlpha(color) == 0;
}
};
class WhiteNeutralColorValidator : public ColorValidator {
public:
bool isNeutralColor(uint32_t color) const override {
return color == kColorOpaqueWhite;
}
};
inline static uint32_t getAlpha(uint32_t color) {
return (color & 0xff000000u) >> 24;
}
static bool populateBounds(const std::vector<Range>& padding,
const std::vector<Range>& layoutBounds,
const std::vector<Range>& stretchRegions,
const int32_t length,
int32_t* paddingStart, int32_t* paddingEnd,
int32_t* layoutStart, int32_t* layoutEnd,
const StringPiece& edgeName,
std::string* err) {
if (padding.size() > 1) {
std::stringstream errStream;
errStream << "too many padding sections on " << edgeName << " border";
*err = errStream.str();
return false;
}
*paddingStart = 0;
*paddingEnd = 0;
if (!padding.empty()) {
const Range& range = padding.front();
*paddingStart = range.start;
*paddingEnd = length - range.end;
} else if (!stretchRegions.empty()) {
// No padding was defined. Compute the padding from the first and last
// stretch regions.
*paddingStart = stretchRegions.front().start;
*paddingEnd = length - stretchRegions.back().end;
}
if (layoutBounds.size() > 2) {
std::stringstream errStream;
errStream << "too many layout bounds sections on " << edgeName << " border";
*err = errStream.str();
return false;
}
*layoutStart = 0;
*layoutEnd = 0;
if (layoutBounds.size() >= 1) {
const Range& range = layoutBounds.front();
// If there is only one layout bound segment, it might not start at 0, but then it should
// end at length.
if (range.start != 0 && range.end != length) {
std::stringstream errStream;
errStream << "layout bounds on " << edgeName << " border must start at edge";
*err = errStream.str();
return false;
}
*layoutStart = range.end;
if (layoutBounds.size() >= 2) {
const Range& range = layoutBounds.back();
if (range.end != length) {
std::stringstream errStream;
errStream << "layout bounds on " << edgeName << " border must start at edge";
*err = errStream.str();
return false;
}
*layoutEnd = length - range.start;
}
}
return true;
}
static int32_t calculateSegmentCount(const std::vector<Range>& stretchRegions, int32_t length) {
if (stretchRegions.size() == 0) {
return 0;
}
const bool startIsFixed = stretchRegions.front().start != 0;
const bool endIsFixed = stretchRegions.back().end != length;
int32_t modifier = 0;
if (startIsFixed && endIsFixed) {
modifier = 1;
} else if (!startIsFixed && !endIsFixed) {
modifier = -1;
}
return static_cast<int32_t>(stretchRegions.size()) * 2 + modifier;
}
static uint32_t getRegionColor(uint8_t** rows, const Bounds& region) {
// Sample the first pixel to compare against.
const uint32_t expectedColor = NinePatch::packRGBA(rows[region.top] + region.left * 4);
for (int32_t y = region.top; y < region.bottom; y++) {
const uint8_t* row = rows[y];
for (int32_t x = region.left; x < region.right; x++) {
const uint32_t color = NinePatch::packRGBA(row + x * 4);
if (getAlpha(color) == 0) {
// The color is transparent.
// If the expectedColor is not transparent, NO_COLOR.
if (getAlpha(expectedColor) != 0) {
return android::Res_png_9patch::NO_COLOR;
}
} else if (color != expectedColor) {
return android::Res_png_9patch::NO_COLOR;
}
}
}
if (getAlpha(expectedColor) == 0) {
return android::Res_png_9patch::TRANSPARENT_COLOR;
}
return expectedColor;
}
// Fills outColors with each 9-patch section's colour. If the whole section is transparent,
// it gets the special TRANSPARENT colour. If the whole section is the same colour, it is assigned
// that colour. Otherwise it gets the special NO_COLOR colour.
//
// Note that the rows contain the 9-patch 1px border, and the indices in the stretch regions are
// already offset to exclude the border. This means that each time the rows are accessed,
// the indices must be offset by 1.
//
// width and height also include the 9-patch 1px border.
static void calculateRegionColors(uint8_t** rows,
const std::vector<Range>& horizontalStretchRegions,
const std::vector<Range>& verticalStretchRegions,
const int32_t width, const int32_t height,
std::vector<uint32_t>* outColors) {
int32_t nextTop = 0;
Bounds bounds;
auto rowIter = verticalStretchRegions.begin();
while (nextTop != height) {
if (rowIter != verticalStretchRegions.end()) {
if (nextTop != rowIter->start) {
// This is a fixed segment.
// Offset the bounds by 1 to accommodate the border.
bounds.top = nextTop + 1;
bounds.bottom = rowIter->start + 1;
nextTop = rowIter->start;
} else {
// This is a stretchy segment.
// Offset the bounds by 1 to accommodate the border.
bounds.top = rowIter->start + 1;
bounds.bottom = rowIter->end + 1;
nextTop = rowIter->end;
++rowIter;
}
} else {
// This is the end, fixed section.
// Offset the bounds by 1 to accommodate the border.
bounds.top = nextTop + 1;
bounds.bottom = height + 1;
nextTop = height;
}
int32_t nextLeft = 0;
auto colIter = horizontalStretchRegions.begin();
while (nextLeft != width) {
if (colIter != horizontalStretchRegions.end()) {
if (nextLeft != colIter->start) {
// This is a fixed segment.
// Offset the bounds by 1 to accommodate the border.
bounds.left = nextLeft + 1;
bounds.right = colIter->start + 1;
nextLeft = colIter->start;
} else {
// This is a stretchy segment.
// Offset the bounds by 1 to accommodate the border.
bounds.left = colIter->start + 1;
bounds.right = colIter->end + 1;
nextLeft = colIter->end;
++colIter;
}
} else {
// This is the end, fixed section.
// Offset the bounds by 1 to accommodate the border.
bounds.left = nextLeft + 1;
bounds.right = width + 1;
nextLeft = width;
}
outColors->push_back(getRegionColor(rows, bounds));
}
}
}
// Calculates the insets of a row/column of pixels based on where the largest alpha value begins
// (on both sides).
template <typename ImageLine>
static void findOutlineInsets(const ImageLine* imageLine, int32_t* outStart, int32_t* outEnd) {
*outStart = 0;
*outEnd = 0;
const int32_t length = imageLine->getLength();
if (length < 3) {
return;
}
// If the length is odd, we want both sides to process the center pixel,
// so we use two different midpoints (to account for < and <= in the different loops).
const int32_t mid2 = length / 2;
const int32_t mid1 = mid2 + (length % 2);
uint32_t maxAlpha = 0;
for (int32_t i = 0; i < mid1 && maxAlpha != 0xff; i++) {
uint32_t alpha = getAlpha(imageLine->getColor(i));
if (alpha > maxAlpha) {
maxAlpha = alpha;
*outStart = i;
}
}
maxAlpha = 0;
for (int32_t i = length - 1; i >= mid2 && maxAlpha != 0xff; i--) {
uint32_t alpha = getAlpha(imageLine->getColor(i));
if (alpha > maxAlpha) {
maxAlpha = alpha;
*outEnd = length - (i + 1);
}
}
return;
}
template <typename ImageLine>
static uint32_t findMaxAlpha(const ImageLine* imageLine) {
const int32_t length = imageLine->getLength();
uint32_t maxAlpha = 0;
for (int32_t idx = 0; idx < length && maxAlpha != 0xff; idx++) {
uint32_t alpha = getAlpha(imageLine->getColor(idx));
if (alpha > maxAlpha) {
maxAlpha = alpha;
}
}
return maxAlpha;
}
// Pack the pixels in as 0xAARRGGBB (as 9-patch expects it).
uint32_t NinePatch::packRGBA(const uint8_t* pixel) {
return (pixel[3] << 24) | (pixel[0] << 16) | (pixel[1] << 8) | pixel[2];
}
std::unique_ptr<NinePatch> NinePatch::create(uint8_t** rows,
const int32_t width, const int32_t height,
std::string* err) {
if (width < 3 || height < 3) {
*err = "image must be at least 3x3 (1x1 image with 1 pixel border)";
return {};
}
std::vector<Range> horizontalPadding;
std::vector<Range> horizontalOpticalBounds;
std::vector<Range> verticalPadding;
std::vector<Range> verticalOpticalBounds;
std::vector<Range> unexpectedRanges;
std::unique_ptr<ColorValidator> colorValidator;
if (rows[0][3] == 0) {
colorValidator = util::make_unique<TransparentNeutralColorValidator>();
} else if (packRGBA(rows[0]) == kColorOpaqueWhite) {
colorValidator = util::make_unique<WhiteNeutralColorValidator>();
} else {
*err = "top-left corner pixel must be either opaque white or transparent";
return {};
}
// Private constructor, can't use make_unique.
auto ninePatch = std::unique_ptr<NinePatch>(new NinePatch());
HorizontalImageLine topRow(rows, 0, 0, width);
if (!fillRanges(&topRow, colorValidator.get(), &ninePatch->horizontalStretchRegions,
&unexpectedRanges, err)) {
return {};
}
if (!unexpectedRanges.empty()) {
const Range& range = unexpectedRanges[0];
std::stringstream errStream;
errStream << "found unexpected optical bounds (red pixel) on top border "
<< "at x=" << range.start + 1;
*err = errStream.str();
return {};
}
VerticalImageLine leftCol(rows, 0, 0, height);
if (!fillRanges(&leftCol, colorValidator.get(), &ninePatch->verticalStretchRegions,
&unexpectedRanges, err)) {
return {};
}
if (!unexpectedRanges.empty()) {
const Range& range = unexpectedRanges[0];
std::stringstream errStream;
errStream << "found unexpected optical bounds (red pixel) on left border "
<< "at y=" << range.start + 1;
return {};
}
HorizontalImageLine bottomRow(rows, 0, height - 1, width);
if (!fillRanges(&bottomRow, colorValidator.get(), &horizontalPadding,
&horizontalOpticalBounds, err)) {
return {};
}
if (!populateBounds(horizontalPadding, horizontalOpticalBounds,
ninePatch->horizontalStretchRegions, width - 2,
&ninePatch->padding.left, &ninePatch->padding.right,
&ninePatch->layoutBounds.left, &ninePatch->layoutBounds.right,
"bottom", err)) {
return {};
}
VerticalImageLine rightCol(rows, width - 1, 0, height);
if (!fillRanges(&rightCol, colorValidator.get(), &verticalPadding,
&verticalOpticalBounds, err)) {
return {};
}
if (!populateBounds(verticalPadding, verticalOpticalBounds,
ninePatch->verticalStretchRegions, height - 2,
&ninePatch->padding.top, &ninePatch->padding.bottom,
&ninePatch->layoutBounds.top, &ninePatch->layoutBounds.bottom,
"right", err)) {
return {};
}
// Fill the region colors of the 9-patch.
const int32_t numRows = calculateSegmentCount(ninePatch->horizontalStretchRegions, width - 2);
const int32_t numCols = calculateSegmentCount(ninePatch->verticalStretchRegions, height - 2);
if ((int64_t) numRows * (int64_t) numCols > 0x7f) {
*err = "too many regions in 9-patch";
return {};
}
ninePatch->regionColors.reserve(numRows * numCols);
calculateRegionColors(rows, ninePatch->horizontalStretchRegions,
ninePatch->verticalStretchRegions,
width - 2, height - 2,
&ninePatch->regionColors);
// Compute the outline based on opacity.
// Find left and right extent of 9-patch content on center row.
HorizontalImageLine midRow(rows, 1, height / 2, width - 2);
findOutlineInsets(&midRow, &ninePatch->outline.left, &ninePatch->outline.right);
// Find top and bottom extent of 9-patch content on center column.
VerticalImageLine midCol(rows, width / 2, 1, height - 2);
findOutlineInsets(&midCol, &ninePatch->outline.top, &ninePatch->outline.bottom);
const int32_t outlineWidth = (width - 2) - ninePatch->outline.left - ninePatch->outline.right;
const int32_t outlineHeight = (height - 2) - ninePatch->outline.top - ninePatch->outline.bottom;
// Find the largest alpha value within the outline area.
HorizontalImageLine outlineMidRow(rows,
1 + ninePatch->outline.left,
1 + ninePatch->outline.top + (outlineHeight / 2),
outlineWidth);
VerticalImageLine outlineMidCol(rows,
1 + ninePatch->outline.left + (outlineWidth / 2),
1 + ninePatch->outline.top,
outlineHeight);
ninePatch->outlineAlpha = std::max(findMaxAlpha(&outlineMidRow), findMaxAlpha(&outlineMidCol));
// Assuming the image is a round rect, compute the radius by marching
// diagonally from the top left corner towards the center.
DiagonalImageLine diagonal(rows, 1 + ninePatch->outline.left, 1 + ninePatch->outline.top,
1, 1, std::min(outlineWidth, outlineHeight));
int32_t topLeft, bottomRight;
findOutlineInsets(&diagonal, &topLeft, &bottomRight);
/* Determine source radius based upon inset:
* sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r
* sqrt(2) * r = sqrt(2) * i + r
* (sqrt(2) - 1) * r = sqrt(2) * i
* r = sqrt(2) / (sqrt(2) - 1) * i
*/
ninePatch->outlineRadius = 3.4142f * topLeft;
return ninePatch;
}
std::unique_ptr<uint8_t[]> NinePatch::serializeBase(size_t* outLen) const {
android::Res_png_9patch data;
data.numXDivs = static_cast<uint8_t>(horizontalStretchRegions.size()) * 2;
data.numYDivs = static_cast<uint8_t>(verticalStretchRegions.size()) * 2;
data.numColors = static_cast<uint8_t>(regionColors.size());
data.paddingLeft = padding.left;
data.paddingRight = padding.right;
data.paddingTop = padding.top;
data.paddingBottom = padding.bottom;
auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[data.serializedSize()]);
android::Res_png_9patch::serialize(data,
(const int32_t*) horizontalStretchRegions.data(),
(const int32_t*) verticalStretchRegions.data(),
regionColors.data(),
buffer.get());
// Convert to file endianness.
reinterpret_cast<android::Res_png_9patch*>(buffer.get())->deviceToFile();
*outLen = data.serializedSize();
return buffer;
}
std::unique_ptr<uint8_t[]> NinePatch::serializeLayoutBounds(size_t* outLen) const {
size_t chunkLen = sizeof(uint32_t) * 4;
auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[chunkLen]);
uint8_t* cursor = buffer.get();
memcpy(cursor, &layoutBounds.left, sizeof(layoutBounds.left));
cursor += sizeof(layoutBounds.left);
memcpy(cursor, &layoutBounds.top, sizeof(layoutBounds.top));
cursor += sizeof(layoutBounds.top);
memcpy(cursor, &layoutBounds.right, sizeof(layoutBounds.right));
cursor += sizeof(layoutBounds.right);
memcpy(cursor, &layoutBounds.bottom, sizeof(layoutBounds.bottom));
cursor += sizeof(layoutBounds.bottom);
*outLen = chunkLen;
return buffer;
}
std::unique_ptr<uint8_t[]> NinePatch::serializeRoundedRectOutline(size_t* outLen) const {
size_t chunkLen = sizeof(uint32_t) * 6;
auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[chunkLen]);
uint8_t* cursor = buffer.get();
memcpy(cursor, &outline.left, sizeof(outline.left));
cursor += sizeof(outline.left);
memcpy(cursor, &outline.top, sizeof(outline.top));
cursor += sizeof(outline.top);
memcpy(cursor, &outline.right, sizeof(outline.right));
cursor += sizeof(outline.right);
memcpy(cursor, &outline.bottom, sizeof(outline.bottom));
cursor += sizeof(outline.bottom);
*((float*) cursor) = outlineRadius;
cursor += sizeof(outlineRadius);
*((uint32_t*) cursor) = outlineAlpha;
*outLen = chunkLen;
return buffer;
}
::std::ostream& operator<<(::std::ostream& out, const Range& range) {
return out << "[" << range.start << ", " << range.end << ")";
}
::std::ostream& operator<<(::std::ostream& out, const Bounds& bounds) {
return out << "l=" << bounds.left
<< " t=" << bounds.top
<< " r=" << bounds.right
<< " b=" << bounds.bottom;
}
::std::ostream& operator<<(::std::ostream& out, const NinePatch& ninePatch) {
return out << "horizontalStretch:" << util::joiner(ninePatch.horizontalStretchRegions, " ")
<< " verticalStretch:" << util::joiner(ninePatch.verticalStretchRegions, " ")
<< " padding: " << ninePatch.padding
<< ", bounds: " << ninePatch.layoutBounds
<< ", outline: " << ninePatch.outline
<< " rad=" << ninePatch.outlineRadius
<< " alpha=" << ninePatch.outlineAlpha;
}
} // namespace aapt