| // |
| // Copyright 2010 The Android Open Source Project |
| // |
| // The input dispatcher. |
| // |
| #define LOG_TAG "InputDispatcher" |
| |
| //#define LOG_NDEBUG 0 |
| |
| // Log detailed debug messages about each inbound event notification to the dispatcher. |
| #define DEBUG_INBOUND_EVENT_DETAILS 0 |
| |
| // Log detailed debug messages about each outbound event processed by the dispatcher. |
| #define DEBUG_OUTBOUND_EVENT_DETAILS 0 |
| |
| // Log debug messages about batching. |
| #define DEBUG_BATCHING 0 |
| |
| // Log debug messages about the dispatch cycle. |
| #define DEBUG_DISPATCH_CYCLE 0 |
| |
| // Log debug messages about registrations. |
| #define DEBUG_REGISTRATION 0 |
| |
| // Log debug messages about performance statistics. |
| #define DEBUG_PERFORMANCE_STATISTICS 0 |
| |
| // Log debug messages about input event injection. |
| #define DEBUG_INJECTION 0 |
| |
| #include <cutils/log.h> |
| #include <ui/InputDispatcher.h> |
| |
| #include <stddef.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <limits.h> |
| |
| namespace android { |
| |
| // TODO, this needs to be somewhere else, perhaps in the policy |
| static inline bool isMovementKey(int32_t keyCode) { |
| return keyCode == AKEYCODE_DPAD_UP |
| || keyCode == AKEYCODE_DPAD_DOWN |
| || keyCode == AKEYCODE_DPAD_LEFT |
| || keyCode == AKEYCODE_DPAD_RIGHT; |
| } |
| |
| static inline nsecs_t now() { |
| return systemTime(SYSTEM_TIME_MONOTONIC); |
| } |
| |
| // --- InputDispatcher --- |
| |
| InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) : |
| mPolicy(policy) { |
| mPollLoop = new PollLoop(false); |
| |
| mInboundQueue.head.refCount = -1; |
| mInboundQueue.head.type = EventEntry::TYPE_SENTINEL; |
| mInboundQueue.head.eventTime = LONG_LONG_MIN; |
| |
| mInboundQueue.tail.refCount = -1; |
| mInboundQueue.tail.type = EventEntry::TYPE_SENTINEL; |
| mInboundQueue.tail.eventTime = LONG_LONG_MAX; |
| |
| mKeyRepeatState.lastKeyEntry = NULL; |
| |
| mCurrentInputTargetsValid = false; |
| } |
| |
| InputDispatcher::~InputDispatcher() { |
| resetKeyRepeatLocked(); |
| |
| while (mConnectionsByReceiveFd.size() != 0) { |
| unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel); |
| } |
| |
| for (EventEntry* entry = mInboundQueue.head.next; entry != & mInboundQueue.tail; ) { |
| EventEntry* next = entry->next; |
| mAllocator.releaseEventEntry(next); |
| entry = next; |
| } |
| } |
| |
| void InputDispatcher::dispatchOnce() { |
| nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout(); |
| |
| bool skipPoll = false; |
| nsecs_t currentTime; |
| nsecs_t nextWakeupTime = LONG_LONG_MAX; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| currentTime = now(); |
| |
| // Reset the key repeat timer whenever we disallow key events, even if the next event |
| // is not a key. This is to ensure that we abort a key repeat if the device is just coming |
| // out of sleep. |
| // XXX we should handle resetting input state coming out of sleep more generally elsewhere |
| if (keyRepeatTimeout < 0) { |
| resetKeyRepeatLocked(); |
| } |
| |
| // Detect and process timeouts for all connections and determine if there are any |
| // synchronous event dispatches pending. This step is entirely non-interruptible. |
| bool hasPendingSyncTarget = false; |
| size_t activeConnectionCount = mActiveConnections.size(); |
| for (size_t i = 0; i < activeConnectionCount; i++) { |
| Connection* connection = mActiveConnections.itemAt(i); |
| |
| if (connection->hasPendingSyncTarget()) { |
| hasPendingSyncTarget = true; |
| } |
| |
| nsecs_t connectionTimeoutTime = connection->nextTimeoutTime; |
| if (connectionTimeoutTime <= currentTime) { |
| mTimedOutConnections.add(connection); |
| } else if (connectionTimeoutTime < nextWakeupTime) { |
| nextWakeupTime = connectionTimeoutTime; |
| } |
| } |
| |
| size_t timedOutConnectionCount = mTimedOutConnections.size(); |
| for (size_t i = 0; i < timedOutConnectionCount; i++) { |
| Connection* connection = mTimedOutConnections.itemAt(i); |
| timeoutDispatchCycleLocked(currentTime, connection); |
| skipPoll = true; |
| } |
| mTimedOutConnections.clear(); |
| |
| // If we don't have a pending sync target, then we can begin delivering a new event. |
| // (Otherwise we wait for dispatch to complete for that target.) |
| if (! hasPendingSyncTarget) { |
| if (mInboundQueue.isEmpty()) { |
| if (mKeyRepeatState.lastKeyEntry) { |
| if (currentTime >= mKeyRepeatState.nextRepeatTime) { |
| processKeyRepeatLockedInterruptible(currentTime, keyRepeatTimeout); |
| skipPoll = true; |
| } else { |
| if (mKeyRepeatState.nextRepeatTime < nextWakeupTime) { |
| nextWakeupTime = mKeyRepeatState.nextRepeatTime; |
| } |
| } |
| } |
| } else { |
| // Inbound queue has at least one entry. |
| // Start processing it but leave it on the queue until later so that the |
| // input reader can keep appending samples onto a motion event between the |
| // time we started processing it and the time we finally enqueue dispatch |
| // entries for it. |
| EventEntry* entry = mInboundQueue.head.next; |
| |
| switch (entry->type) { |
| case EventEntry::TYPE_CONFIGURATION_CHANGED: { |
| ConfigurationChangedEntry* typedEntry = |
| static_cast<ConfigurationChangedEntry*>(entry); |
| processConfigurationChangedLockedInterruptible(currentTime, typedEntry); |
| break; |
| } |
| |
| case EventEntry::TYPE_KEY: { |
| KeyEntry* typedEntry = static_cast<KeyEntry*>(entry); |
| processKeyLockedInterruptible(currentTime, typedEntry, keyRepeatTimeout); |
| break; |
| } |
| |
| case EventEntry::TYPE_MOTION: { |
| MotionEntry* typedEntry = static_cast<MotionEntry*>(entry); |
| processMotionLockedInterruptible(currentTime, typedEntry); |
| break; |
| } |
| |
| default: |
| assert(false); |
| break; |
| } |
| |
| // Dequeue and release the event entry that we just processed. |
| mInboundQueue.dequeue(entry); |
| mAllocator.releaseEventEntry(entry); |
| skipPoll = true; |
| } |
| } |
| |
| // Run any deferred commands. |
| skipPoll |= runCommandsLockedInterruptible(); |
| |
| // Wake up synchronization waiters, if needed. |
| if (isFullySynchronizedLocked()) { |
| mFullySynchronizedCondition.broadcast(); |
| } |
| } // release lock |
| |
| // If we dispatched anything, don't poll just now. Wait for the next iteration. |
| // Contents may have shifted during flight. |
| if (skipPoll) { |
| return; |
| } |
| |
| // Wait for callback or timeout or wake. |
| nsecs_t timeout = nanoseconds_to_milliseconds(nextWakeupTime - currentTime); |
| int32_t timeoutMillis = timeout > INT_MAX ? -1 : timeout > 0 ? int32_t(timeout) : 0; |
| mPollLoop->pollOnce(timeoutMillis); |
| } |
| |
| bool InputDispatcher::runCommandsLockedInterruptible() { |
| if (mCommandQueue.isEmpty()) { |
| return false; |
| } |
| |
| do { |
| CommandEntry* commandEntry = mCommandQueue.dequeueAtHead(); |
| |
| Command command = commandEntry->command; |
| (this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible' |
| |
| commandEntry->connection.clear(); |
| mAllocator.releaseCommandEntry(commandEntry); |
| } while (! mCommandQueue.isEmpty()); |
| return true; |
| } |
| |
| InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) { |
| CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command); |
| mCommandQueue.enqueueAtTail(commandEntry); |
| return commandEntry; |
| } |
| |
| void InputDispatcher::processConfigurationChangedLockedInterruptible( |
| nsecs_t currentTime, ConfigurationChangedEntry* entry) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("processConfigurationChanged - eventTime=%lld", entry->eventTime); |
| #endif |
| |
| // Reset key repeating in case a keyboard device was added or removed or something. |
| resetKeyRepeatLocked(); |
| |
| mLock.unlock(); |
| |
| mPolicy->notifyConfigurationChanged(entry->eventTime); |
| |
| mLock.lock(); |
| } |
| |
| void InputDispatcher::processKeyLockedInterruptible( |
| nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("processKey - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, " |
| "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld", |
| entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, entry->action, |
| entry->flags, entry->keyCode, entry->scanCode, entry->metaState, |
| entry->downTime); |
| #endif |
| |
| if (entry->action == AKEY_EVENT_ACTION_DOWN && ! entry->isInjected()) { |
| if (mKeyRepeatState.lastKeyEntry |
| && mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) { |
| // We have seen two identical key downs in a row which indicates that the device |
| // driver is automatically generating key repeats itself. We take note of the |
| // repeat here, but we disable our own next key repeat timer since it is clear that |
| // we will not need to synthesize key repeats ourselves. |
| entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1; |
| resetKeyRepeatLocked(); |
| mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves |
| } else { |
| // Not a repeat. Save key down state in case we do see a repeat later. |
| resetKeyRepeatLocked(); |
| mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout; |
| } |
| mKeyRepeatState.lastKeyEntry = entry; |
| entry->refCount += 1; |
| } else { |
| resetKeyRepeatLocked(); |
| } |
| |
| identifyInputTargetsAndDispatchKeyLockedInterruptible(currentTime, entry); |
| } |
| |
| void InputDispatcher::processKeyRepeatLockedInterruptible( |
| nsecs_t currentTime, nsecs_t keyRepeatTimeout) { |
| KeyEntry* entry = mKeyRepeatState.lastKeyEntry; |
| |
| // Search the inbound queue for a key up corresponding to this device. |
| // It doesn't make sense to generate a key repeat event if the key is already up. |
| for (EventEntry* queuedEntry = mInboundQueue.head.next; |
| queuedEntry != & mInboundQueue.tail; queuedEntry = entry->next) { |
| if (queuedEntry->type == EventEntry::TYPE_KEY) { |
| KeyEntry* queuedKeyEntry = static_cast<KeyEntry*>(queuedEntry); |
| if (queuedKeyEntry->deviceId == entry->deviceId |
| && entry->action == AKEY_EVENT_ACTION_UP) { |
| resetKeyRepeatLocked(); |
| return; |
| } |
| } |
| } |
| |
| // Synthesize a key repeat after the repeat timeout expired. |
| // Reuse the repeated key entry if it is otherwise unreferenced. |
| uint32_t policyFlags = entry->policyFlags & POLICY_FLAG_RAW_MASK; |
| if (entry->refCount == 1) { |
| entry->eventTime = currentTime; |
| entry->policyFlags = policyFlags; |
| entry->repeatCount += 1; |
| } else { |
| KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime, |
| entry->deviceId, entry->source, policyFlags, |
| entry->action, entry->flags, entry->keyCode, entry->scanCode, |
| entry->metaState, entry->repeatCount + 1, entry->downTime); |
| |
| mKeyRepeatState.lastKeyEntry = newEntry; |
| mAllocator.releaseKeyEntry(entry); |
| |
| entry = newEntry; |
| } |
| |
| if (entry->repeatCount == 1) { |
| entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS; |
| } |
| |
| mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatTimeout; |
| |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("processKeyRepeat - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " |
| "action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, " |
| "repeatCount=%d, downTime=%lld", |
| entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, |
| entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, |
| entry->repeatCount, entry->downTime); |
| #endif |
| |
| identifyInputTargetsAndDispatchKeyLockedInterruptible(currentTime, entry); |
| } |
| |
| void InputDispatcher::processMotionLockedInterruptible( |
| nsecs_t currentTime, MotionEntry* entry) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("processMotion - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, " |
| "metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld", |
| entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, entry->action, |
| entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision, |
| entry->downTime); |
| |
| // Print the most recent sample that we have available, this may change due to batching. |
| size_t sampleCount = 1; |
| MotionSample* sample = & entry->firstSample; |
| for (; sample->next != NULL; sample = sample->next) { |
| sampleCount += 1; |
| } |
| for (uint32_t i = 0; i < entry->pointerCount; i++) { |
| LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f", |
| i, entry->pointerIds[i], |
| sample->pointerCoords[i].x, |
| sample->pointerCoords[i].y, |
| sample->pointerCoords[i].pressure, |
| sample->pointerCoords[i].size); |
| } |
| |
| // Keep in mind that due to batching, it is possible for the number of samples actually |
| // dispatched to change before the application finally consumed them. |
| if (entry->action == AMOTION_EVENT_ACTION_MOVE) { |
| LOGD(" ... Total movement samples currently batched %d ...", sampleCount); |
| } |
| #endif |
| |
| identifyInputTargetsAndDispatchMotionLockedInterruptible(currentTime, entry); |
| } |
| |
| void InputDispatcher::identifyInputTargetsAndDispatchKeyLockedInterruptible( |
| nsecs_t currentTime, KeyEntry* entry) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("identifyInputTargetsAndDispatchKey"); |
| #endif |
| |
| entry->dispatchInProgress = true; |
| mCurrentInputTargetsValid = false; |
| mLock.unlock(); |
| |
| mReusableKeyEvent.initialize(entry->deviceId, entry->source, entry->action, entry->flags, |
| entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount, |
| entry->downTime, entry->eventTime); |
| |
| mCurrentInputTargets.clear(); |
| int32_t injectionResult = mPolicy->waitForKeyEventTargets(& mReusableKeyEvent, |
| entry->policyFlags, entry->injectorPid, entry->injectorUid, |
| mCurrentInputTargets); |
| |
| mLock.lock(); |
| mCurrentInputTargetsValid = true; |
| |
| setInjectionResultLocked(entry, injectionResult); |
| |
| if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED) { |
| dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); |
| } |
| } |
| |
| void InputDispatcher::identifyInputTargetsAndDispatchMotionLockedInterruptible( |
| nsecs_t currentTime, MotionEntry* entry) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("identifyInputTargetsAndDispatchMotion"); |
| #endif |
| |
| entry->dispatchInProgress = true; |
| mCurrentInputTargetsValid = false; |
| mLock.unlock(); |
| |
| mReusableMotionEvent.initialize(entry->deviceId, entry->source, entry->action, |
| entry->edgeFlags, entry->metaState, |
| 0, 0, entry->xPrecision, entry->yPrecision, |
| entry->downTime, entry->eventTime, entry->pointerCount, entry->pointerIds, |
| entry->firstSample.pointerCoords); |
| |
| mCurrentInputTargets.clear(); |
| int32_t injectionResult = mPolicy->waitForMotionEventTargets(& mReusableMotionEvent, |
| entry->policyFlags, entry->injectorPid, entry->injectorUid, |
| mCurrentInputTargets); |
| |
| mLock.lock(); |
| mCurrentInputTargetsValid = true; |
| |
| setInjectionResultLocked(entry, injectionResult); |
| |
| if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED) { |
| dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); |
| } |
| } |
| |
| void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime, |
| EventEntry* eventEntry, bool resumeWithAppendedMotionSample) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("dispatchEventToCurrentInputTargets - " |
| "resumeWithAppendedMotionSample=%s", |
| resumeWithAppendedMotionSample ? "true" : "false"); |
| #endif |
| |
| assert(eventEntry->dispatchInProgress); // should already have been set to true |
| |
| for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { |
| const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i); |
| |
| ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey( |
| inputTarget.inputChannel->getReceivePipeFd()); |
| if (connectionIndex >= 0) { |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget, |
| resumeWithAppendedMotionSample); |
| } else { |
| LOGW("Framework requested delivery of an input event to channel '%s' but it " |
| "is not registered with the input dispatcher.", |
| inputTarget.inputChannel->getName().string()); |
| } |
| } |
| } |
| |
| void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget, |
| bool resumeWithAppendedMotionSample) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, timeout=%lldns, " |
| "xOffset=%f, yOffset=%f, resumeWithAppendedMotionSample=%s", |
| connection->getInputChannelName(), inputTarget->flags, inputTarget->timeout, |
| inputTarget->xOffset, inputTarget->yOffset, |
| resumeWithAppendedMotionSample ? "true" : "false"); |
| #endif |
| |
| // Skip this event if the connection status is not normal. |
| // We don't want to queue outbound events at all if the connection is broken or |
| // not responding. |
| if (connection->status != Connection::STATUS_NORMAL) { |
| LOGV("channel '%s' ~ Dropping event because the channel status is %s", |
| connection->getStatusLabel()); |
| return; |
| } |
| |
| // Resume the dispatch cycle with a freshly appended motion sample. |
| // First we check that the last dispatch entry in the outbound queue is for the same |
| // motion event to which we appended the motion sample. If we find such a dispatch |
| // entry, and if it is currently in progress then we try to stream the new sample. |
| bool wasEmpty = connection->outboundQueue.isEmpty(); |
| |
| if (! wasEmpty && resumeWithAppendedMotionSample) { |
| DispatchEntry* motionEventDispatchEntry = |
| connection->findQueuedDispatchEntryForEvent(eventEntry); |
| if (motionEventDispatchEntry) { |
| // If the dispatch entry is not in progress, then we must be busy dispatching an |
| // earlier event. Not a problem, the motion event is on the outbound queue and will |
| // be dispatched later. |
| if (! motionEventDispatchEntry->inProgress) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Not streaming because the motion event has " |
| "not yet been dispatched. " |
| "(Waiting for earlier events to be consumed.)", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| // If the dispatch entry is in progress but it already has a tail of pending |
| // motion samples, then it must mean that the shared memory buffer filled up. |
| // Not a problem, when this dispatch cycle is finished, we will eventually start |
| // a new dispatch cycle to process the tail and that tail includes the newly |
| // appended motion sample. |
| if (motionEventDispatchEntry->tailMotionSample) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Not streaming because no new samples can " |
| "be appended to the motion event in this dispatch cycle. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| // The dispatch entry is in progress and is still potentially open for streaming. |
| // Try to stream the new motion sample. This might fail if the consumer has already |
| // consumed the motion event (or if the channel is broken). |
| MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample; |
| status_t status = connection->inputPublisher.appendMotionSample( |
| appendedMotionSample->eventTime, appendedMotionSample->pointerCoords); |
| if (status == OK) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Successfully streamed new motion sample.", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| #if DEBUG_BATCHING |
| if (status == NO_MEMORY) { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatched move event because the shared memory buffer is full. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| } else if (status == status_t(FAILED_TRANSACTION)) { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatched move event because the event has already been consumed. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| } else { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatched move event due to an error, status=%d. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName(), status); |
| } |
| #endif |
| // Failed to stream. Start a new tail of pending motion samples to dispatch |
| // in the next cycle. |
| motionEventDispatchEntry->tailMotionSample = appendedMotionSample; |
| return; |
| } |
| } |
| |
| // This is a new event. |
| // Enqueue a new dispatch entry onto the outbound queue for this connection. |
| DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry); // increments ref |
| dispatchEntry->targetFlags = inputTarget->flags; |
| dispatchEntry->xOffset = inputTarget->xOffset; |
| dispatchEntry->yOffset = inputTarget->yOffset; |
| dispatchEntry->timeout = inputTarget->timeout; |
| dispatchEntry->inProgress = false; |
| dispatchEntry->headMotionSample = NULL; |
| dispatchEntry->tailMotionSample = NULL; |
| |
| // Handle the case where we could not stream a new motion sample because the consumer has |
| // already consumed the motion event (otherwise the corresponding dispatch entry would |
| // still be in the outbound queue for this connection). We set the head motion sample |
| // to the list starting with the newly appended motion sample. |
| if (resumeWithAppendedMotionSample) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples " |
| "that cannot be streamed because the motion event has already been consumed.", |
| connection->getInputChannelName()); |
| #endif |
| MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample; |
| dispatchEntry->headMotionSample = appendedMotionSample; |
| } |
| |
| // Enqueue the dispatch entry. |
| connection->outboundQueue.enqueueAtTail(dispatchEntry); |
| |
| // If the outbound queue was previously empty, start the dispatch cycle going. |
| if (wasEmpty) { |
| activateConnectionLocked(connection.get()); |
| startDispatchCycleLocked(currentTime, connection); |
| } |
| } |
| |
| void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ startDispatchCycle", |
| connection->getInputChannelName()); |
| #endif |
| |
| assert(connection->status == Connection::STATUS_NORMAL); |
| assert(! connection->outboundQueue.isEmpty()); |
| |
| DispatchEntry* dispatchEntry = connection->outboundQueue.head.next; |
| assert(! dispatchEntry->inProgress); |
| |
| // TODO throttle successive ACTION_MOVE motion events for the same device |
| // possible implementation could set a brief poll timeout here and resume starting the |
| // dispatch cycle when elapsed |
| |
| // Publish the event. |
| status_t status; |
| switch (dispatchEntry->eventEntry->type) { |
| case EventEntry::TYPE_KEY: { |
| KeyEntry* keyEntry = static_cast<KeyEntry*>(dispatchEntry->eventEntry); |
| |
| // Apply target flags. |
| int32_t action = keyEntry->action; |
| int32_t flags = keyEntry->flags; |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_CANCEL) { |
| flags |= AKEY_EVENT_FLAG_CANCELED; |
| } |
| |
| // Publish the key event. |
| status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source, |
| action, flags, keyEntry->keyCode, keyEntry->scanCode, |
| keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime, |
| keyEntry->eventTime); |
| |
| if (status) { |
| LOGE("channel '%s' ~ Could not publish key event, " |
| "status=%d", connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| break; |
| } |
| |
| case EventEntry::TYPE_MOTION: { |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(dispatchEntry->eventEntry); |
| |
| // Apply target flags. |
| int32_t action = motionEntry->action; |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) { |
| action = AMOTION_EVENT_ACTION_OUTSIDE; |
| } |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_CANCEL) { |
| action = AMOTION_EVENT_ACTION_CANCEL; |
| } |
| |
| // If headMotionSample is non-NULL, then it points to the first new sample that we |
| // were unable to dispatch during the previous cycle so we resume dispatching from |
| // that point in the list of motion samples. |
| // Otherwise, we just start from the first sample of the motion event. |
| MotionSample* firstMotionSample = dispatchEntry->headMotionSample; |
| if (! firstMotionSample) { |
| firstMotionSample = & motionEntry->firstSample; |
| } |
| |
| // Set the X and Y offset depending on the input source. |
| float xOffset, yOffset; |
| if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { |
| xOffset = dispatchEntry->xOffset; |
| yOffset = dispatchEntry->yOffset; |
| } else { |
| xOffset = 0.0f; |
| yOffset = 0.0f; |
| } |
| |
| // Publish the motion event and the first motion sample. |
| status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId, |
| motionEntry->source, action, motionEntry->edgeFlags, motionEntry->metaState, |
| xOffset, yOffset, |
| motionEntry->xPrecision, motionEntry->yPrecision, |
| motionEntry->downTime, firstMotionSample->eventTime, |
| motionEntry->pointerCount, motionEntry->pointerIds, |
| firstMotionSample->pointerCoords); |
| |
| if (status) { |
| LOGE("channel '%s' ~ Could not publish motion event, " |
| "status=%d", connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| |
| // Append additional motion samples. |
| MotionSample* nextMotionSample = firstMotionSample->next; |
| for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) { |
| status = connection->inputPublisher.appendMotionSample( |
| nextMotionSample->eventTime, nextMotionSample->pointerCoords); |
| if (status == NO_MEMORY) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ Shared memory buffer full. Some motion samples will " |
| "be sent in the next dispatch cycle.", |
| connection->getInputChannelName()); |
| #endif |
| break; |
| } |
| if (status != OK) { |
| LOGE("channel '%s' ~ Could not append motion sample " |
| "for a reason other than out of memory, status=%d", |
| connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| } |
| |
| // Remember the next motion sample that we could not dispatch, in case we ran out |
| // of space in the shared memory buffer. |
| dispatchEntry->tailMotionSample = nextMotionSample; |
| break; |
| } |
| |
| default: { |
| assert(false); |
| } |
| } |
| |
| // Send the dispatch signal. |
| status = connection->inputPublisher.sendDispatchSignal(); |
| if (status) { |
| LOGE("channel '%s' ~ Could not send dispatch signal, status=%d", |
| connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| |
| // Record information about the newly started dispatch cycle. |
| dispatchEntry->inProgress = true; |
| |
| connection->lastEventTime = dispatchEntry->eventEntry->eventTime; |
| connection->lastDispatchTime = currentTime; |
| |
| nsecs_t timeout = dispatchEntry->timeout; |
| connection->setNextTimeoutTime(currentTime, timeout); |
| |
| // Notify other system components. |
| onDispatchCycleStartedLocked(currentTime, connection); |
| } |
| |
| void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, " |
| "%01.1fms since dispatch", |
| connection->getInputChannelName(), |
| connection->getEventLatencyMillis(currentTime), |
| connection->getDispatchLatencyMillis(currentTime)); |
| #endif |
| |
| if (connection->status == Connection::STATUS_BROKEN |
| || connection->status == Connection::STATUS_ZOMBIE) { |
| return; |
| } |
| |
| // Clear the pending timeout. |
| connection->nextTimeoutTime = LONG_LONG_MAX; |
| |
| if (connection->status == Connection::STATUS_NOT_RESPONDING) { |
| // Recovering from an ANR. |
| connection->status = Connection::STATUS_NORMAL; |
| |
| // Notify other system components. |
| onDispatchCycleFinishedLocked(currentTime, connection, true /*recoveredFromANR*/); |
| } else { |
| // Normal finish. Not much to do here. |
| |
| // Notify other system components. |
| onDispatchCycleFinishedLocked(currentTime, connection, false /*recoveredFromANR*/); |
| } |
| |
| // Reset the publisher since the event has been consumed. |
| // We do this now so that the publisher can release some of its internal resources |
| // while waiting for the next dispatch cycle to begin. |
| status_t status = connection->inputPublisher.reset(); |
| if (status) { |
| LOGE("channel '%s' ~ Could not reset publisher, status=%d", |
| connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| |
| // Start the next dispatch cycle for this connection. |
| while (! connection->outboundQueue.isEmpty()) { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.head.next; |
| if (dispatchEntry->inProgress) { |
| // Finish or resume current event in progress. |
| if (dispatchEntry->tailMotionSample) { |
| // We have a tail of undispatched motion samples. |
| // Reuse the same DispatchEntry and start a new cycle. |
| dispatchEntry->inProgress = false; |
| dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample; |
| dispatchEntry->tailMotionSample = NULL; |
| startDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| // Finished. |
| connection->outboundQueue.dequeueAtHead(); |
| mAllocator.releaseDispatchEntry(dispatchEntry); |
| } else { |
| // If the head is not in progress, then we must have already dequeued the in |
| // progress event, which means we actually aborted it (due to ANR). |
| // So just start the next event for this connection. |
| startDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| } |
| |
| // Outbound queue is empty, deactivate the connection. |
| deactivateConnectionLocked(connection.get()); |
| } |
| |
| void InputDispatcher::timeoutDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ timeoutDispatchCycle", |
| connection->getInputChannelName()); |
| #endif |
| |
| if (connection->status != Connection::STATUS_NORMAL) { |
| return; |
| } |
| |
| // Enter the not responding state. |
| connection->status = Connection::STATUS_NOT_RESPONDING; |
| connection->lastANRTime = currentTime; |
| |
| // Notify other system components. |
| // This enqueues a command which will eventually either call |
| // resumeAfterTimeoutDispatchCycleLocked or abortDispatchCycleLocked. |
| onDispatchCycleANRLocked(currentTime, connection); |
| } |
| |
| void InputDispatcher::resumeAfterTimeoutDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection, nsecs_t newTimeout) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ resumeAfterTimeoutDispatchCycleLocked", |
| connection->getInputChannelName()); |
| #endif |
| |
| if (connection->status != Connection::STATUS_NOT_RESPONDING) { |
| return; |
| } |
| |
| // Resume normal dispatch. |
| connection->status = Connection::STATUS_NORMAL; |
| connection->setNextTimeoutTime(currentTime, newTimeout); |
| } |
| |
| void InputDispatcher::abortDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection, bool broken) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ abortDispatchCycle - broken=%s", |
| connection->getInputChannelName(), broken ? "true" : "false"); |
| #endif |
| |
| // Clear the pending timeout. |
| connection->nextTimeoutTime = LONG_LONG_MAX; |
| |
| // Clear the outbound queue. |
| if (! connection->outboundQueue.isEmpty()) { |
| do { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.dequeueAtHead(); |
| mAllocator.releaseDispatchEntry(dispatchEntry); |
| } while (! connection->outboundQueue.isEmpty()); |
| |
| deactivateConnectionLocked(connection.get()); |
| } |
| |
| // Handle the case where the connection appears to be unrecoverably broken. |
| // Ignore already broken or zombie connections. |
| if (broken) { |
| if (connection->status == Connection::STATUS_NORMAL |
| || connection->status == Connection::STATUS_NOT_RESPONDING) { |
| connection->status = Connection::STATUS_BROKEN; |
| |
| // Notify other system components. |
| onDispatchCycleBrokenLocked(currentTime, connection); |
| } |
| } |
| } |
| |
| bool InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) { |
| InputDispatcher* d = static_cast<InputDispatcher*>(data); |
| |
| { // acquire lock |
| AutoMutex _l(d->mLock); |
| |
| ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd); |
| if (connectionIndex < 0) { |
| LOGE("Received spurious receive callback for unknown input channel. " |
| "fd=%d, events=0x%x", receiveFd, events); |
| return false; // remove the callback |
| } |
| |
| nsecs_t currentTime = now(); |
| |
| sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex); |
| if (events & (POLLERR | POLLHUP | POLLNVAL)) { |
| LOGE("channel '%s' ~ Consumer closed input channel or an error occurred. " |
| "events=0x%x", connection->getInputChannelName(), events); |
| d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| d->runCommandsLockedInterruptible(); |
| return false; // remove the callback |
| } |
| |
| if (! (events & POLLIN)) { |
| LOGW("channel '%s' ~ Received spurious callback for unhandled poll event. " |
| "events=0x%x", connection->getInputChannelName(), events); |
| return true; |
| } |
| |
| status_t status = connection->inputPublisher.receiveFinishedSignal(); |
| if (status) { |
| LOGE("channel '%s' ~ Failed to receive finished signal. status=%d", |
| connection->getInputChannelName(), status); |
| d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| d->runCommandsLockedInterruptible(); |
| return false; // remove the callback |
| } |
| |
| d->finishDispatchCycleLocked(currentTime, connection); |
| d->runCommandsLockedInterruptible(); |
| return true; |
| } // release lock |
| } |
| |
| void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime); |
| #endif |
| |
| bool wasEmpty; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime); |
| |
| wasEmpty = mInboundQueue.isEmpty(); |
| mInboundQueue.enqueueAtTail(newEntry); |
| } // release lock |
| |
| if (wasEmpty) { |
| mPollLoop->wake(); |
| } |
| } |
| |
| void InputDispatcher::notifyAppSwitchComing(nsecs_t eventTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyAppSwitchComing - eventTime=%lld", eventTime); |
| #endif |
| |
| // Remove movement keys from the queue from most recent to least recent, stopping at the |
| // first non-movement key. |
| // TODO: Include a detailed description of why we do this... |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| for (EventEntry* entry = mInboundQueue.tail.prev; entry != & mInboundQueue.head; ) { |
| EventEntry* prev = entry->prev; |
| |
| if (entry->type == EventEntry::TYPE_KEY) { |
| KeyEntry* keyEntry = static_cast<KeyEntry*>(entry); |
| if (isMovementKey(keyEntry->keyCode)) { |
| LOGV("Dropping movement key during app switch: keyCode=%d, action=%d", |
| keyEntry->keyCode, keyEntry->action); |
| mInboundQueue.dequeue(keyEntry); |
| |
| setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED); |
| |
| mAllocator.releaseKeyEntry(keyEntry); |
| } else { |
| // stop at last non-movement key |
| break; |
| } |
| } |
| |
| entry = prev; |
| } |
| } // release lock |
| } |
| |
| void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source, |
| uint32_t policyFlags, int32_t action, int32_t flags, |
| int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyKey - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, " |
| "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld", |
| eventTime, deviceId, source, policyFlags, action, flags, |
| keyCode, scanCode, metaState, downTime); |
| #endif |
| |
| bool wasEmpty; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| int32_t repeatCount = 0; |
| KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime, |
| deviceId, source, policyFlags, action, flags, keyCode, scanCode, |
| metaState, repeatCount, downTime); |
| |
| wasEmpty = mInboundQueue.isEmpty(); |
| mInboundQueue.enqueueAtTail(newEntry); |
| } // release lock |
| |
| if (wasEmpty) { |
| mPollLoop->wake(); |
| } |
| } |
| |
| void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source, |
| uint32_t policyFlags, int32_t action, int32_t metaState, int32_t edgeFlags, |
| uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords, |
| float xPrecision, float yPrecision, nsecs_t downTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyMotion - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " |
| "action=0x%x, metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, " |
| "downTime=%lld", |
| eventTime, deviceId, source, policyFlags, action, metaState, edgeFlags, |
| xPrecision, yPrecision, downTime); |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f", |
| i, pointerIds[i], pointerCoords[i].x, pointerCoords[i].y, |
| pointerCoords[i].pressure, pointerCoords[i].size); |
| } |
| #endif |
| |
| bool wasEmpty; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Attempt batching and streaming of move events. |
| if (action == AMOTION_EVENT_ACTION_MOVE) { |
| // BATCHING CASE |
| // |
| // Try to append a move sample to the tail of the inbound queue for this device. |
| // Give up if we encounter a non-move motion event for this device since that |
| // means we cannot append any new samples until a new motion event has started. |
| for (EventEntry* entry = mInboundQueue.tail.prev; |
| entry != & mInboundQueue.head; entry = entry->prev) { |
| if (entry->type != EventEntry::TYPE_MOTION) { |
| // Keep looking for motion events. |
| continue; |
| } |
| |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); |
| if (motionEntry->deviceId != deviceId) { |
| // Keep looking for this device. |
| continue; |
| } |
| |
| if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE |
| || motionEntry->pointerCount != pointerCount |
| || motionEntry->isInjected()) { |
| // Last motion event in the queue for this device is not compatible for |
| // appending new samples. Stop here. |
| goto NoBatchingOrStreaming; |
| } |
| |
| // The last motion event is a move and is compatible for appending. |
| // Do the batching magic. |
| mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords); |
| #if DEBUG_BATCHING |
| LOGD("Appended motion sample onto batch for most recent " |
| "motion event for this device in the inbound queue."); |
| #endif |
| |
| // Sanity check for special case because dispatch is interruptible. |
| // The dispatch logic is partially interruptible and releases its lock while |
| // identifying targets. However, as soon as the targets have been identified, |
| // the dispatcher proceeds to write a dispatch entry into all relevant outbound |
| // queues and then promptly removes the motion entry from the queue. |
| // |
| // Consequently, we should never observe the case where the inbound queue contains |
| // an in-progress motion entry unless the current input targets are invalid |
| // (currently being computed). Check for this! |
| assert(! (motionEntry->dispatchInProgress && mCurrentInputTargetsValid)); |
| |
| return; // done! |
| } |
| |
| // STREAMING CASE |
| // |
| // There is no pending motion event (of any kind) for this device in the inbound queue. |
| // Search the outbound queues for a synchronously dispatched motion event for this |
| // device. If found, then we append the new sample to that event and then try to |
| // push it out to all current targets. It is possible that some targets will already |
| // have consumed the motion event. This case is automatically handled by the |
| // logic in prepareDispatchCycleLocked by tracking where resumption takes place. |
| // |
| // The reason we look for a synchronously dispatched motion event is because we |
| // want to be sure that no other motion events have been dispatched since the move. |
| // It's also convenient because it means that the input targets are still valid. |
| // This code could be improved to support streaming of asynchronously dispatched |
| // motion events (which might be significantly more efficient) but it may become |
| // a little more complicated as a result. |
| // |
| // Note: This code crucially depends on the invariant that an outbound queue always |
| // contains at most one synchronous event and it is always last (but it might |
| // not be first!). |
| if (mCurrentInputTargetsValid) { |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| Connection* connection = mActiveConnections.itemAt(i); |
| if (! connection->outboundQueue.isEmpty()) { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.tail.prev; |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_SYNC) { |
| if (dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION) { |
| goto NoBatchingOrStreaming; |
| } |
| |
| MotionEntry* syncedMotionEntry = static_cast<MotionEntry*>( |
| dispatchEntry->eventEntry); |
| if (syncedMotionEntry->action != AMOTION_EVENT_ACTION_MOVE |
| || syncedMotionEntry->deviceId != deviceId |
| || syncedMotionEntry->pointerCount != pointerCount |
| || syncedMotionEntry->isInjected()) { |
| goto NoBatchingOrStreaming; |
| } |
| |
| // Found synced move entry. Append sample and resume dispatch. |
| mAllocator.appendMotionSample(syncedMotionEntry, eventTime, |
| pointerCoords); |
| #if DEBUG_BATCHING |
| LOGD("Appended motion sample onto batch for most recent synchronously " |
| "dispatched motion event for this device in the outbound queues."); |
| #endif |
| nsecs_t currentTime = now(); |
| dispatchEventToCurrentInputTargetsLocked(currentTime, syncedMotionEntry, |
| true /*resumeWithAppendedMotionSample*/); |
| |
| runCommandsLockedInterruptible(); |
| return; // done! |
| } |
| } |
| } |
| } |
| |
| NoBatchingOrStreaming:; |
| } |
| |
| // Just enqueue a new motion event. |
| MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime, |
| deviceId, source, policyFlags, action, metaState, edgeFlags, |
| xPrecision, yPrecision, downTime, |
| pointerCount, pointerIds, pointerCoords); |
| |
| wasEmpty = mInboundQueue.isEmpty(); |
| mInboundQueue.enqueueAtTail(newEntry); |
| } // release lock |
| |
| if (wasEmpty) { |
| mPollLoop->wake(); |
| } |
| } |
| |
| int32_t InputDispatcher::injectInputEvent(const InputEvent* event, |
| int32_t injectorPid, int32_t injectorUid, bool sync, int32_t timeoutMillis) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, " |
| "sync=%d, timeoutMillis=%d", |
| event->getType(), injectorPid, injectorUid, sync, timeoutMillis); |
| #endif |
| |
| nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis); |
| |
| EventEntry* injectedEntry; |
| bool wasEmpty; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| injectedEntry = createEntryFromInputEventLocked(event); |
| injectedEntry->refCount += 1; |
| injectedEntry->injectorPid = injectorPid; |
| injectedEntry->injectorUid = injectorUid; |
| |
| wasEmpty = mInboundQueue.isEmpty(); |
| mInboundQueue.enqueueAtTail(injectedEntry); |
| |
| } // release lock |
| |
| if (wasEmpty) { |
| mPollLoop->wake(); |
| } |
| |
| int32_t injectionResult; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| for (;;) { |
| injectionResult = injectedEntry->injectionResult; |
| if (injectionResult != INPUT_EVENT_INJECTION_PENDING) { |
| break; |
| } |
| |
| nsecs_t remainingTimeout = endTime - now(); |
| if (remainingTimeout <= 0) { |
| injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; |
| sync = false; |
| break; |
| } |
| |
| mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout); |
| } |
| |
| if (sync) { |
| while (! isFullySynchronizedLocked()) { |
| nsecs_t remainingTimeout = endTime - now(); |
| if (remainingTimeout <= 0) { |
| injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; |
| break; |
| } |
| |
| mFullySynchronizedCondition.waitRelative(mLock, remainingTimeout); |
| } |
| } |
| |
| mAllocator.releaseEventEntry(injectedEntry); |
| } // release lock |
| |
| return injectionResult; |
| } |
| |
| void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) { |
| if (entry->isInjected()) { |
| #if DEBUG_INJECTION |
| LOGD("Setting input event injection result to %d. " |
| "injectorPid=%d, injectorUid=%d", |
| injectionResult, entry->injectorPid, entry->injectorUid); |
| #endif |
| |
| entry->injectionResult = injectionResult; |
| mInjectionResultAvailableCondition.broadcast(); |
| } |
| } |
| |
| bool InputDispatcher::isFullySynchronizedLocked() { |
| return mInboundQueue.isEmpty() && mActiveConnections.isEmpty(); |
| } |
| |
| InputDispatcher::EventEntry* InputDispatcher::createEntryFromInputEventLocked( |
| const InputEvent* event) { |
| switch (event->getType()) { |
| case AINPUT_EVENT_TYPE_KEY: { |
| const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event); |
| uint32_t policyFlags = 0; // XXX consider adding a policy flag to track injected events |
| |
| KeyEntry* keyEntry = mAllocator.obtainKeyEntry(keyEvent->getEventTime(), |
| keyEvent->getDeviceId(), keyEvent->getSource(), policyFlags, |
| keyEvent->getAction(), keyEvent->getFlags(), |
| keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(), |
| keyEvent->getRepeatCount(), keyEvent->getDownTime()); |
| return keyEntry; |
| } |
| |
| case AINPUT_EVENT_TYPE_MOTION: { |
| const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event); |
| uint32_t policyFlags = 0; // XXX consider adding a policy flag to track injected events |
| |
| const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes(); |
| const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords(); |
| size_t pointerCount = motionEvent->getPointerCount(); |
| |
| MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes, |
| motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags, |
| motionEvent->getAction(), motionEvent->getMetaState(), motionEvent->getEdgeFlags(), |
| motionEvent->getXPrecision(), motionEvent->getYPrecision(), |
| motionEvent->getDownTime(), uint32_t(pointerCount), |
| motionEvent->getPointerIds(), samplePointerCoords); |
| for (size_t i = motionEvent->getHistorySize(); i > 0; i--) { |
| sampleEventTimes += 1; |
| samplePointerCoords += pointerCount; |
| mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords); |
| } |
| return motionEntry; |
| } |
| |
| default: |
| assert(false); |
| return NULL; |
| } |
| } |
| |
| void InputDispatcher::resetKeyRepeatLocked() { |
| if (mKeyRepeatState.lastKeyEntry) { |
| mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry); |
| mKeyRepeatState.lastKeyEntry = NULL; |
| } |
| } |
| |
| void InputDispatcher::preemptInputDispatch() { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("preemptInputDispatch"); |
| #endif |
| |
| bool preemptedOne = false; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| Connection* connection = mActiveConnections[i]; |
| if (connection->hasPendingSyncTarget()) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ Preempted pending synchronous dispatch", |
| connection->getInputChannelName()); |
| #endif |
| connection->outboundQueue.tail.prev->targetFlags &= ~ InputTarget::FLAG_SYNC; |
| preemptedOne = true; |
| } |
| } |
| } // release lock |
| |
| if (preemptedOne) { |
| // Wake up the poll loop so it can get a head start dispatching the next event. |
| mPollLoop->wake(); |
| } |
| } |
| |
| status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel) { |
| #if DEBUG_REGISTRATION |
| LOGD("channel '%s' ~ registerInputChannel", inputChannel->getName().string()); |
| #endif |
| |
| int receiveFd; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| receiveFd = inputChannel->getReceivePipeFd(); |
| if (mConnectionsByReceiveFd.indexOfKey(receiveFd) >= 0) { |
| LOGW("Attempted to register already registered input channel '%s'", |
| inputChannel->getName().string()); |
| return BAD_VALUE; |
| } |
| |
| sp<Connection> connection = new Connection(inputChannel); |
| status_t status = connection->initialize(); |
| if (status) { |
| LOGE("Failed to initialize input publisher for input channel '%s', status=%d", |
| inputChannel->getName().string(), status); |
| return status; |
| } |
| |
| mConnectionsByReceiveFd.add(receiveFd, connection); |
| |
| runCommandsLockedInterruptible(); |
| } // release lock |
| |
| mPollLoop->setCallback(receiveFd, POLLIN, handleReceiveCallback, this); |
| return OK; |
| } |
| |
| status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) { |
| #if DEBUG_REGISTRATION |
| LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string()); |
| #endif |
| |
| int32_t receiveFd; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| receiveFd = inputChannel->getReceivePipeFd(); |
| ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(receiveFd); |
| if (connectionIndex < 0) { |
| LOGW("Attempted to unregister already unregistered input channel '%s'", |
| inputChannel->getName().string()); |
| return BAD_VALUE; |
| } |
| |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| mConnectionsByReceiveFd.removeItemsAt(connectionIndex); |
| |
| connection->status = Connection::STATUS_ZOMBIE; |
| |
| nsecs_t currentTime = now(); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| |
| runCommandsLockedInterruptible(); |
| } // release lock |
| |
| mPollLoop->removeCallback(receiveFd); |
| |
| // Wake the poll loop because removing the connection may have changed the current |
| // synchronization state. |
| mPollLoop->wake(); |
| return OK; |
| } |
| |
| void InputDispatcher::activateConnectionLocked(Connection* connection) { |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| if (mActiveConnections.itemAt(i) == connection) { |
| return; |
| } |
| } |
| mActiveConnections.add(connection); |
| } |
| |
| void InputDispatcher::deactivateConnectionLocked(Connection* connection) { |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| if (mActiveConnections.itemAt(i) == connection) { |
| mActiveConnections.removeAt(i); |
| return; |
| } |
| } |
| } |
| |
| void InputDispatcher::onDispatchCycleStartedLocked( |
| nsecs_t currentTime, const sp<Connection>& connection) { |
| } |
| |
| void InputDispatcher::onDispatchCycleFinishedLocked( |
| nsecs_t currentTime, const sp<Connection>& connection, bool recoveredFromANR) { |
| if (recoveredFromANR) { |
| LOGI("channel '%s' ~ Recovered from ANR. %01.1fms since event, " |
| "%01.1fms since dispatch, %01.1fms since ANR", |
| connection->getInputChannelName(), |
| connection->getEventLatencyMillis(currentTime), |
| connection->getDispatchLatencyMillis(currentTime), |
| connection->getANRLatencyMillis(currentTime)); |
| |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doNotifyInputChannelRecoveredFromANRLockedInterruptible); |
| commandEntry->connection = connection; |
| } |
| } |
| |
| void InputDispatcher::onDispatchCycleANRLocked( |
| nsecs_t currentTime, const sp<Connection>& connection) { |
| LOGI("channel '%s' ~ Not responding! %01.1fms since event, %01.1fms since dispatch", |
| connection->getInputChannelName(), |
| connection->getEventLatencyMillis(currentTime), |
| connection->getDispatchLatencyMillis(currentTime)); |
| |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doNotifyInputChannelANRLockedInterruptible); |
| commandEntry->connection = connection; |
| } |
| |
| void InputDispatcher::onDispatchCycleBrokenLocked( |
| nsecs_t currentTime, const sp<Connection>& connection) { |
| LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!", |
| connection->getInputChannelName()); |
| |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible); |
| commandEntry->connection = connection; |
| } |
| |
| void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible( |
| CommandEntry* commandEntry) { |
| sp<Connection> connection = commandEntry->connection; |
| |
| if (connection->status != Connection::STATUS_ZOMBIE) { |
| mLock.unlock(); |
| |
| mPolicy->notifyInputChannelBroken(connection->inputChannel); |
| |
| mLock.lock(); |
| } |
| } |
| |
| void InputDispatcher::doNotifyInputChannelANRLockedInterruptible( |
| CommandEntry* commandEntry) { |
| sp<Connection> connection = commandEntry->connection; |
| |
| if (connection->status != Connection::STATUS_ZOMBIE) { |
| mLock.unlock(); |
| |
| nsecs_t newTimeout; |
| bool resume = mPolicy->notifyInputChannelANR(connection->inputChannel, newTimeout); |
| |
| mLock.lock(); |
| |
| nsecs_t currentTime = now(); |
| if (resume) { |
| resumeAfterTimeoutDispatchCycleLocked(currentTime, connection, newTimeout); |
| } else { |
| abortDispatchCycleLocked(currentTime, connection, false /*(not) broken*/); |
| } |
| } |
| } |
| |
| void InputDispatcher::doNotifyInputChannelRecoveredFromANRLockedInterruptible( |
| CommandEntry* commandEntry) { |
| sp<Connection> connection = commandEntry->connection; |
| |
| if (connection->status != Connection::STATUS_ZOMBIE) { |
| mLock.unlock(); |
| |
| mPolicy->notifyInputChannelRecoveredFromANR(connection->inputChannel); |
| |
| mLock.lock(); |
| } |
| } |
| |
| |
| // --- InputDispatcher::Allocator --- |
| |
| InputDispatcher::Allocator::Allocator() { |
| } |
| |
| void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type, |
| nsecs_t eventTime) { |
| entry->type = type; |
| entry->refCount = 1; |
| entry->dispatchInProgress = false; |
| entry->eventTime = eventTime; |
| entry->injectionResult = INPUT_EVENT_INJECTION_PENDING; |
| entry->injectorPid = -1; |
| entry->injectorUid = -1; |
| } |
| |
| InputDispatcher::ConfigurationChangedEntry* |
| InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) { |
| ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc(); |
| initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime); |
| return entry; |
| } |
| |
| InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime, |
| int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, |
| int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, |
| int32_t repeatCount, nsecs_t downTime) { |
| KeyEntry* entry = mKeyEntryPool.alloc(); |
| initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime); |
| |
| entry->deviceId = deviceId; |
| entry->source = source; |
| entry->policyFlags = policyFlags; |
| entry->action = action; |
| entry->flags = flags; |
| entry->keyCode = keyCode; |
| entry->scanCode = scanCode; |
| entry->metaState = metaState; |
| entry->repeatCount = repeatCount; |
| entry->downTime = downTime; |
| return entry; |
| } |
| |
| InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime, |
| int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, |
| int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision, |
| nsecs_t downTime, uint32_t pointerCount, |
| const int32_t* pointerIds, const PointerCoords* pointerCoords) { |
| MotionEntry* entry = mMotionEntryPool.alloc(); |
| initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime); |
| |
| entry->eventTime = eventTime; |
| entry->deviceId = deviceId; |
| entry->source = source; |
| entry->policyFlags = policyFlags; |
| entry->action = action; |
| entry->metaState = metaState; |
| entry->edgeFlags = edgeFlags; |
| entry->xPrecision = xPrecision; |
| entry->yPrecision = yPrecision; |
| entry->downTime = downTime; |
| entry->pointerCount = pointerCount; |
| entry->firstSample.eventTime = eventTime; |
| entry->firstSample.next = NULL; |
| entry->lastSample = & entry->firstSample; |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| entry->pointerIds[i] = pointerIds[i]; |
| entry->firstSample.pointerCoords[i] = pointerCoords[i]; |
| } |
| return entry; |
| } |
| |
| InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry( |
| EventEntry* eventEntry) { |
| DispatchEntry* entry = mDispatchEntryPool.alloc(); |
| entry->eventEntry = eventEntry; |
| eventEntry->refCount += 1; |
| return entry; |
| } |
| |
| InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) { |
| CommandEntry* entry = mCommandEntryPool.alloc(); |
| entry->command = command; |
| return entry; |
| } |
| |
| void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) { |
| switch (entry->type) { |
| case EventEntry::TYPE_CONFIGURATION_CHANGED: |
| releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry)); |
| break; |
| case EventEntry::TYPE_KEY: |
| releaseKeyEntry(static_cast<KeyEntry*>(entry)); |
| break; |
| case EventEntry::TYPE_MOTION: |
| releaseMotionEntry(static_cast<MotionEntry*>(entry)); |
| break; |
| default: |
| assert(false); |
| break; |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseConfigurationChangedEntry( |
| ConfigurationChangedEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| mConfigurationChangeEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| mKeyEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) { |
| MotionSample* next = sample->next; |
| mMotionSamplePool.free(sample); |
| sample = next; |
| } |
| mMotionEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) { |
| releaseEventEntry(entry->eventEntry); |
| mDispatchEntryPool.free(entry); |
| } |
| |
| void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) { |
| mCommandEntryPool.free(entry); |
| } |
| |
| void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry, |
| nsecs_t eventTime, const PointerCoords* pointerCoords) { |
| MotionSample* sample = mMotionSamplePool.alloc(); |
| sample->eventTime = eventTime; |
| uint32_t pointerCount = motionEntry->pointerCount; |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| sample->pointerCoords[i] = pointerCoords[i]; |
| } |
| |
| sample->next = NULL; |
| motionEntry->lastSample->next = sample; |
| motionEntry->lastSample = sample; |
| } |
| |
| // --- InputDispatcher::Connection --- |
| |
| InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel) : |
| status(STATUS_NORMAL), inputChannel(inputChannel), inputPublisher(inputChannel), |
| nextTimeoutTime(LONG_LONG_MAX), |
| lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX), |
| lastANRTime(LONG_LONG_MAX) { |
| } |
| |
| InputDispatcher::Connection::~Connection() { |
| } |
| |
| status_t InputDispatcher::Connection::initialize() { |
| return inputPublisher.initialize(); |
| } |
| |
| void InputDispatcher::Connection::setNextTimeoutTime(nsecs_t currentTime, nsecs_t timeout) { |
| nextTimeoutTime = (timeout >= 0) ? currentTime + timeout : LONG_LONG_MAX; |
| } |
| |
| const char* InputDispatcher::Connection::getStatusLabel() const { |
| switch (status) { |
| case STATUS_NORMAL: |
| return "NORMAL"; |
| |
| case STATUS_BROKEN: |
| return "BROKEN"; |
| |
| case STATUS_NOT_RESPONDING: |
| return "NOT_RESPONDING"; |
| |
| case STATUS_ZOMBIE: |
| return "ZOMBIE"; |
| |
| default: |
| return "UNKNOWN"; |
| } |
| } |
| |
| InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent( |
| const EventEntry* eventEntry) const { |
| for (DispatchEntry* dispatchEntry = outboundQueue.tail.prev; |
| dispatchEntry != & outboundQueue.head; dispatchEntry = dispatchEntry->prev) { |
| if (dispatchEntry->eventEntry == eventEntry) { |
| return dispatchEntry; |
| } |
| } |
| return NULL; |
| } |
| |
| // --- InputDispatcher::CommandEntry --- |
| |
| InputDispatcher::CommandEntry::CommandEntry() { |
| } |
| |
| InputDispatcher::CommandEntry::~CommandEntry() { |
| } |
| |
| |
| // --- InputDispatcherThread --- |
| |
| InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) : |
| Thread(/*canCallJava*/ true), mDispatcher(dispatcher) { |
| } |
| |
| InputDispatcherThread::~InputDispatcherThread() { |
| } |
| |
| bool InputDispatcherThread::threadLoop() { |
| mDispatcher->dispatchOnce(); |
| return true; |
| } |
| |
| } // namespace android |