| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Png.h" |
| #include "Source.h" |
| #include "util/BigBuffer.h" |
| #include "util/Util.h" |
| |
| #include <androidfw/ResourceTypes.h> |
| #include <png.h> |
| #include <zlib.h> |
| #include <iostream> |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| |
| namespace aapt { |
| |
| constexpr bool kDebug = false; |
| constexpr size_t kPngSignatureSize = 8u; |
| |
| struct PngInfo { |
| ~PngInfo() { |
| for (png_bytep row : rows) { |
| if (row != nullptr) { |
| delete[] row; |
| } |
| } |
| |
| delete[] xDivs; |
| delete[] yDivs; |
| } |
| |
| void* serialize9Patch() { |
| void* serialized = android::Res_png_9patch::serialize(info9Patch, xDivs, |
| yDivs, colors.data()); |
| reinterpret_cast<android::Res_png_9patch*>(serialized)->deviceToFile(); |
| return serialized; |
| } |
| |
| uint32_t width = 0; |
| uint32_t height = 0; |
| std::vector<png_bytep> rows; |
| |
| bool is9Patch = false; |
| android::Res_png_9patch info9Patch; |
| int32_t* xDivs = nullptr; |
| int32_t* yDivs = nullptr; |
| std::vector<uint32_t> colors; |
| |
| // Layout padding. |
| bool haveLayoutBounds = false; |
| int32_t layoutBoundsLeft; |
| int32_t layoutBoundsTop; |
| int32_t layoutBoundsRight; |
| int32_t layoutBoundsBottom; |
| |
| // Round rect outline description. |
| int32_t outlineInsetsLeft; |
| int32_t outlineInsetsTop; |
| int32_t outlineInsetsRight; |
| int32_t outlineInsetsBottom; |
| float outlineRadius; |
| uint8_t outlineAlpha; |
| }; |
| |
| static void readDataFromStream(png_structp readPtr, png_bytep data, |
| png_size_t length) { |
| std::istream* input = |
| reinterpret_cast<std::istream*>(png_get_io_ptr(readPtr)); |
| if (!input->read(reinterpret_cast<char*>(data), length)) { |
| png_error(readPtr, strerror(errno)); |
| } |
| } |
| |
| static void writeDataToStream(png_structp writePtr, png_bytep data, |
| png_size_t length) { |
| BigBuffer* outBuffer = reinterpret_cast<BigBuffer*>(png_get_io_ptr(writePtr)); |
| png_bytep buf = outBuffer->NextBlock<png_byte>(length); |
| memcpy(buf, data, length); |
| } |
| |
| static void flushDataToStream(png_structp /*writePtr*/) {} |
| |
| static void logWarning(png_structp readPtr, png_const_charp warningMessage) { |
| IDiagnostics* diag = |
| reinterpret_cast<IDiagnostics*>(png_get_error_ptr(readPtr)); |
| diag->Warn(DiagMessage() << warningMessage); |
| } |
| |
| static bool readPng(IDiagnostics* diag, png_structp readPtr, png_infop infoPtr, |
| PngInfo* outInfo) { |
| if (setjmp(png_jmpbuf(readPtr))) { |
| diag->Error(DiagMessage() << "failed reading png"); |
| return false; |
| } |
| |
| png_set_sig_bytes(readPtr, kPngSignatureSize); |
| png_read_info(readPtr, infoPtr); |
| |
| int colorType, bitDepth, interlaceType, compressionType; |
| png_get_IHDR(readPtr, infoPtr, &outInfo->width, &outInfo->height, &bitDepth, |
| &colorType, &interlaceType, &compressionType, nullptr); |
| |
| if (colorType == PNG_COLOR_TYPE_PALETTE) { |
| png_set_palette_to_rgb(readPtr); |
| } |
| |
| if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) { |
| png_set_expand_gray_1_2_4_to_8(readPtr); |
| } |
| |
| if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) { |
| png_set_tRNS_to_alpha(readPtr); |
| } |
| |
| if (bitDepth == 16) { |
| png_set_strip_16(readPtr); |
| } |
| |
| if (!(colorType & PNG_COLOR_MASK_ALPHA)) { |
| png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER); |
| } |
| |
| if (colorType == PNG_COLOR_TYPE_GRAY || |
| colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| png_set_gray_to_rgb(readPtr); |
| } |
| |
| png_set_interlace_handling(readPtr); |
| png_read_update_info(readPtr, infoPtr); |
| |
| const uint32_t rowBytes = png_get_rowbytes(readPtr, infoPtr); |
| outInfo->rows.resize(outInfo->height); |
| for (size_t i = 0; i < outInfo->height; i++) { |
| outInfo->rows[i] = new png_byte[rowBytes]; |
| } |
| |
| png_read_image(readPtr, outInfo->rows.data()); |
| png_read_end(readPtr, infoPtr); |
| return true; |
| } |
| |
| static void checkNinePatchSerialization(android::Res_png_9patch* inPatch, |
| void* data) { |
| size_t patchSize = inPatch->serializedSize(); |
| void* newData = malloc(patchSize); |
| memcpy(newData, data, patchSize); |
| android::Res_png_9patch* outPatch = inPatch->deserialize(newData); |
| outPatch->fileToDevice(); |
| // deserialization is done in place, so outPatch == newData |
| assert(outPatch == newData); |
| assert(outPatch->numXDivs == inPatch->numXDivs); |
| assert(outPatch->numYDivs == inPatch->numYDivs); |
| assert(outPatch->paddingLeft == inPatch->paddingLeft); |
| assert(outPatch->paddingRight == inPatch->paddingRight); |
| assert(outPatch->paddingTop == inPatch->paddingTop); |
| assert(outPatch->paddingBottom == inPatch->paddingBottom); |
| /* for (int i = 0; i < outPatch->numXDivs; i++) { |
| assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]); |
| } |
| for (int i = 0; i < outPatch->numYDivs; i++) { |
| assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]); |
| } |
| for (int i = 0; i < outPatch->numColors; i++) { |
| assert(outPatch->getColors()[i] == inPatch->getColors()[i]); |
| }*/ |
| free(newData); |
| } |
| |
| /*static void dump_image(int w, int h, const png_byte* const* rows, int |
| color_type) { |
| int i, j, rr, gg, bb, aa; |
| |
| int bpp; |
| if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == |
| PNG_COLOR_TYPE_GRAY) { |
| bpp = 1; |
| } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| bpp = 2; |
| } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == |
| PNG_COLOR_TYPE_RGB_ALPHA) { |
| // We use a padding byte even when there is no alpha |
| bpp = 4; |
| } else { |
| printf("Unknown color type %d.\n", color_type); |
| } |
| |
| for (j = 0; j < h; j++) { |
| const png_byte* row = rows[j]; |
| for (i = 0; i < w; i++) { |
| rr = row[0]; |
| gg = row[1]; |
| bb = row[2]; |
| aa = row[3]; |
| row += bpp; |
| |
| if (i == 0) { |
| printf("Row %d:", j); |
| } |
| switch (bpp) { |
| case 1: |
| printf(" (%d)", rr); |
| break; |
| case 2: |
| printf(" (%d %d", rr, gg); |
| break; |
| case 3: |
| printf(" (%d %d %d)", rr, gg, bb); |
| break; |
| case 4: |
| printf(" (%d %d %d %d)", rr, gg, bb, aa); |
| break; |
| } |
| if (i == (w - 1)) { |
| printf("\n"); |
| } |
| } |
| } |
| }*/ |
| |
| #ifdef MAX |
| #undef MAX |
| #endif |
| #ifdef ABS |
| #undef ABS |
| #endif |
| |
| #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
| #define ABS(a) ((a) < 0 ? -(a) : (a)) |
| |
| static void analyze_image(IDiagnostics* diag, const PngInfo& imageInfo, |
| int grayscaleTolerance, png_colorp rgbPalette, |
| png_bytep alphaPalette, int* paletteEntries, |
| bool* hasTransparency, int* colorType, |
| png_bytepp outRows) { |
| int w = imageInfo.width; |
| int h = imageInfo.height; |
| int i, j, rr, gg, bb, aa, idx; |
| uint32_t colors[256], col; |
| int num_colors = 0; |
| int maxGrayDeviation = 0; |
| |
| bool isOpaque = true; |
| bool isPalette = true; |
| bool isGrayscale = true; |
| |
| // Scan the entire image and determine if: |
| // 1. Every pixel has R == G == B (grayscale) |
| // 2. Every pixel has A == 255 (opaque) |
| // 3. There are no more than 256 distinct RGBA colors |
| |
| if (kDebug) { |
| printf("Initial image data:\n"); |
| // dump_image(w, h, imageInfo.rows.data(), PNG_COLOR_TYPE_RGB_ALPHA); |
| } |
| |
| for (j = 0; j < h; j++) { |
| const png_byte* row = imageInfo.rows[j]; |
| png_bytep out = outRows[j]; |
| for (i = 0; i < w; i++) { |
| rr = *row++; |
| gg = *row++; |
| bb = *row++; |
| aa = *row++; |
| |
| int odev = maxGrayDeviation; |
| maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation); |
| maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation); |
| maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation); |
| if (maxGrayDeviation > odev) { |
| if (kDebug) { |
| printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n", |
| maxGrayDeviation, i, j, rr, gg, bb, aa); |
| } |
| } |
| |
| // Check if image is really grayscale |
| if (isGrayscale) { |
| if (rr != gg || rr != bb) { |
| if (kDebug) { |
| printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", i, j, |
| rr, gg, bb, aa); |
| } |
| isGrayscale = false; |
| } |
| } |
| |
| // Check if image is really opaque |
| if (isOpaque) { |
| if (aa != 0xff) { |
| if (kDebug) { |
| printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", i, j, |
| rr, gg, bb, aa); |
| } |
| isOpaque = false; |
| } |
| } |
| |
| // Check if image is really <= 256 colors |
| if (isPalette) { |
| col = (uint32_t)((rr << 24) | (gg << 16) | (bb << 8) | aa); |
| bool match = false; |
| for (idx = 0; idx < num_colors; idx++) { |
| if (colors[idx] == col) { |
| match = true; |
| break; |
| } |
| } |
| |
| // Write the palette index for the pixel to outRows optimistically |
| // We might overwrite it later if we decide to encode as gray or |
| // gray + alpha |
| *out++ = idx; |
| if (!match) { |
| if (num_colors == 256) { |
| if (kDebug) { |
| printf("Found 257th color at %d, %d\n", i, j); |
| } |
| isPalette = false; |
| } else { |
| colors[num_colors++] = col; |
| } |
| } |
| } |
| } |
| } |
| |
| *paletteEntries = 0; |
| *hasTransparency = !isOpaque; |
| int bpp = isOpaque ? 3 : 4; |
| int paletteSize = w * h + bpp * num_colors; |
| |
| if (kDebug) { |
| printf("isGrayscale = %s\n", isGrayscale ? "true" : "false"); |
| printf("isOpaque = %s\n", isOpaque ? "true" : "false"); |
| printf("isPalette = %s\n", isPalette ? "true" : "false"); |
| printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", paletteSize, |
| 2 * w * h, bpp * w * h); |
| printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, |
| grayscaleTolerance); |
| } |
| |
| // Choose the best color type for the image. |
| // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel |
| // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct |
| // combinations |
| // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA |
| // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is |
| // sufficiently |
| // small, otherwise use COLOR_TYPE_RGB{_ALPHA} |
| if (isGrayscale) { |
| if (isOpaque) { |
| *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel |
| } else { |
| // Use a simple heuristic to determine whether using a palette will |
| // save space versus using gray + alpha for each pixel. |
| // This doesn't take into account chunk overhead, filtering, LZ |
| // compression, etc. |
| if (isPalette && (paletteSize < 2 * w * h)) { |
| *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color |
| } else { |
| *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel |
| } |
| } |
| } else if (isPalette && (paletteSize < bpp * w * h)) { |
| *colorType = PNG_COLOR_TYPE_PALETTE; |
| } else { |
| if (maxGrayDeviation <= grayscaleTolerance) { |
| diag->Note(DiagMessage() << "forcing image to gray (max deviation = " |
| << maxGrayDeviation << ")"); |
| *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA; |
| } else { |
| *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA; |
| } |
| } |
| |
| // Perform postprocessing of the image or palette data based on the final |
| // color type chosen |
| |
| if (*colorType == PNG_COLOR_TYPE_PALETTE) { |
| // Create separate RGB and Alpha palettes and set the number of colors |
| *paletteEntries = num_colors; |
| |
| // Create the RGB and alpha palettes |
| for (int idx = 0; idx < num_colors; idx++) { |
| col = colors[idx]; |
| rgbPalette[idx].red = (png_byte)((col >> 24) & 0xff); |
| rgbPalette[idx].green = (png_byte)((col >> 16) & 0xff); |
| rgbPalette[idx].blue = (png_byte)((col >> 8) & 0xff); |
| alphaPalette[idx] = (png_byte)(col & 0xff); |
| } |
| } else if (*colorType == PNG_COLOR_TYPE_GRAY || |
| *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| // If the image is gray or gray + alpha, compact the pixels into outRows |
| for (j = 0; j < h; j++) { |
| const png_byte* row = imageInfo.rows[j]; |
| png_bytep out = outRows[j]; |
| for (i = 0; i < w; i++) { |
| rr = *row++; |
| gg = *row++; |
| bb = *row++; |
| aa = *row++; |
| |
| if (isGrayscale) { |
| *out++ = rr; |
| } else { |
| *out++ = (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); |
| } |
| if (!isOpaque) { |
| *out++ = aa; |
| } |
| } |
| } |
| } |
| } |
| |
| static bool writePng(IDiagnostics* diag, png_structp writePtr, |
| png_infop infoPtr, PngInfo* info, int grayScaleTolerance) { |
| if (setjmp(png_jmpbuf(writePtr))) { |
| diag->Error(DiagMessage() << "failed to write png"); |
| return false; |
| } |
| |
| uint32_t width, height; |
| int colorType, bitDepth, interlaceType, compressionType; |
| |
| png_unknown_chunk unknowns[3]; |
| unknowns[0].data = nullptr; |
| unknowns[1].data = nullptr; |
| unknowns[2].data = nullptr; |
| |
| png_bytepp outRows = |
| (png_bytepp)malloc((int)info->height * sizeof(png_bytep)); |
| if (outRows == (png_bytepp)0) { |
| printf("Can't allocate output buffer!\n"); |
| exit(1); |
| } |
| for (uint32_t i = 0; i < info->height; i++) { |
| outRows[i] = (png_bytep)malloc(2 * (int)info->width); |
| if (outRows[i] == (png_bytep)0) { |
| printf("Can't allocate output buffer!\n"); |
| exit(1); |
| } |
| } |
| |
| png_set_compression_level(writePtr, Z_BEST_COMPRESSION); |
| |
| if (kDebug) { |
| diag->Note(DiagMessage() << "writing image: w = " << info->width |
| << ", h = " << info->height); |
| } |
| |
| png_color rgbPalette[256]; |
| png_byte alphaPalette[256]; |
| bool hasTransparency; |
| int paletteEntries; |
| |
| analyze_image(diag, *info, grayScaleTolerance, rgbPalette, alphaPalette, |
| &paletteEntries, &hasTransparency, &colorType, outRows); |
| |
| // If the image is a 9-patch, we need to preserve it as a ARGB file to make |
| // sure the pixels will not be pre-dithered/clamped until we decide they are |
| if (info->is9Patch && |
| (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_GRAY || |
| colorType == PNG_COLOR_TYPE_PALETTE)) { |
| colorType = PNG_COLOR_TYPE_RGB_ALPHA; |
| } |
| |
| if (kDebug) { |
| switch (colorType) { |
| case PNG_COLOR_TYPE_PALETTE: |
| diag->Note(DiagMessage() << "has " << paletteEntries << " colors" |
| << (hasTransparency ? " (with alpha)" : "") |
| << ", using PNG_COLOR_TYPE_PALLETTE"); |
| break; |
| case PNG_COLOR_TYPE_GRAY: |
| diag->Note(DiagMessage() |
| << "is opaque gray, using PNG_COLOR_TYPE_GRAY"); |
| break; |
| case PNG_COLOR_TYPE_GRAY_ALPHA: |
| diag->Note(DiagMessage() |
| << "is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA"); |
| break; |
| case PNG_COLOR_TYPE_RGB: |
| diag->Note(DiagMessage() << "is opaque RGB, using PNG_COLOR_TYPE_RGB"); |
| break; |
| case PNG_COLOR_TYPE_RGB_ALPHA: |
| diag->Note(DiagMessage() |
| << "is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA"); |
| break; |
| } |
| } |
| |
| png_set_IHDR(writePtr, infoPtr, info->width, info->height, 8, colorType, |
| PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, |
| PNG_FILTER_TYPE_DEFAULT); |
| |
| if (colorType == PNG_COLOR_TYPE_PALETTE) { |
| png_set_PLTE(writePtr, infoPtr, rgbPalette, paletteEntries); |
| if (hasTransparency) { |
| png_set_tRNS(writePtr, infoPtr, alphaPalette, paletteEntries, |
| (png_color_16p)0); |
| } |
| png_set_filter(writePtr, 0, PNG_NO_FILTERS); |
| } else { |
| png_set_filter(writePtr, 0, PNG_ALL_FILTERS); |
| } |
| |
| if (info->is9Patch) { |
| int chunkCount = 2 + (info->haveLayoutBounds ? 1 : 0); |
| int pIndex = info->haveLayoutBounds ? 2 : 1; |
| int bIndex = 1; |
| int oIndex = 0; |
| |
| // Chunks ordered thusly because older platforms depend on the base 9 patch |
| // data being last |
| png_bytep chunkNames = info->haveLayoutBounds |
| ? (png_bytep) "npOl\0npLb\0npTc\0" |
| : (png_bytep) "npOl\0npTc"; |
| |
| // base 9 patch data |
| if (kDebug) { |
| diag->Note(DiagMessage() << "adding 9-patch info.."); |
| } |
| strcpy((char*)unknowns[pIndex].name, "npTc"); |
| unknowns[pIndex].data = (png_byte*)info->serialize9Patch(); |
| unknowns[pIndex].size = info->info9Patch.serializedSize(); |
| // TODO: remove the check below when everything works |
| checkNinePatchSerialization(&info->info9Patch, unknowns[pIndex].data); |
| |
| // automatically generated 9 patch outline data |
| int chunkSize = sizeof(png_uint_32) * 6; |
| strcpy((char*)unknowns[oIndex].name, "npOl"); |
| unknowns[oIndex].data = (png_byte*)calloc(chunkSize, 1); |
| png_byte outputData[chunkSize]; |
| memcpy(&outputData, &info->outlineInsetsLeft, 4 * sizeof(png_uint_32)); |
| ((float*)outputData)[4] = info->outlineRadius; |
| ((png_uint_32*)outputData)[5] = info->outlineAlpha; |
| memcpy(unknowns[oIndex].data, &outputData, chunkSize); |
| unknowns[oIndex].size = chunkSize; |
| |
| // optional optical inset / layout bounds data |
| if (info->haveLayoutBounds) { |
| int chunkSize = sizeof(png_uint_32) * 4; |
| strcpy((char*)unknowns[bIndex].name, "npLb"); |
| unknowns[bIndex].data = (png_byte*)calloc(chunkSize, 1); |
| memcpy(unknowns[bIndex].data, &info->layoutBoundsLeft, chunkSize); |
| unknowns[bIndex].size = chunkSize; |
| } |
| |
| for (int i = 0; i < chunkCount; i++) { |
| unknowns[i].location = PNG_HAVE_PLTE; |
| } |
| png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS, chunkNames, |
| chunkCount); |
| png_set_unknown_chunks(writePtr, infoPtr, unknowns, chunkCount); |
| |
| #if PNG_LIBPNG_VER < 10600 |
| // Deal with unknown chunk location bug in 1.5.x and earlier. |
| png_set_unknown_chunk_location(writePtr, infoPtr, 0, PNG_HAVE_PLTE); |
| if (info->haveLayoutBounds) { |
| png_set_unknown_chunk_location(writePtr, infoPtr, 1, PNG_HAVE_PLTE); |
| } |
| #endif |
| } |
| |
| png_write_info(writePtr, infoPtr); |
| |
| png_bytepp rows; |
| if (colorType == PNG_COLOR_TYPE_RGB || |
| colorType == PNG_COLOR_TYPE_RGB_ALPHA) { |
| if (colorType == PNG_COLOR_TYPE_RGB) { |
| png_set_filler(writePtr, 0, PNG_FILLER_AFTER); |
| } |
| rows = info->rows.data(); |
| } else { |
| rows = outRows; |
| } |
| png_write_image(writePtr, rows); |
| |
| if (kDebug) { |
| printf("Final image data:\n"); |
| // dump_image(info->width, info->height, rows, colorType); |
| } |
| |
| png_write_end(writePtr, infoPtr); |
| |
| for (uint32_t i = 0; i < info->height; i++) { |
| free(outRows[i]); |
| } |
| free(outRows); |
| free(unknowns[0].data); |
| free(unknowns[1].data); |
| free(unknowns[2].data); |
| |
| png_get_IHDR(writePtr, infoPtr, &width, &height, &bitDepth, &colorType, |
| &interlaceType, &compressionType, nullptr); |
| |
| if (kDebug) { |
| diag->Note(DiagMessage() << "image written: w = " << width |
| << ", h = " << height << ", d = " << bitDepth |
| << ", colors = " << colorType |
| << ", inter = " << interlaceType |
| << ", comp = " << compressionType); |
| } |
| return true; |
| } |
| |
| constexpr uint32_t kColorWhite = 0xffffffffu; |
| constexpr uint32_t kColorTick = 0xff000000u; |
| constexpr uint32_t kColorLayoutBoundsTick = 0xff0000ffu; |
| |
| enum class TickType { kNone, kTick, kLayoutBounds, kBoth }; |
| |
| static TickType tickType(png_bytep p, bool transparent, const char** outError) { |
| png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); |
| |
| if (transparent) { |
| if (p[3] == 0) { |
| return TickType::kNone; |
| } |
| if (color == kColorLayoutBoundsTick) { |
| return TickType::kLayoutBounds; |
| } |
| if (color == kColorTick) { |
| return TickType::kTick; |
| } |
| |
| // Error cases |
| if (p[3] != 0xff) { |
| *outError = |
| "Frame pixels must be either solid or transparent " |
| "(not intermediate alphas)"; |
| return TickType::kNone; |
| } |
| |
| if (p[0] != 0 || p[1] != 0 || p[2] != 0) { |
| *outError = "Ticks in transparent frame must be black or red"; |
| } |
| return TickType::kTick; |
| } |
| |
| if (p[3] != 0xFF) { |
| *outError = "White frame must be a solid color (no alpha)"; |
| } |
| if (color == kColorWhite) { |
| return TickType::kNone; |
| } |
| if (color == kColorTick) { |
| return TickType::kTick; |
| } |
| if (color == kColorLayoutBoundsTick) { |
| return TickType::kLayoutBounds; |
| } |
| |
| if (p[0] != 0 || p[1] != 0 || p[2] != 0) { |
| *outError = "Ticks in white frame must be black or red"; |
| return TickType::kNone; |
| } |
| return TickType::kTick; |
| } |
| |
| enum class TickState { kStart, kInside1, kOutside1 }; |
| |
| static bool getHorizontalTicks(png_bytep row, int width, bool transparent, |
| bool required, int32_t* outLeft, |
| int32_t* outRight, const char** outError, |
| uint8_t* outDivs, bool multipleAllowed) { |
| *outLeft = *outRight = -1; |
| TickState state = TickState::kStart; |
| bool found = false; |
| |
| for (int i = 1; i < width - 1; i++) { |
| if (tickType(row + i * 4, transparent, outError) == TickType::kTick) { |
| if (state == TickState::kStart || |
| (state == TickState::kOutside1 && multipleAllowed)) { |
| *outLeft = i - 1; |
| *outRight = width - 2; |
| found = true; |
| if (outDivs != NULL) { |
| *outDivs += 2; |
| } |
| state = TickState::kInside1; |
| } else if (state == TickState::kOutside1) { |
| *outError = "Can't have more than one marked region along edge"; |
| *outLeft = i; |
| return false; |
| } |
| } else if (!*outError) { |
| if (state == TickState::kInside1) { |
| // We're done with this div. Move on to the next. |
| *outRight = i - 1; |
| outRight += 2; |
| outLeft += 2; |
| state = TickState::kOutside1; |
| } |
| } else { |
| *outLeft = i; |
| return false; |
| } |
| } |
| |
| if (required && !found) { |
| *outError = "No marked region found along edge"; |
| *outLeft = -1; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool getVerticalTicks(png_bytepp rows, int offset, int height, |
| bool transparent, bool required, int32_t* outTop, |
| int32_t* outBottom, const char** outError, |
| uint8_t* outDivs, bool multipleAllowed) { |
| *outTop = *outBottom = -1; |
| TickState state = TickState::kStart; |
| bool found = false; |
| |
| for (int i = 1; i < height - 1; i++) { |
| if (tickType(rows[i] + offset, transparent, outError) == TickType::kTick) { |
| if (state == TickState::kStart || |
| (state == TickState::kOutside1 && multipleAllowed)) { |
| *outTop = i - 1; |
| *outBottom = height - 2; |
| found = true; |
| if (outDivs != NULL) { |
| *outDivs += 2; |
| } |
| state = TickState::kInside1; |
| } else if (state == TickState::kOutside1) { |
| *outError = "Can't have more than one marked region along edge"; |
| *outTop = i; |
| return false; |
| } |
| } else if (!*outError) { |
| if (state == TickState::kInside1) { |
| // We're done with this div. Move on to the next. |
| *outBottom = i - 1; |
| outTop += 2; |
| outBottom += 2; |
| state = TickState::kOutside1; |
| } |
| } else { |
| *outTop = i; |
| return false; |
| } |
| } |
| |
| if (required && !found) { |
| *outError = "No marked region found along edge"; |
| *outTop = -1; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool getHorizontalLayoutBoundsTicks(png_bytep row, int width, |
| bool transparent, |
| bool /* required */, |
| int32_t* outLeft, int32_t* outRight, |
| const char** outError) { |
| *outLeft = *outRight = 0; |
| |
| // Look for left tick |
| if (tickType(row + 4, transparent, outError) == TickType::kLayoutBounds) { |
| // Starting with a layout padding tick |
| int i = 1; |
| while (i < width - 1) { |
| (*outLeft)++; |
| i++; |
| if (tickType(row + i * 4, transparent, outError) != |
| TickType::kLayoutBounds) { |
| break; |
| } |
| } |
| } |
| |
| // Look for right tick |
| if (tickType(row + (width - 2) * 4, transparent, outError) == |
| TickType::kLayoutBounds) { |
| // Ending with a layout padding tick |
| int i = width - 2; |
| while (i > 1) { |
| (*outRight)++; |
| i--; |
| if (tickType(row + i * 4, transparent, outError) != |
| TickType::kLayoutBounds) { |
| break; |
| } |
| } |
| } |
| return true; |
| } |
| |
| static bool getVerticalLayoutBoundsTicks(png_bytepp rows, int offset, |
| int height, bool transparent, |
| bool /* required */, int32_t* outTop, |
| int32_t* outBottom, |
| const char** outError) { |
| *outTop = *outBottom = 0; |
| |
| // Look for top tick |
| if (tickType(rows[1] + offset, transparent, outError) == |
| TickType::kLayoutBounds) { |
| // Starting with a layout padding tick |
| int i = 1; |
| while (i < height - 1) { |
| (*outTop)++; |
| i++; |
| if (tickType(rows[i] + offset, transparent, outError) != |
| TickType::kLayoutBounds) { |
| break; |
| } |
| } |
| } |
| |
| // Look for bottom tick |
| if (tickType(rows[height - 2] + offset, transparent, outError) == |
| TickType::kLayoutBounds) { |
| // Ending with a layout padding tick |
| int i = height - 2; |
| while (i > 1) { |
| (*outBottom)++; |
| i--; |
| if (tickType(rows[i] + offset, transparent, outError) != |
| TickType::kLayoutBounds) { |
| break; |
| } |
| } |
| } |
| return true; |
| } |
| |
| static void findMaxOpacity(png_bytepp rows, int startX, int startY, int endX, |
| int endY, int dX, int dY, int* outInset) { |
| uint8_t maxOpacity = 0; |
| int inset = 0; |
| *outInset = 0; |
| for (int x = startX, y = startY; x != endX && y != endY; |
| x += dX, y += dY, inset++) { |
| png_byte* color = rows[y] + x * 4; |
| uint8_t opacity = color[3]; |
| if (opacity > maxOpacity) { |
| maxOpacity = opacity; |
| *outInset = inset; |
| } |
| if (opacity == 0xff) return; |
| } |
| } |
| |
| static uint8_t maxAlphaOverRow(png_bytep row, int startX, int endX) { |
| uint8_t maxAlpha = 0; |
| for (int x = startX; x < endX; x++) { |
| uint8_t alpha = (row + x * 4)[3]; |
| if (alpha > maxAlpha) maxAlpha = alpha; |
| } |
| return maxAlpha; |
| } |
| |
| static uint8_t maxAlphaOverCol(png_bytepp rows, int offsetX, int startY, |
| int endY) { |
| uint8_t maxAlpha = 0; |
| for (int y = startY; y < endY; y++) { |
| uint8_t alpha = (rows[y] + offsetX * 4)[3]; |
| if (alpha > maxAlpha) maxAlpha = alpha; |
| } |
| return maxAlpha; |
| } |
| |
| static void getOutline(PngInfo* image) { |
| int midX = image->width / 2; |
| int midY = image->height / 2; |
| int endX = image->width - 2; |
| int endY = image->height - 2; |
| |
| // find left and right extent of nine patch content on center row |
| if (image->width > 4) { |
| findMaxOpacity(image->rows.data(), 1, midY, midX, -1, 1, 0, |
| &image->outlineInsetsLeft); |
| findMaxOpacity(image->rows.data(), endX, midY, midX, -1, -1, 0, |
| &image->outlineInsetsRight); |
| } else { |
| image->outlineInsetsLeft = 0; |
| image->outlineInsetsRight = 0; |
| } |
| |
| // find top and bottom extent of nine patch content on center column |
| if (image->height > 4) { |
| findMaxOpacity(image->rows.data(), midX, 1, -1, midY, 0, 1, |
| &image->outlineInsetsTop); |
| findMaxOpacity(image->rows.data(), midX, endY, -1, midY, 0, -1, |
| &image->outlineInsetsBottom); |
| } else { |
| image->outlineInsetsTop = 0; |
| image->outlineInsetsBottom = 0; |
| } |
| |
| int innerStartX = 1 + image->outlineInsetsLeft; |
| int innerStartY = 1 + image->outlineInsetsTop; |
| int innerEndX = endX - image->outlineInsetsRight; |
| int innerEndY = endY - image->outlineInsetsBottom; |
| int innerMidX = (innerEndX + innerStartX) / 2; |
| int innerMidY = (innerEndY + innerStartY) / 2; |
| |
| // assuming the image is a round rect, compute the radius by marching |
| // diagonally from the top left corner towards the center |
| image->outlineAlpha = std::max( |
| maxAlphaOverRow(image->rows[innerMidY], innerStartX, innerEndX), |
| maxAlphaOverCol(image->rows.data(), innerMidX, innerStartY, innerStartY)); |
| |
| int diagonalInset = 0; |
| findMaxOpacity(image->rows.data(), innerStartX, innerStartY, innerMidX, |
| innerMidY, 1, 1, &diagonalInset); |
| |
| /* Determine source radius based upon inset: |
| * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r |
| * sqrt(2) * r = sqrt(2) * i + r |
| * (sqrt(2) - 1) * r = sqrt(2) * i |
| * r = sqrt(2) / (sqrt(2) - 1) * i |
| */ |
| image->outlineRadius = 3.4142f * diagonalInset; |
| |
| if (kDebug) { |
| printf("outline insets %d %d %d %d, rad %f, alpha %x\n", |
| image->outlineInsetsLeft, image->outlineInsetsTop, |
| image->outlineInsetsRight, image->outlineInsetsBottom, |
| image->outlineRadius, image->outlineAlpha); |
| } |
| } |
| |
| static uint32_t getColor(png_bytepp rows, int left, int top, int right, |
| int bottom) { |
| png_bytep color = rows[top] + left * 4; |
| |
| if (left > right || top > bottom) { |
| return android::Res_png_9patch::TRANSPARENT_COLOR; |
| } |
| |
| while (top <= bottom) { |
| for (int i = left; i <= right; i++) { |
| png_bytep p = rows[top] + i * 4; |
| if (color[3] == 0) { |
| if (p[3] != 0) { |
| return android::Res_png_9patch::NO_COLOR; |
| } |
| } else if (p[0] != color[0] || p[1] != color[1] || p[2] != color[2] || |
| p[3] != color[3]) { |
| return android::Res_png_9patch::NO_COLOR; |
| } |
| } |
| top++; |
| } |
| |
| if (color[3] == 0) { |
| return android::Res_png_9patch::TRANSPARENT_COLOR; |
| } |
| return (color[3] << 24) | (color[0] << 16) | (color[1] << 8) | color[2]; |
| } |
| |
| static bool do9Patch(PngInfo* image, std::string* outError) { |
| image->is9Patch = true; |
| |
| int W = image->width; |
| int H = image->height; |
| int i, j; |
| |
| const int maxSizeXDivs = W * sizeof(int32_t); |
| const int maxSizeYDivs = H * sizeof(int32_t); |
| int32_t* xDivs = image->xDivs = new int32_t[W]; |
| int32_t* yDivs = image->yDivs = new int32_t[H]; |
| uint8_t numXDivs = 0; |
| uint8_t numYDivs = 0; |
| |
| int8_t numColors; |
| int numRows; |
| int numCols; |
| int top; |
| int left; |
| int right; |
| int bottom; |
| memset(xDivs, -1, maxSizeXDivs); |
| memset(yDivs, -1, maxSizeYDivs); |
| image->info9Patch.paddingLeft = image->info9Patch.paddingRight = -1; |
| image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1; |
| image->layoutBoundsLeft = image->layoutBoundsRight = 0; |
| image->layoutBoundsTop = image->layoutBoundsBottom = 0; |
| |
| png_bytep p = image->rows[0]; |
| bool transparent = p[3] == 0; |
| bool hasColor = false; |
| |
| const char* errorMsg = nullptr; |
| int errorPixel = -1; |
| const char* errorEdge = nullptr; |
| |
| int colorIndex = 0; |
| std::vector<png_bytep> newRows; |
| |
| // Validate size... |
| if (W < 3 || H < 3) { |
| errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels"; |
| goto getout; |
| } |
| |
| // Validate frame... |
| if (!transparent && |
| (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) { |
| errorMsg = "Must have one-pixel frame that is either transparent or white"; |
| goto getout; |
| } |
| |
| // Find left and right of sizing areas... |
| if (!getHorizontalTicks(p, W, transparent, true, &xDivs[0], &xDivs[1], |
| &errorMsg, &numXDivs, true)) { |
| errorPixel = xDivs[0]; |
| errorEdge = "top"; |
| goto getout; |
| } |
| |
| // Find top and bottom of sizing areas... |
| if (!getVerticalTicks(image->rows.data(), 0, H, transparent, true, &yDivs[0], |
| &yDivs[1], &errorMsg, &numYDivs, true)) { |
| errorPixel = yDivs[0]; |
| errorEdge = "left"; |
| goto getout; |
| } |
| |
| // Copy patch size data into image... |
| image->info9Patch.numXDivs = numXDivs; |
| image->info9Patch.numYDivs = numYDivs; |
| |
| // Find left and right of padding area... |
| if (!getHorizontalTicks(image->rows[H - 1], W, transparent, false, |
| &image->info9Patch.paddingLeft, |
| &image->info9Patch.paddingRight, &errorMsg, nullptr, |
| false)) { |
| errorPixel = image->info9Patch.paddingLeft; |
| errorEdge = "bottom"; |
| goto getout; |
| } |
| |
| // Find top and bottom of padding area... |
| if (!getVerticalTicks(image->rows.data(), (W - 1) * 4, H, transparent, false, |
| &image->info9Patch.paddingTop, |
| &image->info9Patch.paddingBottom, &errorMsg, nullptr, |
| false)) { |
| errorPixel = image->info9Patch.paddingTop; |
| errorEdge = "right"; |
| goto getout; |
| } |
| |
| // Find left and right of layout padding... |
| getHorizontalLayoutBoundsTicks(image->rows[H - 1], W, transparent, false, |
| &image->layoutBoundsLeft, |
| &image->layoutBoundsRight, &errorMsg); |
| |
| getVerticalLayoutBoundsTicks(image->rows.data(), (W - 1) * 4, H, transparent, |
| false, &image->layoutBoundsTop, |
| &image->layoutBoundsBottom, &errorMsg); |
| |
| image->haveLayoutBounds = |
| image->layoutBoundsLeft != 0 || image->layoutBoundsRight != 0 || |
| image->layoutBoundsTop != 0 || image->layoutBoundsBottom != 0; |
| |
| if (image->haveLayoutBounds) { |
| if (kDebug) { |
| printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, |
| image->layoutBoundsTop, image->layoutBoundsRight, |
| image->layoutBoundsBottom); |
| } |
| } |
| |
| // use opacity of pixels to estimate the round rect outline |
| getOutline(image); |
| |
| // If padding is not yet specified, take values from size. |
| if (image->info9Patch.paddingLeft < 0) { |
| image->info9Patch.paddingLeft = xDivs[0]; |
| image->info9Patch.paddingRight = W - 2 - xDivs[1]; |
| } else { |
| // Adjust value to be correct! |
| image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight; |
| } |
| if (image->info9Patch.paddingTop < 0) { |
| image->info9Patch.paddingTop = yDivs[0]; |
| image->info9Patch.paddingBottom = H - 2 - yDivs[1]; |
| } else { |
| // Adjust value to be correct! |
| image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom; |
| } |
| |
| /* if (kDebug) { |
| printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName, |
| xDivs[0], xDivs[1], |
| yDivs[0], yDivs[1]); |
| printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName, |
| image->info9Patch.paddingLeft, image->info9Patch.paddingRight, |
| image->info9Patch.paddingTop, |
| image->info9Patch.paddingBottom); |
| }*/ |
| |
| // Remove frame from image. |
| newRows.resize(H - 2); |
| for (i = 0; i < H - 2; i++) { |
| newRows[i] = image->rows[i + 1]; |
| memmove(newRows[i], newRows[i] + 4, (W - 2) * 4); |
| } |
| image->rows.swap(newRows); |
| |
| image->width -= 2; |
| W = image->width; |
| image->height -= 2; |
| H = image->height; |
| |
| // Figure out the number of rows and columns in the N-patch |
| numCols = numXDivs + 1; |
| if (xDivs[0] == 0) { // Column 1 is strechable |
| numCols--; |
| } |
| if (xDivs[numXDivs - 1] == W) { |
| numCols--; |
| } |
| numRows = numYDivs + 1; |
| if (yDivs[0] == 0) { // Row 1 is strechable |
| numRows--; |
| } |
| if (yDivs[numYDivs - 1] == H) { |
| numRows--; |
| } |
| |
| // Make sure the amount of rows and columns will fit in the number of |
| // colors we can use in the 9-patch format. |
| if (numRows * numCols > 0x7F) { |
| errorMsg = "Too many rows and columns in 9-patch perimeter"; |
| goto getout; |
| } |
| |
| numColors = numRows * numCols; |
| image->info9Patch.numColors = numColors; |
| image->colors.resize(numColors); |
| |
| // Fill in color information for each patch. |
| |
| uint32_t c; |
| top = 0; |
| |
| // The first row always starts with the top being at y=0 and the bottom |
| // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case |
| // the first row is stretchable along the Y axis, otherwise it is fixed. |
| // The last row always ends with the bottom being bitmap.height and the top |
| // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or |
| // yDivs[numYDivs-1]. In the former case the last row is stretchable along |
| // the Y axis, otherwise it is fixed. |
| // |
| // The first and last columns are similarly treated with respect to the X |
| // axis. |
| // |
| // The above is to help explain some of the special casing that goes on the |
| // code below. |
| |
| // The initial yDiv and whether the first row is considered stretchable or |
| // not depends on whether yDiv[0] was zero or not. |
| for (j = (yDivs[0] == 0 ? 1 : 0); j <= numYDivs && top < H; j++) { |
| if (j == numYDivs) { |
| bottom = H; |
| } else { |
| bottom = yDivs[j]; |
| } |
| left = 0; |
| // The initial xDiv and whether the first column is considered |
| // stretchable or not depends on whether xDiv[0] was zero or not. |
| for (i = xDivs[0] == 0 ? 1 : 0; i <= numXDivs && left < W; i++) { |
| if (i == numXDivs) { |
| right = W; |
| } else { |
| right = xDivs[i]; |
| } |
| c = getColor(image->rows.data(), left, top, right - 1, bottom - 1); |
| image->colors[colorIndex++] = c; |
| if (kDebug) { |
| if (c != android::Res_png_9patch::NO_COLOR) { |
| hasColor = true; |
| } |
| } |
| left = right; |
| } |
| top = bottom; |
| } |
| |
| assert(colorIndex == numColors); |
| |
| if (kDebug && hasColor) { |
| for (i = 0; i < numColors; i++) { |
| if (i == 0) printf("Colors:\n"); |
| printf(" #%08x", image->colors[i]); |
| if (i == numColors - 1) printf("\n"); |
| } |
| } |
| getout: |
| if (errorMsg) { |
| std::stringstream err; |
| err << "9-patch malformed: " << errorMsg; |
| if (errorEdge) { |
| err << "." << std::endl; |
| if (errorPixel >= 0) { |
| err << "Found at pixel #" << errorPixel << " along " << errorEdge |
| << " edge"; |
| } else { |
| err << "Found along " << errorEdge << " edge"; |
| } |
| } |
| *outError = err.str(); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Png::process(const Source& source, std::istream* input, |
| BigBuffer* outBuffer, const PngOptions& options) { |
| png_byte signature[kPngSignatureSize]; |
| |
| // Read the PNG signature first. |
| if (!input->read(reinterpret_cast<char*>(signature), kPngSignatureSize)) { |
| mDiag->Error(DiagMessage() << strerror(errno)); |
| return false; |
| } |
| |
| // If the PNG signature doesn't match, bail early. |
| if (png_sig_cmp(signature, 0, kPngSignatureSize) != 0) { |
| mDiag->Error(DiagMessage() << "not a valid png file"); |
| return false; |
| } |
| |
| bool result = false; |
| png_structp readPtr = nullptr; |
| png_infop infoPtr = nullptr; |
| png_structp writePtr = nullptr; |
| png_infop writeInfoPtr = nullptr; |
| PngInfo pngInfo = {}; |
| |
| readPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr); |
| if (!readPtr) { |
| mDiag->Error(DiagMessage() << "failed to allocate read ptr"); |
| goto bail; |
| } |
| |
| infoPtr = png_create_info_struct(readPtr); |
| if (!infoPtr) { |
| mDiag->Error(DiagMessage() << "failed to allocate info ptr"); |
| goto bail; |
| } |
| |
| png_set_error_fn(readPtr, reinterpret_cast<png_voidp>(mDiag), nullptr, |
| logWarning); |
| |
| // Set the read function to read from std::istream. |
| png_set_read_fn(readPtr, (png_voidp)input, readDataFromStream); |
| |
| if (!readPng(mDiag, readPtr, infoPtr, &pngInfo)) { |
| goto bail; |
| } |
| |
| if (util::EndsWith(source.path, ".9.png")) { |
| std::string errorMsg; |
| if (!do9Patch(&pngInfo, &errorMsg)) { |
| mDiag->Error(DiagMessage() << errorMsg); |
| goto bail; |
| } |
| } |
| |
| writePtr = |
| png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr); |
| if (!writePtr) { |
| mDiag->Error(DiagMessage() << "failed to allocate write ptr"); |
| goto bail; |
| } |
| |
| writeInfoPtr = png_create_info_struct(writePtr); |
| if (!writeInfoPtr) { |
| mDiag->Error(DiagMessage() << "failed to allocate write info ptr"); |
| goto bail; |
| } |
| |
| png_set_error_fn(writePtr, nullptr, nullptr, logWarning); |
| |
| // Set the write function to write to std::ostream. |
| png_set_write_fn(writePtr, (png_voidp)outBuffer, writeDataToStream, |
| flushDataToStream); |
| |
| if (!writePng(mDiag, writePtr, writeInfoPtr, &pngInfo, |
| options.grayscale_tolerance)) { |
| goto bail; |
| } |
| |
| result = true; |
| bail: |
| if (readPtr) { |
| png_destroy_read_struct(&readPtr, &infoPtr, nullptr); |
| } |
| |
| if (writePtr) { |
| png_destroy_write_struct(&writePtr, &writeInfoPtr); |
| } |
| return result; |
| } |
| |
| } // namespace aapt |