blob: 89105ea19fbdfa4d101f178ab72fc5c6a49cd40e [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_VIEW
#define LOG_TAG "OpenGLRenderer"
#include "RenderNode.h"
#include <algorithm>
#include <string>
#include <SkCanvas.h>
#include <algorithm>
#include <utils/Trace.h>
#include "DamageAccumulator.h"
#include "Debug.h"
#include "DisplayListOp.h"
#include "DisplayListLogBuffer.h"
#include "LayerRenderer.h"
#include "OpenGLRenderer.h"
#include "utils/MathUtils.h"
namespace android {
namespace uirenderer {
void RenderNode::outputLogBuffer(int fd) {
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
if (logBuffer.isEmpty()) {
return;
}
FILE *file = fdopen(fd, "a");
fprintf(file, "\nRecent DisplayList operations\n");
logBuffer.outputCommands(file);
String8 cachesLog;
Caches::getInstance().dumpMemoryUsage(cachesLog);
fprintf(file, "\nCaches:\n%s", cachesLog.string());
fprintf(file, "\n");
fflush(file);
}
RenderNode::RenderNode()
: mDirtyPropertyFields(0)
, mNeedsDisplayListDataSync(false)
, mDisplayListData(0)
, mStagingDisplayListData(0)
, mAnimatorManager(*this)
, mLayer(0) {
}
RenderNode::~RenderNode() {
delete mDisplayListData;
delete mStagingDisplayListData;
LayerRenderer::destroyLayerDeferred(mLayer);
}
void RenderNode::setStagingDisplayList(DisplayListData* data) {
mNeedsDisplayListDataSync = true;
delete mStagingDisplayListData;
mStagingDisplayListData = data;
if (mStagingDisplayListData) {
Caches::getInstance().registerFunctors(mStagingDisplayListData->functorCount);
}
}
/**
* This function is a simplified version of replay(), where we simply retrieve and log the
* display list. This function should remain in sync with the replay() function.
*/
void RenderNode::output(uint32_t level) {
ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this,
getName(), isRenderable());
ALOGD("%*s%s %d", level * 2, "", "Save",
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
properties().debugOutputProperties(level);
int flags = DisplayListOp::kOpLogFlag_Recurse;
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
mDisplayListData->displayListOps[i]->output(level, flags);
}
ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName());
}
int RenderNode::getDebugSize() {
int size = sizeof(RenderNode);
if (mStagingDisplayListData) {
size += mStagingDisplayListData->allocator.usedSize();
}
if (mDisplayListData && mDisplayListData != mStagingDisplayListData) {
size += mDisplayListData->allocator.usedSize();
}
return size;
}
void RenderNode::prepareTree(TreeInfo& info) {
ATRACE_CALL();
prepareTreeImpl(info);
}
void RenderNode::addAnimator(const sp<BaseRenderNodeAnimator>& animator) {
mAnimatorManager.addAnimator(animator);
}
void RenderNode::damageSelf(TreeInfo& info) {
if (isRenderable()) {
if (properties().getClipDamageToBounds()) {
info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight());
} else {
// Hope this is big enough?
// TODO: Get this from the display list ops or something
info.damageAccumulator->dirty(INT_MIN, INT_MIN, INT_MAX, INT_MAX);
}
}
}
void RenderNode::prepareLayer(TreeInfo& info) {
LayerType layerType = properties().layerProperties().type();
if (CC_UNLIKELY(layerType == kLayerTypeRenderLayer)) {
// We push a null transform here as we don't care what the existing dirty
// area is, only what our display list dirty is as well as our children's
// dirty area
info.damageAccumulator->pushNullTransform();
}
}
void RenderNode::pushLayerUpdate(TreeInfo& info) {
LayerType layerType = properties().layerProperties().type();
// If we are not a layer OR we cannot be rendered (eg, view was detached)
// we need to destroy any Layers we may have had previously
if (CC_LIKELY(layerType != kLayerTypeRenderLayer) || CC_UNLIKELY(!isRenderable())) {
if (layerType == kLayerTypeRenderLayer) {
info.damageAccumulator->popTransform();
}
if (CC_UNLIKELY(mLayer)) {
LayerRenderer::destroyLayer(mLayer);
mLayer = NULL;
}
return;
}
if (!mLayer) {
mLayer = LayerRenderer::createRenderLayer(info.renderState, getWidth(), getHeight());
applyLayerPropertiesToLayer(info);
damageSelf(info);
} else if (mLayer->layer.getWidth() != getWidth() || mLayer->layer.getHeight() != getHeight()) {
if (!LayerRenderer::resizeLayer(mLayer, getWidth(), getHeight())) {
LayerRenderer::destroyLayer(mLayer);
mLayer = 0;
}
damageSelf(info);
}
SkRect dirty;
info.damageAccumulator->peekAtDirty(&dirty);
info.damageAccumulator->popTransform();
if (!mLayer) {
if (info.errorHandler) {
std::string msg = "Unable to create layer for ";
msg += getName();
info.errorHandler->onError(msg);
}
return;
}
if (!dirty.isEmpty()) {
mLayer->updateDeferred(this, dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom);
}
// This is not inside the above if because we may have called
// updateDeferred on a previous prepare pass that didn't have a renderer
if (info.renderer && mLayer->deferredUpdateScheduled) {
info.renderer->pushLayerUpdate(mLayer);
}
}
void RenderNode::prepareTreeImpl(TreeInfo& info) {
info.damageAccumulator->pushTransform(this);
switch (info.mode) {
case TreeInfo::MODE_FULL:
pushStagingPropertiesChanges(info);
mAnimatorManager.animate(info);
break;
case TreeInfo::MODE_MAYBE_DETACHING:
pushStagingPropertiesChanges(info);
break;
case TreeInfo::MODE_RT_ONLY:
mAnimatorManager.animate(info);
break;
case TreeInfo::MODE_DESTROY_RESOURCES:
// This will also release the hardware layer if we have one as
// isRenderable() will return false, thus causing pushLayerUpdate
// to recycle the hardware layer
setStagingDisplayList(NULL);
break;
}
prepareLayer(info);
if (info.mode == TreeInfo::MODE_FULL || info.mode == TreeInfo::MODE_DESTROY_RESOURCES) {
pushStagingDisplayListChanges(info);
}
prepareSubTree(info, mDisplayListData);
pushLayerUpdate(info);
info.damageAccumulator->popTransform();
}
void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) {
// Push the animators first so that setupStartValueIfNecessary() is called
// before properties() is trampled by stagingProperties(), as they are
// required by some animators.
mAnimatorManager.pushStaging(info);
if (mDirtyPropertyFields) {
mDirtyPropertyFields = 0;
damageSelf(info);
info.damageAccumulator->popTransform();
mProperties = mStagingProperties;
applyLayerPropertiesToLayer(info);
// We could try to be clever and only re-damage if the matrix changed.
// However, we don't need to worry about that. The cost of over-damaging
// here is only going to be a single additional map rect of this node
// plus a rect join(). The parent's transform (and up) will only be
// performed once.
info.damageAccumulator->pushTransform(this);
damageSelf(info);
}
}
void RenderNode::applyLayerPropertiesToLayer(TreeInfo& info) {
if (CC_LIKELY(!mLayer)) return;
const LayerProperties& props = properties().layerProperties();
mLayer->setAlpha(props.alpha(), props.xferMode());
mLayer->setColorFilter(props.colorFilter());
mLayer->setBlend(props.needsBlending());
}
void RenderNode::pushStagingDisplayListChanges(TreeInfo& info) {
if (mNeedsDisplayListDataSync) {
mNeedsDisplayListDataSync = false;
// Do a push pass on the old tree to handle freeing DisplayListData
// that are no longer used
TreeInfo oldTreeInfo(TreeInfo::MODE_MAYBE_DETACHING, info);
prepareSubTree(oldTreeInfo, mDisplayListData);
delete mDisplayListData;
mDisplayListData = mStagingDisplayListData;
mStagingDisplayListData = 0;
damageSelf(info);
}
}
void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) {
if (subtree) {
TextureCache& cache = Caches::getInstance().textureCache;
info.out.hasFunctors |= subtree->functorCount;
// TODO: Fix ownedBitmapResources to not require disabling prepareTextures
// and thus falling out of async drawing path.
if (subtree->ownedBitmapResources.size()) {
info.prepareTextures = false;
}
for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) {
info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]);
}
for (size_t i = 0; i < subtree->children().size(); i++) {
DrawRenderNodeOp* op = subtree->children()[i];
RenderNode* childNode = op->mRenderNode;
info.damageAccumulator->pushTransform(&op->mTransformFromParent);
childNode->prepareTreeImpl(info);
info.damageAccumulator->popTransform();
}
}
}
/*
* For property operations, we pass a savecount of 0, since the operations aren't part of the
* displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
* base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount())
*/
#define PROPERTY_SAVECOUNT 0
template <class T>
void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) {
#if DEBUG_DISPLAY_LIST
properties().debugOutputProperties(handler.level() + 1);
#endif
if (properties().getLeft() != 0 || properties().getTop() != 0) {
renderer.translate(properties().getLeft(), properties().getTop());
}
if (properties().getStaticMatrix()) {
renderer.concatMatrix(*properties().getStaticMatrix());
} else if (properties().getAnimationMatrix()) {
renderer.concatMatrix(*properties().getAnimationMatrix());
}
if (properties().hasTransformMatrix()) {
if (properties().isTransformTranslateOnly()) {
renderer.translate(properties().getTranslationX(), properties().getTranslationY());
} else {
renderer.concatMatrix(*properties().getTransformMatrix());
}
}
const bool isLayer = properties().layerProperties().type() != kLayerTypeNone;
bool clipToBoundsNeeded = isLayer ? false : properties().getClipToBounds();
if (properties().getAlpha() < 1) {
if (isLayer) {
renderer.setOverrideLayerAlpha(properties().getAlpha());
} else if (!properties().getHasOverlappingRendering()) {
renderer.scaleAlpha(properties().getAlpha());
} else {
// TODO: should be able to store the size of a DL at record time and not
// have to pass it into this call. In fact, this information might be in the
// location/size info that we store with the new native transform data.
int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
if (clipToBoundsNeeded) {
saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
clipToBoundsNeeded = false; // clipping done by saveLayer
}
SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
0, 0, properties().getWidth(), properties().getHeight(),
properties().getAlpha() * 255, saveFlags);
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
}
if (clipToBoundsNeeded) {
ClipRectOp* op = new (handler.allocator()) ClipRectOp(
0, 0, properties().getWidth(), properties().getHeight(), SkRegion::kIntersect_Op);
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
if (CC_UNLIKELY(properties().hasClippingPath())) {
ClipPathOp* op = new (handler.allocator()) ClipPathOp(
properties().getClippingPath(), properties().getClippingPathOp());
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
}
/**
* Apply property-based transformations to input matrix
*
* If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
* matrix computation instead of the Skia 3x3 matrix + camera hackery.
*/
void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) {
if (properties().getLeft() != 0 || properties().getTop() != 0) {
matrix.translate(properties().getLeft(), properties().getTop());
}
if (properties().getStaticMatrix()) {
mat4 stat(*properties().getStaticMatrix());
matrix.multiply(stat);
} else if (properties().getAnimationMatrix()) {
mat4 anim(*properties().getAnimationMatrix());
matrix.multiply(anim);
}
bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ());
if (properties().hasTransformMatrix() || applyTranslationZ) {
if (properties().isTransformTranslateOnly()) {
matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
true3dTransform ? properties().getZ() : 0.0f);
} else {
if (!true3dTransform) {
matrix.multiply(*properties().getTransformMatrix());
} else {
mat4 true3dMat;
true3dMat.loadTranslate(
properties().getPivotX() + properties().getTranslationX(),
properties().getPivotY() + properties().getTranslationY(),
properties().getZ());
true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
true3dMat.rotate(properties().getRotation(), 0, 0, 1);
true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());
matrix.multiply(true3dMat);
}
}
}
}
/**
* Organizes the DisplayList hierarchy to prepare for background projection reordering.
*
* This should be called before a call to defer() or drawDisplayList()
*
* Each DisplayList that serves as a 3d root builds its list of composited children,
* which are flagged to not draw in the standard draw loop.
*/
void RenderNode::computeOrdering() {
ATRACE_CALL();
mProjectedNodes.clear();
// TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
// transform properties are applied correctly to top level children
if (mDisplayListData == NULL) return;
for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
childOp->mRenderNode->computeOrderingImpl(childOp,
properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity());
}
}
void RenderNode::computeOrderingImpl(
DrawRenderNodeOp* opState,
const SkPath* outlineOfProjectionSurface,
Vector<DrawRenderNodeOp*>* compositedChildrenOfProjectionSurface,
const mat4* transformFromProjectionSurface) {
mProjectedNodes.clear();
if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
// TODO: should avoid this calculation in most cases
// TODO: just calculate single matrix, down to all leaf composited elements
Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
if (properties().getProjectBackwards()) {
// composited projectee, flag for out of order draw, save matrix, and store in proj surface
opState->mSkipInOrderDraw = true;
opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
compositedChildrenOfProjectionSurface->add(opState);
} else {
// standard in order draw
opState->mSkipInOrderDraw = false;
}
if (mDisplayListData->children().size() > 0) {
const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
bool haveAppliedPropertiesToProjection = false;
for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
RenderNode* child = childOp->mRenderNode;
const SkPath* projectionOutline = NULL;
Vector<DrawRenderNodeOp*>* projectionChildren = NULL;
const mat4* projectionTransform = NULL;
if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
// if receiving projections, collect projecting descendent
// Note that if a direct descendent is projecting backwards, we pass it's
// grandparent projection collection, since it shouldn't project onto it's
// parent, where it will already be drawing.
projectionOutline = properties().getOutline().getPath();
projectionChildren = &mProjectedNodes;
projectionTransform = &mat4::identity();
} else {
if (!haveAppliedPropertiesToProjection) {
applyViewPropertyTransforms(localTransformFromProjectionSurface);
haveAppliedPropertiesToProjection = true;
}
projectionOutline = outlineOfProjectionSurface;
projectionChildren = compositedChildrenOfProjectionSurface;
projectionTransform = &localTransformFromProjectionSurface;
}
child->computeOrderingImpl(childOp,
projectionOutline, projectionChildren, projectionTransform);
}
}
}
class DeferOperationHandler {
public:
DeferOperationHandler(DeferStateStruct& deferStruct, int level)
: mDeferStruct(deferStruct), mLevel(level) {}
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
}
inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
inline void startMark(const char* name) {} // do nothing
inline void endMark() {}
inline int level() { return mLevel; }
inline int replayFlags() { return mDeferStruct.mReplayFlags; }
private:
DeferStateStruct& mDeferStruct;
const int mLevel;
};
void RenderNode::defer(DeferStateStruct& deferStruct, const int level) {
DeferOperationHandler handler(deferStruct, level);
issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler);
}
class ReplayOperationHandler {
public:
ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
: mReplayStruct(replayStruct), mLevel(level) {}
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
mReplayStruct.mRenderer.eventMark(operation->name());
#endif
operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
}
inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
inline void startMark(const char* name) {
mReplayStruct.mRenderer.startMark(name);
}
inline void endMark() {
mReplayStruct.mRenderer.endMark();
}
inline int level() { return mLevel; }
inline int replayFlags() { return mReplayStruct.mReplayFlags; }
private:
ReplayStateStruct& mReplayStruct;
const int mLevel;
};
void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) {
ReplayOperationHandler handler(replayStruct, level);
issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler);
}
void RenderNode::buildZSortedChildList(Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes) {
if (mDisplayListData == NULL || mDisplayListData->children().size() == 0) return;
for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
RenderNode* child = childOp->mRenderNode;
float childZ = child->properties().getZ();
if (!MathUtils::isZero(childZ)) {
zTranslatedNodes.add(ZDrawRenderNodeOpPair(childZ, childOp));
childOp->mSkipInOrderDraw = true;
} else if (!child->properties().getProjectBackwards()) {
// regular, in order drawing DisplayList
childOp->mSkipInOrderDraw = false;
}
}
// Z sort 3d children (stable-ness makes z compare fall back to standard drawing order)
std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
}
template <class T>
void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) {
if (properties().getAlpha() <= 0.0f || properties().getOutline().isEmpty()) return;
mat4 shadowMatrixXY(transformFromParent);
applyViewPropertyTransforms(shadowMatrixXY);
// Z matrix needs actual 3d transformation, so mapped z values will be correct
mat4 shadowMatrixZ(transformFromParent);
applyViewPropertyTransforms(shadowMatrixZ, true);
const SkPath* outlinePath = properties().getOutline().getPath();
const RevealClip& revealClip = properties().getRevealClip();
const SkPath* revealClipPath = revealClip.hasConvexClip()
? revealClip.getPath() : NULL; // only pass the reveal clip's path if it's convex
if (revealClipPath && revealClipPath->isEmpty()) return;
/**
* The drawing area of the caster is always the same as the its perimeter (which
* the shadow system uses) *except* in the inverse clip case. Inform the shadow
* system that the caster's drawing area (as opposed to its perimeter) has been
* clipped, so that it knows the caster can't be opaque.
*/
bool casterUnclipped = !revealClip.willClip() || revealClip.hasConvexClip();
DisplayListOp* shadowOp = new (handler.allocator()) DrawShadowOp(
shadowMatrixXY, shadowMatrixZ,
properties().getAlpha(), casterUnclipped,
outlinePath, revealClipPath);
handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
template <class T>
int RenderNode::issueOperationsOfNegZChildren(
const Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes,
OpenGLRenderer& renderer, T& handler) {
if (zTranslatedNodes.isEmpty()) return -1;
// create a save around the body of the ViewGroup's draw method, so that
// matrix/clip methods don't affect composited children
int shadowSaveCount = renderer.getSaveCount();
handler(new (handler.allocator()) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
issueOperationsOf3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler);
return shadowSaveCount;
}
template <class T>
void RenderNode::issueOperationsOfPosZChildren(int shadowRestoreTo,
const Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes,
OpenGLRenderer& renderer, T& handler) {
if (zTranslatedNodes.isEmpty()) return;
LOG_ALWAYS_FATAL_IF(shadowRestoreTo < 0, "invalid save to restore to");
handler(new (handler.allocator()) RestoreToCountOp(shadowRestoreTo),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
renderer.setOverrideLayerAlpha(1.0f);
issueOperationsOf3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler);
}
#define SHADOW_DELTA 0.1f
template <class T>
void RenderNode::issueOperationsOf3dChildren(const Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes,
ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) {
const int size = zTranslatedNodes.size();
if (size == 0
|| (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
|| (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
// no 3d children to draw
return;
}
/**
* Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
* with very similar Z heights to draw together.
*
* This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
* underneath both, and neither's shadow is drawn on top of the other.
*/
const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
size_t drawIndex, shadowIndex, endIndex;
if (mode == kNegativeZChildren) {
drawIndex = 0;
endIndex = nonNegativeIndex;
shadowIndex = endIndex; // draw no shadows
} else {
drawIndex = nonNegativeIndex;
endIndex = size;
shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
}
DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "",
endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive");
float lastCasterZ = 0.0f;
while (shadowIndex < endIndex || drawIndex < endIndex) {
if (shadowIndex < endIndex) {
DrawRenderNodeOp* casterOp = zTranslatedNodes[shadowIndex].value;
RenderNode* caster = casterOp->mRenderNode;
const float casterZ = zTranslatedNodes[shadowIndex].key;
// attempt to render the shadow if the caster about to be drawn is its caster,
// OR if its caster's Z value is similar to the previous potential caster
if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler);
lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
shadowIndex++;
continue;
}
}
// only the actual child DL draw needs to be in save/restore,
// since it modifies the renderer's matrix
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
DrawRenderNodeOp* childOp = zTranslatedNodes[drawIndex].value;
RenderNode* child = childOp->mRenderNode;
renderer.concatMatrix(childOp->mTransformFromParent);
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
childOp->mSkipInOrderDraw = true;
renderer.restoreToCount(restoreTo);
drawIndex++;
}
}
template <class T>
void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) {
DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size());
const SkPath* projectionReceiverOutline = properties().getOutline().getPath();
int restoreTo = renderer.getSaveCount();
// If the projection reciever has an outline, we mask each of the projected rendernodes to it
// Either with clipRect, or special saveLayer masking
LinearAllocator& alloc = handler.allocator();
if (projectionReceiverOutline != NULL) {
const SkRect& outlineBounds = projectionReceiverOutline->getBounds();
if (projectionReceiverOutline->isRect(NULL)) {
// mask to the rect outline simply with clipRect
handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
ClipRectOp* clipOp = new (alloc) ClipRectOp(
outlineBounds.left(), outlineBounds.top(),
outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op);
handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
} else {
// wrap the projected RenderNodes with a SaveLayer that will mask to the outline
SaveLayerOp* op = new (alloc) SaveLayerOp(
outlineBounds.left(), outlineBounds.top(),
outlineBounds.right(), outlineBounds.bottom(),
255, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag | SkCanvas::kARGB_ClipLayer_SaveFlag);
op->setMask(projectionReceiverOutline);
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
/* TODO: add optimizations here to take advantage of placement/size of projected
* children (which may shrink saveLayer area significantly). This is dependent on
* passing actual drawing/dirtying bounds of projected content down to native.
*/
}
}
// draw projected nodes
for (size_t i = 0; i < mProjectedNodes.size(); i++) {
DrawRenderNodeOp* childOp = mProjectedNodes[i];
// matrix save, concat, and restore can be done safely without allocating operations
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
childOp->mSkipInOrderDraw = true;
renderer.restoreToCount(restoreTo);
}
if (projectionReceiverOutline != NULL) {
handler(new (alloc) RestoreToCountOp(restoreTo),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
}
/**
* This function serves both defer and replay modes, and will organize the displayList's component
* operations for a single frame:
*
* Every 'simple' state operation that affects just the matrix and alpha (or other factors of
* DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
* defer logic) and operations in displayListOps are issued through the 'handler' which handles the
* defer vs replay logic, per operation
*/
template <class T>
void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) {
const bool drawLayer = (mLayer && (&renderer != mLayer->renderer));
// If we are updating the contents of mLayer, we don't want to apply any of
// the RenderNode's properties to this issueOperations pass. Those will all
// be applied when the layer is drawn, aka when this is true.
const bool useViewProperties = (!mLayer || drawLayer);
const int level = handler.level();
if (mDisplayListData->isEmpty() || (useViewProperties && properties().getAlpha() <= 0)) {
DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName());
return;
}
handler.startMark(getName());
#if DEBUG_DISPLAY_LIST
const Rect& clipRect = renderer.getLocalClipBounds();
DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f",
level * 2, "", this, getName(),
clipRect.left, clipRect.top, clipRect.right, clipRect.bottom);
#endif
LinearAllocator& alloc = handler.allocator();
int restoreTo = renderer.getSaveCount();
handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
if (useViewProperties) {
setViewProperties<T>(renderer, handler);
}
bool quickRejected = properties().getClipToBounds()
&& renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight());
if (!quickRejected) {
if (mProperties.getOutline().willClip()) {
renderer.setClippingOutline(alloc, &(mProperties.getOutline()));
}
if (drawLayer) {
handler(new (alloc) DrawLayerOp(mLayer, 0, 0),
renderer.getSaveCount() - 1, properties().getClipToBounds());
} else {
Vector<ZDrawRenderNodeOpPair> zTranslatedNodes;
buildZSortedChildList(zTranslatedNodes);
// for 3d root, draw children with negative z values
int shadowRestoreTo = issueOperationsOfNegZChildren(zTranslatedNodes, renderer, handler);
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
const int saveCountOffset = renderer.getSaveCount() - 1;
const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
DisplayListOp *op = mDisplayListData->displayListOps[i];
#if DEBUG_DISPLAY_LIST
op->output(level + 1);
#endif
logBuffer.writeCommand(level, op->name());
handler(op, saveCountOffset, properties().getClipToBounds());
if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) {
issueOperationsOfProjectedChildren(renderer, handler);
}
}
// for 3d root, draw children with positive z values
issueOperationsOfPosZChildren(shadowRestoreTo, zTranslatedNodes, renderer, handler);
}
}
DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
handler(new (alloc) RestoreToCountOp(restoreTo),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
renderer.setOverrideLayerAlpha(1.0f);
DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName());
handler.endMark();
}
} /* namespace uirenderer */
} /* namespace android */