| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Input" |
| |
| //#define LOG_NDEBUG 0 |
| |
| // Log debug messages about keymap probing. |
| #define DEBUG_PROBE 0 |
| |
| // Log debug messages about velocity tracking. |
| #define DEBUG_VELOCITY 0 |
| |
| // Log debug messages about least squares fitting. |
| #define DEBUG_LEAST_SQUARES 0 |
| |
| // Log debug messages about acceleration. |
| #define DEBUG_ACCELERATION 0 |
| |
| |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <ctype.h> |
| |
| #include <androidfw/Input.h> |
| |
| #include <math.h> |
| #include <limits.h> |
| |
| #ifdef HAVE_ANDROID_OS |
| #include <binder/Parcel.h> |
| |
| #include "SkPoint.h" |
| #include "SkMatrix.h" |
| #include "SkScalar.h" |
| #endif |
| |
| namespace android { |
| |
| // --- InputEvent --- |
| |
| void InputEvent::initialize(int32_t deviceId, int32_t source) { |
| mDeviceId = deviceId; |
| mSource = source; |
| } |
| |
| void InputEvent::initialize(const InputEvent& from) { |
| mDeviceId = from.mDeviceId; |
| mSource = from.mSource; |
| } |
| |
| // --- KeyEvent --- |
| |
| bool KeyEvent::hasDefaultAction(int32_t keyCode) { |
| switch (keyCode) { |
| case AKEYCODE_HOME: |
| case AKEYCODE_BACK: |
| case AKEYCODE_CALL: |
| case AKEYCODE_ENDCALL: |
| case AKEYCODE_VOLUME_UP: |
| case AKEYCODE_VOLUME_DOWN: |
| case AKEYCODE_VOLUME_MUTE: |
| case AKEYCODE_POWER: |
| case AKEYCODE_CAMERA: |
| case AKEYCODE_HEADSETHOOK: |
| case AKEYCODE_MENU: |
| case AKEYCODE_NOTIFICATION: |
| case AKEYCODE_FOCUS: |
| case AKEYCODE_SEARCH: |
| case AKEYCODE_MEDIA_PLAY: |
| case AKEYCODE_MEDIA_PAUSE: |
| case AKEYCODE_MEDIA_PLAY_PAUSE: |
| case AKEYCODE_MEDIA_STOP: |
| case AKEYCODE_MEDIA_NEXT: |
| case AKEYCODE_MEDIA_PREVIOUS: |
| case AKEYCODE_MEDIA_REWIND: |
| case AKEYCODE_MEDIA_RECORD: |
| case AKEYCODE_MEDIA_FAST_FORWARD: |
| case AKEYCODE_MUTE: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool KeyEvent::hasDefaultAction() const { |
| return hasDefaultAction(getKeyCode()); |
| } |
| |
| bool KeyEvent::isSystemKey(int32_t keyCode) { |
| switch (keyCode) { |
| case AKEYCODE_MENU: |
| case AKEYCODE_SOFT_RIGHT: |
| case AKEYCODE_HOME: |
| case AKEYCODE_BACK: |
| case AKEYCODE_CALL: |
| case AKEYCODE_ENDCALL: |
| case AKEYCODE_VOLUME_UP: |
| case AKEYCODE_VOLUME_DOWN: |
| case AKEYCODE_VOLUME_MUTE: |
| case AKEYCODE_MUTE: |
| case AKEYCODE_POWER: |
| case AKEYCODE_HEADSETHOOK: |
| case AKEYCODE_MEDIA_PLAY: |
| case AKEYCODE_MEDIA_PAUSE: |
| case AKEYCODE_MEDIA_PLAY_PAUSE: |
| case AKEYCODE_MEDIA_STOP: |
| case AKEYCODE_MEDIA_NEXT: |
| case AKEYCODE_MEDIA_PREVIOUS: |
| case AKEYCODE_MEDIA_REWIND: |
| case AKEYCODE_MEDIA_RECORD: |
| case AKEYCODE_MEDIA_FAST_FORWARD: |
| case AKEYCODE_CAMERA: |
| case AKEYCODE_FOCUS: |
| case AKEYCODE_SEARCH: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool KeyEvent::isSystemKey() const { |
| return isSystemKey(getKeyCode()); |
| } |
| |
| void KeyEvent::initialize( |
| int32_t deviceId, |
| int32_t source, |
| int32_t action, |
| int32_t flags, |
| int32_t keyCode, |
| int32_t scanCode, |
| int32_t metaState, |
| int32_t repeatCount, |
| nsecs_t downTime, |
| nsecs_t eventTime) { |
| InputEvent::initialize(deviceId, source); |
| mAction = action; |
| mFlags = flags; |
| mKeyCode = keyCode; |
| mScanCode = scanCode; |
| mMetaState = metaState; |
| mRepeatCount = repeatCount; |
| mDownTime = downTime; |
| mEventTime = eventTime; |
| } |
| |
| void KeyEvent::initialize(const KeyEvent& from) { |
| InputEvent::initialize(from); |
| mAction = from.mAction; |
| mFlags = from.mFlags; |
| mKeyCode = from.mKeyCode; |
| mScanCode = from.mScanCode; |
| mMetaState = from.mMetaState; |
| mRepeatCount = from.mRepeatCount; |
| mDownTime = from.mDownTime; |
| mEventTime = from.mEventTime; |
| } |
| |
| |
| // --- PointerCoords --- |
| |
| float PointerCoords::getAxisValue(int32_t axis) const { |
| if (axis < 0 || axis > 63) { |
| return 0; |
| } |
| |
| uint64_t axisBit = 1LL << axis; |
| if (!(bits & axisBit)) { |
| return 0; |
| } |
| uint32_t index = __builtin_popcountll(bits & (axisBit - 1LL)); |
| return values[index]; |
| } |
| |
| status_t PointerCoords::setAxisValue(int32_t axis, float value) { |
| if (axis < 0 || axis > 63) { |
| return NAME_NOT_FOUND; |
| } |
| |
| uint64_t axisBit = 1LL << axis; |
| uint32_t index = __builtin_popcountll(bits & (axisBit - 1LL)); |
| if (!(bits & axisBit)) { |
| if (value == 0) { |
| return OK; // axes with value 0 do not need to be stored |
| } |
| uint32_t count = __builtin_popcountll(bits); |
| if (count >= MAX_AXES) { |
| tooManyAxes(axis); |
| return NO_MEMORY; |
| } |
| bits |= axisBit; |
| for (uint32_t i = count; i > index; i--) { |
| values[i] = values[i - 1]; |
| } |
| } |
| values[index] = value; |
| return OK; |
| } |
| |
| static inline void scaleAxisValue(PointerCoords& c, int axis, float scaleFactor) { |
| float value = c.getAxisValue(axis); |
| if (value != 0) { |
| c.setAxisValue(axis, value * scaleFactor); |
| } |
| } |
| |
| void PointerCoords::scale(float scaleFactor) { |
| // No need to scale pressure or size since they are normalized. |
| // No need to scale orientation since it is meaningless to do so. |
| scaleAxisValue(*this, AMOTION_EVENT_AXIS_X, scaleFactor); |
| scaleAxisValue(*this, AMOTION_EVENT_AXIS_Y, scaleFactor); |
| scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MAJOR, scaleFactor); |
| scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MINOR, scaleFactor); |
| scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MAJOR, scaleFactor); |
| scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MINOR, scaleFactor); |
| } |
| |
| #ifdef HAVE_ANDROID_OS |
| status_t PointerCoords::readFromParcel(Parcel* parcel) { |
| bits = parcel->readInt64(); |
| |
| uint32_t count = __builtin_popcountll(bits); |
| if (count > MAX_AXES) { |
| return BAD_VALUE; |
| } |
| |
| for (uint32_t i = 0; i < count; i++) { |
| values[i] = parcel->readInt32(); |
| } |
| return OK; |
| } |
| |
| status_t PointerCoords::writeToParcel(Parcel* parcel) const { |
| parcel->writeInt64(bits); |
| |
| uint32_t count = __builtin_popcountll(bits); |
| for (uint32_t i = 0; i < count; i++) { |
| parcel->writeInt32(values[i]); |
| } |
| return OK; |
| } |
| #endif |
| |
| void PointerCoords::tooManyAxes(int axis) { |
| ALOGW("Could not set value for axis %d because the PointerCoords structure is full and " |
| "cannot contain more than %d axis values.", axis, int(MAX_AXES)); |
| } |
| |
| bool PointerCoords::operator==(const PointerCoords& other) const { |
| if (bits != other.bits) { |
| return false; |
| } |
| uint32_t count = __builtin_popcountll(bits); |
| for (uint32_t i = 0; i < count; i++) { |
| if (values[i] != other.values[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void PointerCoords::copyFrom(const PointerCoords& other) { |
| bits = other.bits; |
| uint32_t count = __builtin_popcountll(bits); |
| for (uint32_t i = 0; i < count; i++) { |
| values[i] = other.values[i]; |
| } |
| } |
| |
| |
| // --- PointerProperties --- |
| |
| bool PointerProperties::operator==(const PointerProperties& other) const { |
| return id == other.id |
| && toolType == other.toolType; |
| } |
| |
| void PointerProperties::copyFrom(const PointerProperties& other) { |
| id = other.id; |
| toolType = other.toolType; |
| } |
| |
| |
| // --- MotionEvent --- |
| |
| void MotionEvent::initialize( |
| int32_t deviceId, |
| int32_t source, |
| int32_t action, |
| int32_t flags, |
| int32_t edgeFlags, |
| int32_t metaState, |
| int32_t buttonState, |
| float xOffset, |
| float yOffset, |
| float xPrecision, |
| float yPrecision, |
| nsecs_t downTime, |
| nsecs_t eventTime, |
| size_t pointerCount, |
| const PointerProperties* pointerProperties, |
| const PointerCoords* pointerCoords) { |
| InputEvent::initialize(deviceId, source); |
| mAction = action; |
| mFlags = flags; |
| mEdgeFlags = edgeFlags; |
| mMetaState = metaState; |
| mButtonState = buttonState; |
| mXOffset = xOffset; |
| mYOffset = yOffset; |
| mXPrecision = xPrecision; |
| mYPrecision = yPrecision; |
| mDownTime = downTime; |
| mPointerProperties.clear(); |
| mPointerProperties.appendArray(pointerProperties, pointerCount); |
| mSampleEventTimes.clear(); |
| mSamplePointerCoords.clear(); |
| addSample(eventTime, pointerCoords); |
| } |
| |
| void MotionEvent::copyFrom(const MotionEvent* other, bool keepHistory) { |
| InputEvent::initialize(other->mDeviceId, other->mSource); |
| mAction = other->mAction; |
| mFlags = other->mFlags; |
| mEdgeFlags = other->mEdgeFlags; |
| mMetaState = other->mMetaState; |
| mButtonState = other->mButtonState; |
| mXOffset = other->mXOffset; |
| mYOffset = other->mYOffset; |
| mXPrecision = other->mXPrecision; |
| mYPrecision = other->mYPrecision; |
| mDownTime = other->mDownTime; |
| mPointerProperties = other->mPointerProperties; |
| |
| if (keepHistory) { |
| mSampleEventTimes = other->mSampleEventTimes; |
| mSamplePointerCoords = other->mSamplePointerCoords; |
| } else { |
| mSampleEventTimes.clear(); |
| mSampleEventTimes.push(other->getEventTime()); |
| mSamplePointerCoords.clear(); |
| size_t pointerCount = other->getPointerCount(); |
| size_t historySize = other->getHistorySize(); |
| mSamplePointerCoords.appendArray(other->mSamplePointerCoords.array() |
| + (historySize * pointerCount), pointerCount); |
| } |
| } |
| |
| void MotionEvent::addSample( |
| int64_t eventTime, |
| const PointerCoords* pointerCoords) { |
| mSampleEventTimes.push(eventTime); |
| mSamplePointerCoords.appendArray(pointerCoords, getPointerCount()); |
| } |
| |
| const PointerCoords* MotionEvent::getRawPointerCoords(size_t pointerIndex) const { |
| return &mSamplePointerCoords[getHistorySize() * getPointerCount() + pointerIndex]; |
| } |
| |
| float MotionEvent::getRawAxisValue(int32_t axis, size_t pointerIndex) const { |
| return getRawPointerCoords(pointerIndex)->getAxisValue(axis); |
| } |
| |
| float MotionEvent::getAxisValue(int32_t axis, size_t pointerIndex) const { |
| float value = getRawPointerCoords(pointerIndex)->getAxisValue(axis); |
| switch (axis) { |
| case AMOTION_EVENT_AXIS_X: |
| return value + mXOffset; |
| case AMOTION_EVENT_AXIS_Y: |
| return value + mYOffset; |
| } |
| return value; |
| } |
| |
| const PointerCoords* MotionEvent::getHistoricalRawPointerCoords( |
| size_t pointerIndex, size_t historicalIndex) const { |
| return &mSamplePointerCoords[historicalIndex * getPointerCount() + pointerIndex]; |
| } |
| |
| float MotionEvent::getHistoricalRawAxisValue(int32_t axis, size_t pointerIndex, |
| size_t historicalIndex) const { |
| return getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis); |
| } |
| |
| float MotionEvent::getHistoricalAxisValue(int32_t axis, size_t pointerIndex, |
| size_t historicalIndex) const { |
| float value = getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis); |
| switch (axis) { |
| case AMOTION_EVENT_AXIS_X: |
| return value + mXOffset; |
| case AMOTION_EVENT_AXIS_Y: |
| return value + mYOffset; |
| } |
| return value; |
| } |
| |
| ssize_t MotionEvent::findPointerIndex(int32_t pointerId) const { |
| size_t pointerCount = mPointerProperties.size(); |
| for (size_t i = 0; i < pointerCount; i++) { |
| if (mPointerProperties.itemAt(i).id == pointerId) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| void MotionEvent::offsetLocation(float xOffset, float yOffset) { |
| mXOffset += xOffset; |
| mYOffset += yOffset; |
| } |
| |
| void MotionEvent::scale(float scaleFactor) { |
| mXOffset *= scaleFactor; |
| mYOffset *= scaleFactor; |
| mXPrecision *= scaleFactor; |
| mYPrecision *= scaleFactor; |
| |
| size_t numSamples = mSamplePointerCoords.size(); |
| for (size_t i = 0; i < numSamples; i++) { |
| mSamplePointerCoords.editItemAt(i).scale(scaleFactor); |
| } |
| } |
| |
| #ifdef HAVE_ANDROID_OS |
| static inline float transformAngle(const SkMatrix* matrix, float angleRadians) { |
| // Construct and transform a vector oriented at the specified clockwise angle from vertical. |
| // Coordinate system: down is increasing Y, right is increasing X. |
| SkPoint vector; |
| vector.fX = SkFloatToScalar(sinf(angleRadians)); |
| vector.fY = SkFloatToScalar(-cosf(angleRadians)); |
| matrix->mapVectors(& vector, 1); |
| |
| // Derive the transformed vector's clockwise angle from vertical. |
| float result = atan2f(SkScalarToFloat(vector.fX), SkScalarToFloat(-vector.fY)); |
| if (result < - M_PI_2) { |
| result += M_PI; |
| } else if (result > M_PI_2) { |
| result -= M_PI; |
| } |
| return result; |
| } |
| |
| void MotionEvent::transform(const SkMatrix* matrix) { |
| float oldXOffset = mXOffset; |
| float oldYOffset = mYOffset; |
| |
| // The tricky part of this implementation is to preserve the value of |
| // rawX and rawY. So we apply the transformation to the first point |
| // then derive an appropriate new X/Y offset that will preserve rawX and rawY. |
| SkPoint point; |
| float rawX = getRawX(0); |
| float rawY = getRawY(0); |
| matrix->mapXY(SkFloatToScalar(rawX + oldXOffset), SkFloatToScalar(rawY + oldYOffset), |
| & point); |
| float newX = SkScalarToFloat(point.fX); |
| float newY = SkScalarToFloat(point.fY); |
| float newXOffset = newX - rawX; |
| float newYOffset = newY - rawY; |
| |
| mXOffset = newXOffset; |
| mYOffset = newYOffset; |
| |
| // Apply the transformation to all samples. |
| size_t numSamples = mSamplePointerCoords.size(); |
| for (size_t i = 0; i < numSamples; i++) { |
| PointerCoords& c = mSamplePointerCoords.editItemAt(i); |
| float x = c.getAxisValue(AMOTION_EVENT_AXIS_X) + oldXOffset; |
| float y = c.getAxisValue(AMOTION_EVENT_AXIS_Y) + oldYOffset; |
| matrix->mapXY(SkFloatToScalar(x), SkFloatToScalar(y), &point); |
| c.setAxisValue(AMOTION_EVENT_AXIS_X, SkScalarToFloat(point.fX) - newXOffset); |
| c.setAxisValue(AMOTION_EVENT_AXIS_Y, SkScalarToFloat(point.fY) - newYOffset); |
| |
| float orientation = c.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION); |
| c.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, transformAngle(matrix, orientation)); |
| } |
| } |
| |
| status_t MotionEvent::readFromParcel(Parcel* parcel) { |
| size_t pointerCount = parcel->readInt32(); |
| size_t sampleCount = parcel->readInt32(); |
| if (pointerCount == 0 || pointerCount > MAX_POINTERS || sampleCount == 0) { |
| return BAD_VALUE; |
| } |
| |
| mDeviceId = parcel->readInt32(); |
| mSource = parcel->readInt32(); |
| mAction = parcel->readInt32(); |
| mFlags = parcel->readInt32(); |
| mEdgeFlags = parcel->readInt32(); |
| mMetaState = parcel->readInt32(); |
| mButtonState = parcel->readInt32(); |
| mXOffset = parcel->readFloat(); |
| mYOffset = parcel->readFloat(); |
| mXPrecision = parcel->readFloat(); |
| mYPrecision = parcel->readFloat(); |
| mDownTime = parcel->readInt64(); |
| |
| mPointerProperties.clear(); |
| mPointerProperties.setCapacity(pointerCount); |
| mSampleEventTimes.clear(); |
| mSampleEventTimes.setCapacity(sampleCount); |
| mSamplePointerCoords.clear(); |
| mSamplePointerCoords.setCapacity(sampleCount * pointerCount); |
| |
| for (size_t i = 0; i < pointerCount; i++) { |
| mPointerProperties.push(); |
| PointerProperties& properties = mPointerProperties.editTop(); |
| properties.id = parcel->readInt32(); |
| properties.toolType = parcel->readInt32(); |
| } |
| |
| while (sampleCount-- > 0) { |
| mSampleEventTimes.push(parcel->readInt64()); |
| for (size_t i = 0; i < pointerCount; i++) { |
| mSamplePointerCoords.push(); |
| status_t status = mSamplePointerCoords.editTop().readFromParcel(parcel); |
| if (status) { |
| return status; |
| } |
| } |
| } |
| return OK; |
| } |
| |
| status_t MotionEvent::writeToParcel(Parcel* parcel) const { |
| size_t pointerCount = mPointerProperties.size(); |
| size_t sampleCount = mSampleEventTimes.size(); |
| |
| parcel->writeInt32(pointerCount); |
| parcel->writeInt32(sampleCount); |
| |
| parcel->writeInt32(mDeviceId); |
| parcel->writeInt32(mSource); |
| parcel->writeInt32(mAction); |
| parcel->writeInt32(mFlags); |
| parcel->writeInt32(mEdgeFlags); |
| parcel->writeInt32(mMetaState); |
| parcel->writeInt32(mButtonState); |
| parcel->writeFloat(mXOffset); |
| parcel->writeFloat(mYOffset); |
| parcel->writeFloat(mXPrecision); |
| parcel->writeFloat(mYPrecision); |
| parcel->writeInt64(mDownTime); |
| |
| for (size_t i = 0; i < pointerCount; i++) { |
| const PointerProperties& properties = mPointerProperties.itemAt(i); |
| parcel->writeInt32(properties.id); |
| parcel->writeInt32(properties.toolType); |
| } |
| |
| const PointerCoords* pc = mSamplePointerCoords.array(); |
| for (size_t h = 0; h < sampleCount; h++) { |
| parcel->writeInt64(mSampleEventTimes.itemAt(h)); |
| for (size_t i = 0; i < pointerCount; i++) { |
| status_t status = (pc++)->writeToParcel(parcel); |
| if (status) { |
| return status; |
| } |
| } |
| } |
| return OK; |
| } |
| #endif |
| |
| bool MotionEvent::isTouchEvent(int32_t source, int32_t action) { |
| if (source & AINPUT_SOURCE_CLASS_POINTER) { |
| // Specifically excludes HOVER_MOVE and SCROLL. |
| switch (action & AMOTION_EVENT_ACTION_MASK) { |
| case AMOTION_EVENT_ACTION_DOWN: |
| case AMOTION_EVENT_ACTION_MOVE: |
| case AMOTION_EVENT_ACTION_UP: |
| case AMOTION_EVENT_ACTION_POINTER_DOWN: |
| case AMOTION_EVENT_ACTION_POINTER_UP: |
| case AMOTION_EVENT_ACTION_CANCEL: |
| case AMOTION_EVENT_ACTION_OUTSIDE: |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| // --- PooledInputEventFactory --- |
| |
| PooledInputEventFactory::PooledInputEventFactory(size_t maxPoolSize) : |
| mMaxPoolSize(maxPoolSize) { |
| } |
| |
| PooledInputEventFactory::~PooledInputEventFactory() { |
| for (size_t i = 0; i < mKeyEventPool.size(); i++) { |
| delete mKeyEventPool.itemAt(i); |
| } |
| for (size_t i = 0; i < mMotionEventPool.size(); i++) { |
| delete mMotionEventPool.itemAt(i); |
| } |
| } |
| |
| KeyEvent* PooledInputEventFactory::createKeyEvent() { |
| if (!mKeyEventPool.isEmpty()) { |
| KeyEvent* event = mKeyEventPool.top(); |
| mKeyEventPool.pop(); |
| return event; |
| } |
| return new KeyEvent(); |
| } |
| |
| MotionEvent* PooledInputEventFactory::createMotionEvent() { |
| if (!mMotionEventPool.isEmpty()) { |
| MotionEvent* event = mMotionEventPool.top(); |
| mMotionEventPool.pop(); |
| return event; |
| } |
| return new MotionEvent(); |
| } |
| |
| void PooledInputEventFactory::recycle(InputEvent* event) { |
| switch (event->getType()) { |
| case AINPUT_EVENT_TYPE_KEY: |
| if (mKeyEventPool.size() < mMaxPoolSize) { |
| mKeyEventPool.push(static_cast<KeyEvent*>(event)); |
| return; |
| } |
| break; |
| case AINPUT_EVENT_TYPE_MOTION: |
| if (mMotionEventPool.size() < mMaxPoolSize) { |
| mMotionEventPool.push(static_cast<MotionEvent*>(event)); |
| return; |
| } |
| break; |
| } |
| delete event; |
| } |
| |
| |
| // --- VelocityTracker --- |
| |
| const uint32_t VelocityTracker::DEFAULT_DEGREE; |
| const nsecs_t VelocityTracker::DEFAULT_HORIZON; |
| const uint32_t VelocityTracker::HISTORY_SIZE; |
| |
| static inline float vectorDot(const float* a, const float* b, uint32_t m) { |
| float r = 0; |
| while (m--) { |
| r += *(a++) * *(b++); |
| } |
| return r; |
| } |
| |
| static inline float vectorNorm(const float* a, uint32_t m) { |
| float r = 0; |
| while (m--) { |
| float t = *(a++); |
| r += t * t; |
| } |
| return sqrtf(r); |
| } |
| |
| #if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY |
| static String8 vectorToString(const float* a, uint32_t m) { |
| String8 str; |
| str.append("["); |
| while (m--) { |
| str.appendFormat(" %f", *(a++)); |
| if (m) { |
| str.append(","); |
| } |
| } |
| str.append(" ]"); |
| return str; |
| } |
| |
| static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { |
| String8 str; |
| str.append("["); |
| for (size_t i = 0; i < m; i++) { |
| if (i) { |
| str.append(","); |
| } |
| str.append(" ["); |
| for (size_t j = 0; j < n; j++) { |
| if (j) { |
| str.append(","); |
| } |
| str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); |
| } |
| str.append(" ]"); |
| } |
| str.append(" ]"); |
| return str; |
| } |
| #endif |
| |
| VelocityTracker::VelocityTracker() { |
| clear(); |
| } |
| |
| void VelocityTracker::clear() { |
| mIndex = 0; |
| mMovements[0].idBits.clear(); |
| mActivePointerId = -1; |
| } |
| |
| void VelocityTracker::clearPointers(BitSet32 idBits) { |
| BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); |
| mMovements[mIndex].idBits = remainingIdBits; |
| |
| if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { |
| mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; |
| } |
| } |
| |
| void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { |
| if (++mIndex == HISTORY_SIZE) { |
| mIndex = 0; |
| } |
| |
| while (idBits.count() > MAX_POINTERS) { |
| idBits.clearLastMarkedBit(); |
| } |
| |
| Movement& movement = mMovements[mIndex]; |
| movement.eventTime = eventTime; |
| movement.idBits = idBits; |
| uint32_t count = idBits.count(); |
| for (uint32_t i = 0; i < count; i++) { |
| movement.positions[i] = positions[i]; |
| } |
| |
| if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { |
| mActivePointerId = count != 0 ? idBits.firstMarkedBit() : -1; |
| } |
| |
| #if DEBUG_VELOCITY |
| ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", |
| eventTime, idBits.value, mActivePointerId); |
| for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { |
| uint32_t id = iterBits.firstMarkedBit(); |
| uint32_t index = idBits.getIndexOfBit(id); |
| iterBits.clearBit(id); |
| Estimator estimator; |
| getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator); |
| ALOGD(" %d: position (%0.3f, %0.3f), " |
| "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", |
| id, positions[index].x, positions[index].y, |
| int(estimator.degree), |
| vectorToString(estimator.xCoeff, estimator.degree).string(), |
| vectorToString(estimator.yCoeff, estimator.degree).string(), |
| estimator.confidence); |
| } |
| #endif |
| } |
| |
| void VelocityTracker::addMovement(const MotionEvent* event) { |
| int32_t actionMasked = event->getActionMasked(); |
| |
| switch (actionMasked) { |
| case AMOTION_EVENT_ACTION_DOWN: |
| case AMOTION_EVENT_ACTION_HOVER_ENTER: |
| // Clear all pointers on down before adding the new movement. |
| clear(); |
| break; |
| case AMOTION_EVENT_ACTION_POINTER_DOWN: { |
| // Start a new movement trace for a pointer that just went down. |
| // We do this on down instead of on up because the client may want to query the |
| // final velocity for a pointer that just went up. |
| BitSet32 downIdBits; |
| downIdBits.markBit(event->getPointerId(event->getActionIndex())); |
| clearPointers(downIdBits); |
| break; |
| } |
| case AMOTION_EVENT_ACTION_MOVE: |
| case AMOTION_EVENT_ACTION_HOVER_MOVE: |
| break; |
| default: |
| // Ignore all other actions because they do not convey any new information about |
| // pointer movement. We also want to preserve the last known velocity of the pointers. |
| // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position |
| // of the pointers that went up. ACTION_POINTER_UP does include the new position of |
| // pointers that remained down but we will also receive an ACTION_MOVE with this |
| // information if any of them actually moved. Since we don't know how many pointers |
| // will be going up at once it makes sense to just wait for the following ACTION_MOVE |
| // before adding the movement. |
| return; |
| } |
| |
| size_t pointerCount = event->getPointerCount(); |
| if (pointerCount > MAX_POINTERS) { |
| pointerCount = MAX_POINTERS; |
| } |
| |
| BitSet32 idBits; |
| for (size_t i = 0; i < pointerCount; i++) { |
| idBits.markBit(event->getPointerId(i)); |
| } |
| |
| nsecs_t eventTime; |
| Position positions[pointerCount]; |
| |
| size_t historySize = event->getHistorySize(); |
| for (size_t h = 0; h < historySize; h++) { |
| eventTime = event->getHistoricalEventTime(h); |
| for (size_t i = 0; i < pointerCount; i++) { |
| positions[i].x = event->getHistoricalX(i, h); |
| positions[i].y = event->getHistoricalY(i, h); |
| } |
| addMovement(eventTime, idBits, positions); |
| } |
| |
| eventTime = event->getEventTime(); |
| for (size_t i = 0; i < pointerCount; i++) { |
| positions[i].x = event->getX(i); |
| positions[i].y = event->getY(i); |
| } |
| addMovement(eventTime, idBits, positions); |
| } |
| |
| /** |
| * Solves a linear least squares problem to obtain a N degree polynomial that fits |
| * the specified input data as nearly as possible. |
| * |
| * Returns true if a solution is found, false otherwise. |
| * |
| * The input consists of two vectors of data points X and Y with indices 0..m-1. |
| * The output is a vector B with indices 0..n-1 that describes a polynomial |
| * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n)) |
| * for all i between 0 and m-1 is minimized. |
| * |
| * That is to say, the function that generated the input data can be approximated |
| * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. |
| * |
| * The coefficient of determination (R^2) is also returned to describe the goodness |
| * of fit of the model for the given data. It is a value between 0 and 1, where 1 |
| * indicates perfect correspondence. |
| * |
| * This function first expands the X vector to a m by n matrix A such that |
| * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n. |
| * |
| * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q |
| * and an m by n upper triangular matrix R. Because R is upper triangular (lower |
| * part is all zeroes), we can simplify the decomposition into an m by n matrix |
| * Q1 and a n by n matrix R1 such that A = Q1 R1. |
| * |
| * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y) |
| * to find B. |
| * |
| * For efficiency, we lay out A and Q column-wise in memory because we frequently |
| * operate on the column vectors. Conversely, we lay out R row-wise. |
| * |
| * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares |
| * http://en.wikipedia.org/wiki/Gram-Schmidt |
| */ |
| static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n, |
| float* outB, float* outDet) { |
| #if DEBUG_LEAST_SQUARES |
| ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n), |
| vectorToString(x, m).string(), vectorToString(y, m).string()); |
| #endif |
| |
| // Expand the X vector to a matrix A. |
| float a[n][m]; // column-major order |
| for (uint32_t h = 0; h < m; h++) { |
| a[0][h] = 1; |
| for (uint32_t i = 1; i < n; i++) { |
| a[i][h] = a[i - 1][h] * x[h]; |
| } |
| } |
| #if DEBUG_LEAST_SQUARES |
| ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); |
| #endif |
| |
| // Apply the Gram-Schmidt process to A to obtain its QR decomposition. |
| float q[n][m]; // orthonormal basis, column-major order |
| float r[n][n]; // upper triangular matrix, row-major order |
| for (uint32_t j = 0; j < n; j++) { |
| for (uint32_t h = 0; h < m; h++) { |
| q[j][h] = a[j][h]; |
| } |
| for (uint32_t i = 0; i < j; i++) { |
| float dot = vectorDot(&q[j][0], &q[i][0], m); |
| for (uint32_t h = 0; h < m; h++) { |
| q[j][h] -= dot * q[i][h]; |
| } |
| } |
| |
| float norm = vectorNorm(&q[j][0], m); |
| if (norm < 0.000001f) { |
| // vectors are linearly dependent or zero so no solution |
| #if DEBUG_LEAST_SQUARES |
| ALOGD(" - no solution, norm=%f", norm); |
| #endif |
| return false; |
| } |
| |
| float invNorm = 1.0f / norm; |
| for (uint32_t h = 0; h < m; h++) { |
| q[j][h] *= invNorm; |
| } |
| for (uint32_t i = 0; i < n; i++) { |
| r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); |
| } |
| } |
| #if DEBUG_LEAST_SQUARES |
| ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); |
| ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); |
| |
| // calculate QR, if we factored A correctly then QR should equal A |
| float qr[n][m]; |
| for (uint32_t h = 0; h < m; h++) { |
| for (uint32_t i = 0; i < n; i++) { |
| qr[i][h] = 0; |
| for (uint32_t j = 0; j < n; j++) { |
| qr[i][h] += q[j][h] * r[j][i]; |
| } |
| } |
| } |
| ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); |
| #endif |
| |
| // Solve R B = Qt Y to find B. This is easy because R is upper triangular. |
| // We just work from bottom-right to top-left calculating B's coefficients. |
| for (uint32_t i = n; i-- != 0; ) { |
| outB[i] = vectorDot(&q[i][0], y, m); |
| for (uint32_t j = n - 1; j > i; j--) { |
| outB[i] -= r[i][j] * outB[j]; |
| } |
| outB[i] /= r[i][i]; |
| } |
| #if DEBUG_LEAST_SQUARES |
| ALOGD(" - b=%s", vectorToString(outB, n).string()); |
| #endif |
| |
| // Calculate the coefficient of determination as 1 - (SSerr / SStot) where |
| // SSerr is the residual sum of squares (squared variance of the error), |
| // and SStot is the total sum of squares (squared variance of the data). |
| float ymean = 0; |
| for (uint32_t h = 0; h < m; h++) { |
| ymean += y[h]; |
| } |
| ymean /= m; |
| |
| float sserr = 0; |
| float sstot = 0; |
| for (uint32_t h = 0; h < m; h++) { |
| float err = y[h] - outB[0]; |
| float term = 1; |
| for (uint32_t i = 1; i < n; i++) { |
| term *= x[h]; |
| err -= term * outB[i]; |
| } |
| sserr += err * err; |
| float var = y[h] - ymean; |
| sstot += var * var; |
| } |
| *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; |
| #if DEBUG_LEAST_SQUARES |
| ALOGD(" - sserr=%f", sserr); |
| ALOGD(" - sstot=%f", sstot); |
| ALOGD(" - det=%f", *outDet); |
| #endif |
| return true; |
| } |
| |
| bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { |
| Estimator estimator; |
| if (getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator)) { |
| if (estimator.degree >= 1) { |
| *outVx = estimator.xCoeff[1]; |
| *outVy = estimator.yCoeff[1]; |
| return true; |
| } |
| } |
| *outVx = 0; |
| *outVy = 0; |
| return false; |
| } |
| |
| bool VelocityTracker::getEstimator(uint32_t id, uint32_t degree, nsecs_t horizon, |
| Estimator* outEstimator) const { |
| outEstimator->clear(); |
| |
| // Iterate over movement samples in reverse time order and collect samples. |
| float x[HISTORY_SIZE]; |
| float y[HISTORY_SIZE]; |
| float time[HISTORY_SIZE]; |
| uint32_t m = 0; |
| uint32_t index = mIndex; |
| const Movement& newestMovement = mMovements[mIndex]; |
| do { |
| const Movement& movement = mMovements[index]; |
| if (!movement.idBits.hasBit(id)) { |
| break; |
| } |
| |
| nsecs_t age = newestMovement.eventTime - movement.eventTime; |
| if (age > horizon) { |
| break; |
| } |
| |
| const Position& position = movement.getPosition(id); |
| x[m] = position.x; |
| y[m] = position.y; |
| time[m] = -age * 0.000000001f; |
| index = (index == 0 ? HISTORY_SIZE : index) - 1; |
| } while (++m < HISTORY_SIZE); |
| |
| if (m == 0) { |
| return false; // no data |
| } |
| |
| // Calculate a least squares polynomial fit. |
| if (degree > Estimator::MAX_DEGREE) { |
| degree = Estimator::MAX_DEGREE; |
| } |
| if (degree > m - 1) { |
| degree = m - 1; |
| } |
| if (degree >= 1) { |
| float xdet, ydet; |
| uint32_t n = degree + 1; |
| if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet) |
| && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) { |
| outEstimator->degree = degree; |
| outEstimator->confidence = xdet * ydet; |
| #if DEBUG_LEAST_SQUARES |
| ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", |
| int(outEstimator->degree), |
| vectorToString(outEstimator->xCoeff, n).string(), |
| vectorToString(outEstimator->yCoeff, n).string(), |
| outEstimator->confidence); |
| #endif |
| return true; |
| } |
| } |
| |
| // No velocity data available for this pointer, but we do have its current position. |
| outEstimator->xCoeff[0] = x[0]; |
| outEstimator->yCoeff[0] = y[0]; |
| outEstimator->degree = 0; |
| outEstimator->confidence = 1; |
| return true; |
| } |
| |
| |
| // --- VelocityControl --- |
| |
| const nsecs_t VelocityControl::STOP_TIME; |
| |
| VelocityControl::VelocityControl() { |
| reset(); |
| } |
| |
| void VelocityControl::setParameters(const VelocityControlParameters& parameters) { |
| mParameters = parameters; |
| reset(); |
| } |
| |
| void VelocityControl::reset() { |
| mLastMovementTime = LLONG_MIN; |
| mRawPosition.x = 0; |
| mRawPosition.y = 0; |
| mVelocityTracker.clear(); |
| } |
| |
| void VelocityControl::move(nsecs_t eventTime, float* deltaX, float* deltaY) { |
| if ((deltaX && *deltaX) || (deltaY && *deltaY)) { |
| if (eventTime >= mLastMovementTime + STOP_TIME) { |
| #if DEBUG_ACCELERATION |
| ALOGD("VelocityControl: stopped, last movement was %0.3fms ago", |
| (eventTime - mLastMovementTime) * 0.000001f); |
| #endif |
| reset(); |
| } |
| |
| mLastMovementTime = eventTime; |
| if (deltaX) { |
| mRawPosition.x += *deltaX; |
| } |
| if (deltaY) { |
| mRawPosition.y += *deltaY; |
| } |
| mVelocityTracker.addMovement(eventTime, BitSet32(BitSet32::valueForBit(0)), &mRawPosition); |
| |
| float vx, vy; |
| float scale = mParameters.scale; |
| if (mVelocityTracker.getVelocity(0, &vx, &vy)) { |
| float speed = hypotf(vx, vy) * scale; |
| if (speed >= mParameters.highThreshold) { |
| // Apply full acceleration above the high speed threshold. |
| scale *= mParameters.acceleration; |
| } else if (speed > mParameters.lowThreshold) { |
| // Linearly interpolate the acceleration to apply between the low and high |
| // speed thresholds. |
| scale *= 1 + (speed - mParameters.lowThreshold) |
| / (mParameters.highThreshold - mParameters.lowThreshold) |
| * (mParameters.acceleration - 1); |
| } |
| |
| #if DEBUG_ACCELERATION |
| ALOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): " |
| "vx=%0.3f, vy=%0.3f, speed=%0.3f, accel=%0.3f", |
| mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold, |
| mParameters.acceleration, |
| vx, vy, speed, scale / mParameters.scale); |
| #endif |
| } else { |
| #if DEBUG_ACCELERATION |
| ALOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): unknown velocity", |
| mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold, |
| mParameters.acceleration); |
| #endif |
| } |
| |
| if (deltaX) { |
| *deltaX *= scale; |
| } |
| if (deltaY) { |
| *deltaY *= scale; |
| } |
| } |
| } |
| |
| } // namespace android |