| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <math.h> |
| |
| #include "Blur.h" |
| #include "MathUtils.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| // This constant approximates the scaling done in the software path's |
| // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). |
| static const float BLUR_SIGMA_SCALE = 0.57735f; |
| |
| float Blur::convertRadiusToSigma(float radius) { |
| return radius > 0 ? BLUR_SIGMA_SCALE * radius + 0.5f : 0.0f; |
| } |
| |
| float Blur::convertSigmaToRadius(float sigma) { |
| return sigma > 0.5f ? (sigma - 0.5f) / BLUR_SIGMA_SCALE : 0.0f; |
| } |
| |
| // if the original radius was on an integer boundary and the resulting radius |
| // is within the conversion error tolerance then we attempt to snap to the |
| // original integer boundary. |
| uint32_t Blur::convertRadiusToInt(float radius) { |
| const float radiusCeil = ceilf(radius); |
| if (MathUtils::areEqual(radiusCeil, radius)) { |
| return radiusCeil; |
| } |
| return radius; |
| } |
| |
| /** |
| * HWUI has used a slightly different equation than Skia to generate the value |
| * for sigma and to preserve compatibility we have kept that logic. |
| * |
| * Based on some experimental radius and sigma values we approximate the |
| * equation sigma = f(radius) as sigma = radius * 0.3 + 0.6. The larger the |
| * radius gets, the more our gaussian blur will resemble a box blur since with |
| * large sigma the gaussian curve begins to lose its shape. |
| */ |
| static float legacyConvertRadiusToSigma(float radius) { |
| return radius > 0 ? 0.3f * radius + 0.6f : 0.0f; |
| } |
| |
| void Blur::generateGaussianWeights(float* weights, float radius) { |
| int32_t intRadius = convertRadiusToInt(radius); |
| |
| // Compute gaussian weights for the blur |
| // e is the euler's number |
| static float e = 2.718281828459045f; |
| static float pi = 3.1415926535897932f; |
| // g(x) = ( 1 / sqrt( 2 * pi ) * sigma) * e ^ ( -x^2 / 2 * sigma^2 ) |
| // x is of the form [-radius .. 0 .. radius] |
| // and sigma varies with radius. |
| float sigma = legacyConvertRadiusToSigma(radius); |
| |
| // Now compute the coefficints |
| // We will store some redundant values to save some math during |
| // the blur calculations |
| // precompute some values |
| float coeff1 = 1.0f / (sqrt(2.0f * pi) * sigma); |
| float coeff2 = -1.0f / (2.0f * sigma * sigma); |
| |
| float normalizeFactor = 0.0f; |
| for (int32_t r = -intRadius; r <= intRadius; r++) { |
| float floatR = (float)r; |
| weights[r + intRadius] = coeff1 * pow(e, floatR * floatR * coeff2); |
| normalizeFactor += weights[r + intRadius]; |
| } |
| |
| // Now we need to normalize the weights because all our coefficients need to add up to one |
| normalizeFactor = 1.0f / normalizeFactor; |
| for (int32_t r = -intRadius; r <= intRadius; r++) { |
| weights[r + intRadius] *= normalizeFactor; |
| } |
| } |
| |
| void Blur::horizontal(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest, |
| int32_t width, int32_t height) { |
| float blurredPixel = 0.0f; |
| float currentPixel = 0.0f; |
| |
| for (int32_t y = 0; y < height; y++) { |
| const uint8_t* input = source + y * width; |
| uint8_t* output = dest + y * width; |
| |
| for (int32_t x = 0; x < width; x++) { |
| blurredPixel = 0.0f; |
| const float* gPtr = weights; |
| // Optimization for non-border pixels |
| if (x > radius && x < (width - radius)) { |
| const uint8_t* i = input + (x - radius); |
| for (int r = -radius; r <= radius; r++) { |
| currentPixel = (float)(*i); |
| blurredPixel += currentPixel * gPtr[0]; |
| gPtr++; |
| i++; |
| } |
| } else { |
| for (int32_t r = -radius; r <= radius; r++) { |
| // Stepping left and right away from the pixel |
| int validW = x + r; |
| if (validW < 0) { |
| validW = 0; |
| } |
| if (validW > width - 1) { |
| validW = width - 1; |
| } |
| |
| currentPixel = (float)input[validW]; |
| blurredPixel += currentPixel * gPtr[0]; |
| gPtr++; |
| } |
| } |
| *output = (uint8_t)blurredPixel; |
| output++; |
| } |
| } |
| } |
| |
| void Blur::vertical(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest, |
| int32_t width, int32_t height) { |
| float blurredPixel = 0.0f; |
| float currentPixel = 0.0f; |
| |
| for (int32_t y = 0; y < height; y++) { |
| uint8_t* output = dest + y * width; |
| |
| for (int32_t x = 0; x < width; x++) { |
| blurredPixel = 0.0f; |
| const float* gPtr = weights; |
| const uint8_t* input = source + x; |
| // Optimization for non-border pixels |
| if (y > radius && y < (height - radius)) { |
| const uint8_t* i = input + ((y - radius) * width); |
| for (int32_t r = -radius; r <= radius; r++) { |
| currentPixel = (float)(*i); |
| blurredPixel += currentPixel * gPtr[0]; |
| gPtr++; |
| i += width; |
| } |
| } else { |
| for (int32_t r = -radius; r <= radius; r++) { |
| int validH = y + r; |
| // Clamp to zero and width |
| if (validH < 0) { |
| validH = 0; |
| } |
| if (validH > height - 1) { |
| validH = height - 1; |
| } |
| |
| const uint8_t* i = input + validH * width; |
| currentPixel = (float)(*i); |
| blurredPixel += currentPixel * gPtr[0]; |
| gPtr++; |
| } |
| } |
| *output = (uint8_t)blurredPixel; |
| output++; |
| } |
| } |
| } |
| |
| }; // namespace uirenderer |
| }; // namespace android |