blob: 955ccb0017c7c1b26089e7e6b2965cf9f9085dd9 [file] [log] [blame] [edit]
// Copyright 2020 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package android
import (
"fmt"
"reflect"
"strconv"
"strings"
"testing"
)
func ExampleDepSet_ToList_postordered() {
a := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("a")).Build()
b := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("b")).Transitive(a).Build()
c := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("c")).Transitive(a).Build()
d := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("d")).Transitive(b, c).Build()
fmt.Println(d.ToList().Strings())
// Output: [a b c d]
}
func ExampleDepSet_ToList_preordered() {
a := NewDepSetBuilder(PREORDER).Direct(PathForTesting("a")).Build()
b := NewDepSetBuilder(PREORDER).Direct(PathForTesting("b")).Transitive(a).Build()
c := NewDepSetBuilder(PREORDER).Direct(PathForTesting("c")).Transitive(a).Build()
d := NewDepSetBuilder(PREORDER).Direct(PathForTesting("d")).Transitive(b, c).Build()
fmt.Println(d.ToList().Strings())
// Output: [d b a c]
}
func ExampleDepSet_ToList_topological() {
a := NewDepSetBuilder(TOPOLOGICAL).Direct(PathForTesting("a")).Build()
b := NewDepSetBuilder(TOPOLOGICAL).Direct(PathForTesting("b")).Transitive(a).Build()
c := NewDepSetBuilder(TOPOLOGICAL).Direct(PathForTesting("c")).Transitive(a).Build()
d := NewDepSetBuilder(TOPOLOGICAL).Direct(PathForTesting("d")).Transitive(b, c).Build()
fmt.Println(d.ToList().Strings())
// Output: [d b c a]
}
func ExampleDepSet_ToSortedList() {
a := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("a")).Build()
b := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("b")).Transitive(a).Build()
c := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("c")).Transitive(a).Build()
d := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("d")).Transitive(b, c).Build()
fmt.Println(d.ToSortedList().Strings())
// Output: [a b c d]
}
// Tests based on Bazel's ExpanderTestBase.java to ensure compatibility
// https://github.com/bazelbuild/bazel/blob/master/src/test/java/com/google/devtools/build/lib/collect/nestedset/ExpanderTestBase.java
func TestDepSet(t *testing.T) {
a := PathForTesting("a")
b := PathForTesting("b")
c := PathForTesting("c")
c2 := PathForTesting("c2")
d := PathForTesting("d")
e := PathForTesting("e")
tests := []struct {
name string
depSet func(t *testing.T, order DepSetOrder) *DepSet
postorder, preorder, topological []string
}{
{
name: "simple",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
return NewDepSet(order, Paths{c, a, b}, nil)
},
postorder: []string{"c", "a", "b"},
preorder: []string{"c", "a", "b"},
topological: []string{"c", "a", "b"},
},
{
name: "simpleNoDuplicates",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
return NewDepSet(order, Paths{c, a, a, a, b}, nil)
},
postorder: []string{"c", "a", "b"},
preorder: []string{"c", "a", "b"},
topological: []string{"c", "a", "b"},
},
{
name: "nesting",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
subset := NewDepSet(order, Paths{c, a, e}, nil)
return NewDepSet(order, Paths{b, d}, []*DepSet{subset})
},
postorder: []string{"c", "a", "e", "b", "d"},
preorder: []string{"b", "d", "c", "a", "e"},
topological: []string{"b", "d", "c", "a", "e"},
},
{
name: "builderReuse",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
assertEquals := func(t *testing.T, w, g Paths) {
t.Helper()
if !reflect.DeepEqual(w, g) {
t.Errorf("want %q, got %q", w, g)
}
}
builder := NewDepSetBuilder(order)
assertEquals(t, nil, builder.Build().ToList())
builder.Direct(b)
assertEquals(t, Paths{b}, builder.Build().ToList())
builder.Direct(d)
assertEquals(t, Paths{b, d}, builder.Build().ToList())
child := NewDepSetBuilder(order).Direct(c, a, e).Build()
builder.Transitive(child)
return builder.Build()
},
postorder: []string{"c", "a", "e", "b", "d"},
preorder: []string{"b", "d", "c", "a", "e"},
topological: []string{"b", "d", "c", "a", "e"},
},
{
name: "builderChaining",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
return NewDepSetBuilder(order).Direct(b).Direct(d).
Transitive(NewDepSetBuilder(order).Direct(c, a, e).Build()).Build()
},
postorder: []string{"c", "a", "e", "b", "d"},
preorder: []string{"b", "d", "c", "a", "e"},
topological: []string{"b", "d", "c", "a", "e"},
},
{
name: "transitiveDepsHandledSeparately",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
subset := NewDepSetBuilder(order).Direct(c, a, e).Build()
builder := NewDepSetBuilder(order)
// The fact that we add the transitive subset between the Direct(b) and Direct(d)
// calls should not change the result.
builder.Direct(b)
builder.Transitive(subset)
builder.Direct(d)
return builder.Build()
},
postorder: []string{"c", "a", "e", "b", "d"},
preorder: []string{"b", "d", "c", "a", "e"},
topological: []string{"b", "d", "c", "a", "e"},
},
{
name: "nestingNoDuplicates",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
subset := NewDepSetBuilder(order).Direct(c, a, e).Build()
return NewDepSetBuilder(order).Direct(b, d, e).Transitive(subset).Build()
},
postorder: []string{"c", "a", "e", "b", "d"},
preorder: []string{"b", "d", "e", "c", "a"},
topological: []string{"b", "d", "c", "a", "e"},
},
{
name: "chain",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
c := NewDepSetBuilder(order).Direct(c).Build()
b := NewDepSetBuilder(order).Direct(b).Transitive(c).Build()
a := NewDepSetBuilder(order).Direct(a).Transitive(b).Build()
return a
},
postorder: []string{"c", "b", "a"},
preorder: []string{"a", "b", "c"},
topological: []string{"a", "b", "c"},
},
{
name: "diamond",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
d := NewDepSetBuilder(order).Direct(d).Build()
c := NewDepSetBuilder(order).Direct(c).Transitive(d).Build()
b := NewDepSetBuilder(order).Direct(b).Transitive(d).Build()
a := NewDepSetBuilder(order).Direct(a).Transitive(b).Transitive(c).Build()
return a
},
postorder: []string{"d", "b", "c", "a"},
preorder: []string{"a", "b", "d", "c"},
topological: []string{"a", "b", "c", "d"},
},
{
name: "extendedDiamond",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
d := NewDepSetBuilder(order).Direct(d).Build()
e := NewDepSetBuilder(order).Direct(e).Build()
b := NewDepSetBuilder(order).Direct(b).Transitive(d).Transitive(e).Build()
c := NewDepSetBuilder(order).Direct(c).Transitive(e).Transitive(d).Build()
a := NewDepSetBuilder(order).Direct(a).Transitive(b).Transitive(c).Build()
return a
},
postorder: []string{"d", "e", "b", "c", "a"},
preorder: []string{"a", "b", "d", "e", "c"},
topological: []string{"a", "b", "c", "e", "d"},
},
{
name: "extendedDiamondRightArm",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
d := NewDepSetBuilder(order).Direct(d).Build()
e := NewDepSetBuilder(order).Direct(e).Build()
b := NewDepSetBuilder(order).Direct(b).Transitive(d).Transitive(e).Build()
c2 := NewDepSetBuilder(order).Direct(c2).Transitive(e).Transitive(d).Build()
c := NewDepSetBuilder(order).Direct(c).Transitive(c2).Build()
a := NewDepSetBuilder(order).Direct(a).Transitive(b).Transitive(c).Build()
return a
},
postorder: []string{"d", "e", "b", "c2", "c", "a"},
preorder: []string{"a", "b", "d", "e", "c", "c2"},
topological: []string{"a", "b", "c", "c2", "e", "d"},
},
{
name: "orderConflict",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
child1 := NewDepSetBuilder(order).Direct(a, b).Build()
child2 := NewDepSetBuilder(order).Direct(b, a).Build()
parent := NewDepSetBuilder(order).Transitive(child1).Transitive(child2).Build()
return parent
},
postorder: []string{"a", "b"},
preorder: []string{"a", "b"},
topological: []string{"b", "a"},
},
{
name: "orderConflictNested",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
a := NewDepSetBuilder(order).Direct(a).Build()
b := NewDepSetBuilder(order).Direct(b).Build()
child1 := NewDepSetBuilder(order).Transitive(a).Transitive(b).Build()
child2 := NewDepSetBuilder(order).Transitive(b).Transitive(a).Build()
parent := NewDepSetBuilder(order).Transitive(child1).Transitive(child2).Build()
return parent
},
postorder: []string{"a", "b"},
preorder: []string{"a", "b"},
topological: []string{"b", "a"},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
t.Run("postorder", func(t *testing.T) {
depSet := tt.depSet(t, POSTORDER)
if g, w := depSet.ToList().Strings(), tt.postorder; !reflect.DeepEqual(g, w) {
t.Errorf("expected ToList() = %q, got %q", w, g)
}
})
t.Run("preorder", func(t *testing.T) {
depSet := tt.depSet(t, PREORDER)
if g, w := depSet.ToList().Strings(), tt.preorder; !reflect.DeepEqual(g, w) {
t.Errorf("expected ToList() = %q, got %q", w, g)
}
})
t.Run("topological", func(t *testing.T) {
depSet := tt.depSet(t, TOPOLOGICAL)
if g, w := depSet.ToList().Strings(), tt.topological; !reflect.DeepEqual(g, w) {
t.Errorf("expected ToList() = %q, got %q", w, g)
}
})
})
}
}
func TestDepSetInvalidOrder(t *testing.T) {
orders := []DepSetOrder{POSTORDER, PREORDER, TOPOLOGICAL}
run := func(t *testing.T, order1, order2 DepSetOrder) {
defer func() {
if r := recover(); r != nil {
if err, ok := r.(error); !ok {
t.Fatalf("expected panic error, got %v", err)
} else if !strings.Contains(err.Error(), "incompatible order") {
t.Fatalf("expected incompatible order error, got %v", err)
}
}
}()
NewDepSet(order1, nil, []*DepSet{NewDepSet(order2, nil, nil)})
t.Fatal("expected panic")
}
for _, order1 := range orders {
t.Run(order1.String(), func(t *testing.T) {
for _, order2 := range orders {
t.Run(order2.String(), func(t *testing.T) {
if order1 != order2 {
run(t, order1, order2)
}
})
}
})
}
}
func Test_firstUnique(t *testing.T) {
f := func(t *testing.T, imp func([]string) []string, in, want []string) {
t.Helper()
out := imp(in)
if !reflect.DeepEqual(out, want) {
t.Errorf("incorrect output:")
t.Errorf(" input: %#v", in)
t.Errorf(" expected: %#v", want)
t.Errorf(" got: %#v", out)
}
}
for _, testCase := range firstUniqueStringsTestCases {
t.Run("list", func(t *testing.T) {
f(t, func(s []string) []string {
return firstUniqueList(s).([]string)
}, testCase.in, testCase.out)
})
t.Run("map", func(t *testing.T) {
f(t, func(s []string) []string {
return firstUniqueMap(s).([]string)
}, testCase.in, testCase.out)
})
}
}
func Benchmark_firstUnique(b *testing.B) {
implementations := []struct {
name string
f func([]string) []string
}{
{
name: "list",
f: func(slice []string) []string {
return firstUniqueList(slice).([]string)
},
},
{
name: "map",
f: func(slice []string) []string {
return firstUniqueMap(slice).([]string)
},
},
{
name: "optimal",
f: func(slice []string) []string {
return firstUnique(slice).([]string)
},
},
}
const maxSize = 1024
uniqueStrings := make([]string, maxSize)
for i := range uniqueStrings {
uniqueStrings[i] = strconv.Itoa(i)
}
sameString := make([]string, maxSize)
for i := range sameString {
sameString[i] = uniqueStrings[0]
}
f := func(b *testing.B, imp func([]string) []string, s []string) {
for i := 0; i < b.N; i++ {
b.ReportAllocs()
s = append([]string(nil), s...)
imp(s)
}
}
for n := 1; n <= maxSize; n <<= 1 {
b.Run(strconv.Itoa(n), func(b *testing.B) {
for _, implementation := range implementations {
b.Run(implementation.name, func(b *testing.B) {
b.Run("same", func(b *testing.B) {
f(b, implementation.f, sameString[:n])
})
b.Run("unique", func(b *testing.B) {
f(b, implementation.f, uniqueStrings[:n])
})
})
}
})
}
}