blob: 003f2de222294928c79fdbdcb1d9a0d46ac1d4fc [file] [log] [blame]
// Copyright 2019 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package java
import (
"path/filepath"
"strings"
"android/soong/android"
"android/soong/dexpreopt"
"github.com/google/blueprint/proptools"
)
// =================================================================================================
// WIP - see http://b/177892522 for details
//
// The build support for boot images is currently being migrated away from singleton to modules so
// the documentation may not be strictly accurate. Rather than update the documentation at every
// step which will create a lot of churn the changes that have been made will be listed here and the
// documentation will be updated once it is closer to the final result.
//
// Changes:
// 1) dex_bootjars is now a singleton module and not a plain singleton.
// 2) Boot images are now represented by the boot_image module type.
// 3) The art boot image is called "art-boot-image", the framework boot image is called
// "framework-boot-image".
// 4) They are defined in art/build/boot/Android.bp and frameworks/base/boot/Android.bp
// respectively.
// 5) Each boot_image retrieves the appropriate boot image configuration from the map returned by
// genBootImageConfigs() using the image_name specified in the boot_image module.
// =================================================================================================
// This comment describes:
// 1. ART boot images in general (their types, structure, file layout, etc.)
// 2. build system support for boot images
//
// 1. ART boot images
// ------------------
//
// A boot image in ART is a set of files that contain AOT-compiled native code and a heap snapshot
// of AOT-initialized classes for the bootclasspath Java libraries. A boot image is compiled from a
// set of DEX jars by the dex2oat compiler. A boot image is used for two purposes: 1) it is
// installed on device and loaded at runtime, and 2) other Java libraries and apps are compiled
// against it (compilation may take place either on host, known as "dexpreopt", or on device, known
// as "dexopt").
//
// A boot image is not a single file, but a collection of interrelated files. Each boot image has a
// number of components that correspond to the Java libraries that constitute it. For each component
// there are multiple files:
// - *.oat or *.odex file with native code (architecture-specific, one per instruction set)
// - *.art file with pre-initialized Java classes (architecture-specific, one per instruction set)
// - *.vdex file with verification metadata for the DEX bytecode (architecture independent)
//
// *.vdex files for the boot images do not contain the DEX bytecode itself, because the
// bootclasspath DEX files are stored on disk in uncompressed and aligned form. Consequently a boot
// image is not self-contained and cannot be used without its DEX files. To simplify the management
// of boot image files, ART uses a certain naming scheme and associates the following metadata with
// each boot image:
// - A stem, which is a symbolic name that is prepended to boot image file names.
// - A location (on-device path to the boot image files).
// - A list of boot image locations (on-device paths to dependency boot images).
// - A set of DEX locations (on-device paths to the DEX files, one location for one DEX file used
// to compile the boot image).
//
// There are two kinds of boot images:
// - primary boot images
// - boot image extensions
//
// 1.1. Primary boot images
// ------------------------
//
// A primary boot image is compiled for a core subset of bootclasspath Java libraries. It does not
// depend on any other images, and other boot images may depend on it.
//
// For example, assuming that the stem is "boot", the location is /apex/com.android.art/javalib/,
// the set of core bootclasspath libraries is A B C, and the boot image is compiled for ARM targets
// (32 and 64 bits), it will have three components with the following files:
// - /apex/com.android.art/javalib/{arm,arm64}/boot.{art,oat,vdex}
// - /apex/com.android.art/javalib/{arm,arm64}/boot-B.{art,oat,vdex}
// - /apex/com.android.art/javalib/{arm,arm64}/boot-C.{art,oat,vdex}
//
// The files of the first component are special: they do not have the component name appended after
// the stem. This naming convention dates back to the times when the boot image was not split into
// components, and there were just boot.oat and boot.art. The decision to split was motivated by
// licensing reasons for one of the bootclasspath libraries.
//
// As of November 2020 the only primary boot image in Android is the image in the ART APEX
// com.android.art. The primary ART boot image contains the Core libraries that are part of the ART
// module. When the ART module gets updated, the primary boot image will be updated with it, and all
// dependent images will get invalidated (the checksum of the primary image stored in dependent
// images will not match), unless they are updated in sync with the ART module.
//
// 1.2. Boot image extensions
// --------------------------
//
// A boot image extension is compiled for a subset of bootclasspath Java libraries (in particular,
// this subset does not include the Core bootclasspath libraries that go into the primary boot
// image). A boot image extension depends on the primary boot image and optionally some other boot
// image extensions. Other images may depend on it. In other words, boot image extensions can form
// acyclic dependency graphs.
//
// The motivation for boot image extensions comes from the Mainline project. Consider a situation
// when the list of bootclasspath libraries is A B C, and both A and B are parts of the Android
// platform, but C is part of an updatable APEX com.android.C. When the APEX is updated, the Java
// code for C might have changed compared to the code that was used to compile the boot image.
// Consequently, the whole boot image is obsolete and invalidated (even though the code for A and B
// that does not depend on C is up to date). To avoid this, the original monolithic boot image is
// split in two parts: the primary boot image that contains A B, and the boot image extension that
// contains C and depends on the primary boot image (extends it).
//
// For example, assuming that the stem is "boot", the location is /system/framework, the set of
// bootclasspath libraries is D E (where D is part of the platform and is located in
// /system/framework, and E is part of a non-updatable APEX com.android.E and is located in
// /apex/com.android.E/javalib), and the boot image is compiled for ARM targets (32 and 64 bits),
// it will have two components with the following files:
// - /system/framework/{arm,arm64}/boot-D.{art,oat,vdex}
// - /system/framework/{arm,arm64}/boot-E.{art,oat,vdex}
//
// As of November 2020 the only boot image extension in Android is the Framework boot image
// extension. It extends the primary ART boot image and contains Framework libraries and other
// bootclasspath libraries from the platform and non-updatable APEXes that are not included in the
// ART image. The Framework boot image extension is updated together with the platform. In the
// future other boot image extensions may be added for some updatable modules.
//
//
// 2. Build system support for boot images
// ---------------------------------------
//
// The primary ART boot image needs to be compiled with one dex2oat invocation that depends on DEX
// jars for the core libraries. Framework boot image extension needs to be compiled with one dex2oat
// invocation that depends on the primary ART boot image and all bootclasspath DEX jars except the
// core libraries as they are already part of the primary ART boot image.
//
// 2.1. Libraries that go in the boot images
// -----------------------------------------
//
// The contents of each boot image are determined by the PRODUCT variables. The primary ART APEX
// boot image contains libraries listed in the ART_APEX_JARS variable in the AOSP makefiles. The
// Framework boot image extension contains libraries specified in the PRODUCT_BOOT_JARS and
// PRODUCT_BOOT_JARS_EXTRA variables. The AOSP makefiles specify some common Framework libraries,
// but more product-specific libraries can be added in the product makefiles.
//
// Each component of the PRODUCT_BOOT_JARS and PRODUCT_BOOT_JARS_EXTRA variables is a
// colon-separated pair <apex>:<library>, where <apex> is the variant name of a non-updatable APEX,
// "platform" if the library is a part of the platform in the system partition, or "system_ext" if
// it's in the system_ext partition.
//
// In these variables APEXes are identified by their "variant names", i.e. the names they get
// mounted as in /apex on device. In Soong modules that is the name set in the "apex_name"
// properties, which default to the "name" values. For example, many APEXes have both
// com.android.xxx and com.google.android.xxx modules in Soong, but take the same place
// /apex/com.android.xxx at runtime. In these cases the variant name is always com.android.xxx,
// regardless which APEX goes into the product. See also android.ApexInfo.ApexVariationName and
// apex.apexBundleProperties.Apex_name.
//
// A related variable PRODUCT_APEX_BOOT_JARS contains bootclasspath libraries that are in APEXes.
// They are not included in the boot image. The only exception here are ART jars and core-icu4j.jar
// that have been historically part of the boot image and are now in apexes; they are in boot images
// and core-icu4j.jar is generally treated as being part of PRODUCT_BOOT_JARS.
//
// One exception to the above rules are "coverage" builds (a special build flavor which requires
// setting environment variable EMMA_INSTRUMENT_FRAMEWORK=true). In coverage builds the Java code in
// boot image libraries is instrumented, which means that the instrumentation library (jacocoagent)
// needs to be added to the list of bootclasspath DEX jars.
//
// In general, there is a requirement that the source code for a boot image library must be
// available at build time (e.g. it cannot be a stub that has a separate implementation library).
//
// 2.2. Static configs
// -------------------
//
// Because boot images are used to dexpreopt other Java modules, the paths to boot image files must
// be known by the time dexpreopt build rules for the dependent modules are generated. Boot image
// configs are constructed very early during the build, before build rule generation. The configs
// provide predefined paths to boot image files (these paths depend only on static build
// configuration, such as PRODUCT variables, and use hard-coded directory names).
//
// 2.3. Singleton
// --------------
//
// Build rules for the boot images are generated with a Soong singleton. Because a singleton has no
// dependencies on other modules, it has to find the modules for the DEX jars using VisitAllModules.
// Soong loops through all modules and compares each module against a list of bootclasspath library
// names. Then it generates build rules that copy DEX jars from their intermediate module-specific
// locations to the hard-coded locations predefined in the boot image configs.
//
// It would be possible to use a module with proper dependencies instead, but that would require
// changes in the way Soong generates variables for Make: a singleton can use one MakeVars() method
// that writes variables to out/soong/make_vars-*.mk, which is included early by the main makefile,
// but module(s) would have to use out/soong/Android-*.mk which has a group of LOCAL_* variables
// for each module, and is included later.
//
// 2.4. Install rules
// ------------------
//
// The primary boot image and the Framework extension are installed in different ways. The primary
// boot image is part of the ART APEX: it is copied into the APEX intermediate files, packaged
// together with other APEX contents, extracted and mounted on device. The Framework boot image
// extension is installed by the rules defined in makefiles (make/core/dex_preopt_libart.mk). Soong
// writes out a few DEXPREOPT_IMAGE_* variables for Make; these variables contain boot image names,
// paths and so on.
//
var artApexNames = []string{
"com.android.art",
"com.android.art.debug",
"com.android.art.testing",
"com.google.android.art",
"com.google.android.art.debug",
"com.google.android.art.testing",
}
var (
dexpreoptBootJarDepTag = bootclasspathDependencyTag{name: "dexpreopt-boot-jar"}
dexBootJarsFragmentsKey = android.NewOnceKey("dexBootJarsFragments")
)
func init() {
RegisterDexpreoptBootJarsComponents(android.InitRegistrationContext)
}
// Target-independent description of a boot image.
//
// WARNING: All fields in this struct should be initialized in the genBootImageConfigs function.
// Failure to do so can lead to data races if there is no synchronization enforced ordering between
// the writer and the reader. Fields which break this rule are marked as deprecated and should be
// removed and replaced with something else, e.g. providers.
type bootImageConfig struct {
// If this image is an extension, the image that it extends.
extends *bootImageConfig
// Image name (used in directory names and ninja rule names).
name string
// If the module with the given name exists, this config is enabled.
enabledIfExists string
// Basename of the image: the resulting filenames are <stem>[-<jar>].{art,oat,vdex}.
stem string
// Output directory for the image files.
dir android.OutputPath
// Output directory for the image files with debug symbols.
symbolsDir android.OutputPath
// The relative location where the image files are installed. On host, the location is relative to
// $ANDROID_PRODUCT_OUT.
//
// Only the configs that are built by platform_bootclasspath are installable on device. On device,
// the location is relative to "/".
installDir string
// A list of (location, jar) pairs for the Java modules in this image.
modules android.ConfiguredJarList
// File paths to jars.
dexPaths android.WritablePaths // for this image
dexPathsDeps android.WritablePaths // for the dependency images and in this image
// Map from module name (without prebuilt_ prefix) to the predefined build path.
dexPathsByModule map[string]android.WritablePath
// File path to a zip archive with all image files (or nil, if not needed).
zip android.WritablePath
// Rules which should be used in make to install the outputs.
//
// Deprecated: Not initialized correctly, see struct comment.
profileInstalls android.RuleBuilderInstalls
// Path to the license metadata file for the module that built the profile.
//
// Deprecated: Not initialized correctly, see struct comment.
profileLicenseMetadataFile android.OptionalPath
// Target-dependent fields.
variants []*bootImageVariant
// Path of the preloaded classes file.
preloadedClassesFile string
// The "--compiler-filter" argument.
compilerFilter string
// The "--single-image" argument.
singleImage bool
// Profiles imported from APEXes, in addition to the profile at the default path. Each entry must
// be the name of an APEX module.
profileImports []string
}
// Target-dependent description of a boot image.
//
// WARNING: The warning comment on bootImageConfig applies here too.
type bootImageVariant struct {
*bootImageConfig
// Target for which the image is generated.
target android.Target
// The "locations" of jars.
dexLocations []string // for this image
dexLocationsDeps []string // for the dependency images and in this image
// Paths to image files.
imagePathOnHost android.OutputPath // first image file path on host
imagePathOnDevice string // first image file path on device
// All the files that constitute this image variant, i.e. .art, .oat and .vdex files.
imagesDeps android.OutputPaths
// The path to the base image variant's imagePathOnHost field, where base image variant
// means the image variant that this extends.
//
// This is only set for a variant of an image that extends another image.
baseImages android.OutputPaths
// The paths to the base image variant's imagesDeps field, where base image variant
// means the image variant that this extends.
//
// This is only set for a variant of an image that extends another image.
baseImagesDeps android.Paths
// Rules which should be used in make to install the outputs on host.
//
// Deprecated: Not initialized correctly, see struct comment.
installs android.RuleBuilderInstalls
// Rules which should be used in make to install the vdex outputs on host.
//
// Deprecated: Not initialized correctly, see struct comment.
vdexInstalls android.RuleBuilderInstalls
// Rules which should be used in make to install the unstripped outputs on host.
//
// Deprecated: Not initialized correctly, see struct comment.
unstrippedInstalls android.RuleBuilderInstalls
// Path to the license metadata file for the module that built the image.
//
// Deprecated: Not initialized correctly, see struct comment.
licenseMetadataFile android.OptionalPath
}
// Get target-specific boot image variant for the given boot image config and target.
func (image bootImageConfig) getVariant(target android.Target) *bootImageVariant {
for _, variant := range image.variants {
if variant.target.Os == target.Os && variant.target.Arch.ArchType == target.Arch.ArchType {
return variant
}
}
return nil
}
// Return any (the first) variant which is for the device (as opposed to for the host).
func (image bootImageConfig) getAnyAndroidVariant() *bootImageVariant {
for _, variant := range image.variants {
if variant.target.Os == android.Android {
return variant
}
}
return nil
}
// Return the name of a boot image module given a boot image config and a component (module) index.
// A module name is a combination of the Java library name, and the boot image stem (that is stored
// in the config).
func (image bootImageConfig) moduleName(ctx android.PathContext, idx int) string {
// The first module of the primary boot image is special: its module name has only the stem, but
// not the library name. All other module names are of the form <stem>-<library name>
m := image.modules.Jar(idx)
name := image.stem
if idx != 0 || image.extends != nil {
name += "-" + android.ModuleStem(ctx.Config(), image.modules.Apex(idx), m)
}
return name
}
// Return the name of the first boot image module, or stem if the list of modules is empty.
func (image bootImageConfig) firstModuleNameOrStem(ctx android.PathContext) string {
if image.modules.Len() > 0 {
return image.moduleName(ctx, 0)
} else {
return image.stem
}
}
// Return filenames for the given boot image component, given the output directory and a list of
// extensions.
func (image bootImageConfig) moduleFiles(ctx android.PathContext, dir android.OutputPath, exts ...string) android.OutputPaths {
ret := make(android.OutputPaths, 0, image.modules.Len()*len(exts))
for i := 0; i < image.modules.Len(); i++ {
name := image.moduleName(ctx, i)
for _, ext := range exts {
ret = append(ret, dir.Join(ctx, name+ext))
}
if image.singleImage {
break
}
}
return ret
}
// apexVariants returns a list of all *bootImageVariant that could be included in an apex.
func (image *bootImageConfig) apexVariants() []*bootImageVariant {
variants := []*bootImageVariant{}
for _, variant := range image.variants {
// We also generate boot images for host (for testing), but we don't need those in the apex.
// TODO(b/177892522) - consider changing this to check Os.OsClass = android.Device
if variant.target.Os == android.Android {
variants = append(variants, variant)
}
}
return variants
}
// Return boot image locations (as a list of symbolic paths).
//
// The image "location" is a symbolic path that, with multiarchitecture support, doesn't really
// exist on the device. Typically it is /apex/com.android.art/javalib/boot.art and should be the
// same for all supported architectures on the device. The concrete architecture specific files
// actually end up in architecture-specific sub-directory such as arm, arm64, x86, or x86_64.
//
// For example a physical file /apex/com.android.art/javalib/x86/boot.art has "image location"
// /apex/com.android.art/javalib/boot.art (which is not an actual file).
//
// For a primary boot image the list of locations has a single element.
//
// For a boot image extension the list of locations contains a location for all dependency images
// (including the primary image) and the location of the extension itself. For example, for the
// Framework boot image extension that depends on the primary ART boot image the list contains two
// elements.
//
// The location is passed as an argument to the ART tools like dex2oat instead of the real path.
// ART tools will then reconstruct the architecture-specific real path.
func (image *bootImageVariant) imageLocations() (imageLocationsOnHost []string, imageLocationsOnDevice []string) {
if image.extends != nil {
imageLocationsOnHost, imageLocationsOnDevice = image.extends.getVariant(image.target).imageLocations()
}
return append(imageLocationsOnHost, dexpreopt.PathToLocation(image.imagePathOnHost, image.target.Arch.ArchType)),
append(imageLocationsOnDevice, dexpreopt.PathStringToLocation(image.imagePathOnDevice, image.target.Arch.ArchType))
}
func (image *bootImageConfig) isProfileGuided() bool {
return image.compilerFilter == "speed-profile"
}
func (image *bootImageConfig) isEnabled(ctx android.BaseModuleContext) bool {
return ctx.OtherModuleExists(image.enabledIfExists)
}
func dexpreoptBootJarsFactory() android.SingletonModule {
m := &dexpreoptBootJars{}
android.InitAndroidArchModule(m, android.DeviceSupported, android.MultilibCommon)
return m
}
func RegisterDexpreoptBootJarsComponents(ctx android.RegistrationContext) {
ctx.RegisterParallelSingletonModuleType("dex_bootjars", dexpreoptBootJarsFactory)
ctx.FinalDepsMutators(func(ctx android.RegisterMutatorsContext) {
ctx.BottomUp("dex_bootjars_deps", DexpreoptBootJarsMutator).Parallel()
})
}
func SkipDexpreoptBootJars(ctx android.PathContext) bool {
global := dexpreopt.GetGlobalConfig(ctx)
return global.DisablePreoptBootImages || !shouldBuildBootImages(ctx.Config(), global)
}
// Singleton module for generating boot image build rules.
type dexpreoptBootJars struct {
android.SingletonModuleBase
// Default boot image config (currently always the Framework boot image extension). It should be
// noted that JIT-Zygote builds use ART APEX image instead of the Framework boot image extension,
// but the switch is handled not here, but in the makefiles (triggered with
// DEXPREOPT_USE_ART_IMAGE=true).
defaultBootImage *bootImageConfig
// Other boot image configs (currently the list contains only the primary ART APEX image. It
// used to contain an experimental JIT-Zygote image (now replaced with the ART APEX image). In
// the future other boot image extensions may be added.
otherImages []*bootImageConfig
// Build path to a config file that Soong writes for Make (to be used in makefiles that install
// the default boot image).
dexpreoptConfigForMake android.WritablePath
}
func DexpreoptBootJarsMutator(ctx android.BottomUpMutatorContext) {
if _, ok := ctx.Module().(*dexpreoptBootJars); !ok {
return
}
if dexpreopt.IsDex2oatNeeded(ctx) {
// Add a dependency onto the dex2oat tool which is needed for creating the boot image. The
// path is retrieved from the dependency by GetGlobalSoongConfig(ctx).
dexpreopt.RegisterToolDeps(ctx)
}
imageConfigs := genBootImageConfigs(ctx)
for _, config := range imageConfigs {
if !config.isEnabled(ctx) {
continue
}
// For accessing the boot jars.
addDependenciesOntoBootImageModules(ctx, config.modules, dexpreoptBootJarDepTag)
}
if ctx.OtherModuleExists("platform-bootclasspath") {
// For accessing all bootclasspath fragments.
addDependencyOntoApexModulePair(ctx, "platform", "platform-bootclasspath", platformBootclasspathDepTag)
} else if ctx.OtherModuleExists("art-bootclasspath-fragment") {
// For accessing the ART bootclasspath fragment on a thin manifest (e.g., master-art) where
// platform-bootclasspath doesn't exist.
addDependencyOntoApexModulePair(ctx, "com.android.art", "art-bootclasspath-fragment", bootclasspathFragmentDepTag)
}
}
func gatherBootclasspathFragments(ctx android.ModuleContext) map[string]android.Module {
return ctx.Config().Once(dexBootJarsFragmentsKey, func() interface{} {
fragments := make(map[string]android.Module)
ctx.WalkDeps(func(child, parent android.Module) bool {
if !isActiveModule(child) {
return false
}
tag := ctx.OtherModuleDependencyTag(child)
if tag == platformBootclasspathDepTag {
return true
}
if tag == bootclasspathFragmentDepTag {
apexInfo := ctx.OtherModuleProvider(child, android.ApexInfoProvider).(android.ApexInfo)
for _, apex := range apexInfo.InApexVariants {
fragments[apex] = child
}
return false
}
return false
})
return fragments
}).(map[string]android.Module)
}
func getBootclasspathFragmentByApex(ctx android.ModuleContext, apexName string) android.Module {
return gatherBootclasspathFragments(ctx)[apexName]
}
// GenerateAndroidBuildActions generates the build rules for boot images.
func (d *dexpreoptBootJars) GenerateAndroidBuildActions(ctx android.ModuleContext) {
imageConfigs := genBootImageConfigs(ctx)
d.defaultBootImage = defaultBootImageConfig(ctx)
d.otherImages = make([]*bootImageConfig, 0, len(imageConfigs)-1)
for _, name := range getImageNames() {
config := imageConfigs[name]
if config != d.defaultBootImage {
d.otherImages = append(d.otherImages, config)
}
if !config.isEnabled(ctx) {
continue
}
generateBootImage(ctx, config)
if config == d.defaultBootImage {
bootFrameworkProfileRule(ctx, config)
}
}
}
// GenerateSingletonBuildActions generates build rules for the dexpreopt config for Make.
func (d *dexpreoptBootJars) GenerateSingletonBuildActions(ctx android.SingletonContext) {
d.dexpreoptConfigForMake = android.PathForOutput(ctx, getDexpreoptDirName(ctx), "dexpreopt.config")
writeGlobalConfigForMake(ctx, d.dexpreoptConfigForMake)
}
// shouldBuildBootImages determines whether boot images should be built.
func shouldBuildBootImages(config android.Config, global *dexpreopt.GlobalConfig) bool {
// Skip recompiling the boot image for the second sanitization phase. We'll get separate paths
// and invalidate first-stage artifacts which are crucial to SANITIZE_LITE builds.
// Note: this is technically incorrect. Compiled code contains stack checks which may depend
// on ASAN settings.
if len(config.SanitizeDevice()) == 1 && config.SanitizeDevice()[0] == "address" && global.SanitizeLite {
return false
}
return true
}
func generateBootImage(ctx android.ModuleContext, imageConfig *bootImageConfig) {
apexJarModulePairs := getModulesForImage(ctx, imageConfig)
// Copy module dex jars to their predefined locations.
bootDexJarsByModule := extractEncodedDexJarsFromModulesOrBootclasspathFragments(ctx, apexJarModulePairs)
copyBootJarsToPredefinedLocations(ctx, bootDexJarsByModule, imageConfig.dexPathsByModule)
// Build a profile for the image config from the profile at the default path. The profile will
// then be used along with profiles imported from APEXes to build the boot image.
profile := bootImageProfileRule(ctx, imageConfig)
// If dexpreopt of boot image jars should be skipped, stop after generating a profile.
if SkipDexpreoptBootJars(ctx) {
return
}
// Build boot image files for the android variants.
androidBootImageFiles := buildBootImageVariantsForAndroidOs(ctx, imageConfig, profile)
// Zip the android variant boot image files up.
buildBootImageZipInPredefinedLocation(ctx, imageConfig, androidBootImageFiles.byArch)
// Build boot image files for the host variants. There are use directly by ART host side tests.
buildBootImageVariantsForBuildOs(ctx, imageConfig, profile)
// Create a `dump-oat-<image-name>` rule that runs `oatdump` for debugging purposes.
dumpOatRules(ctx, imageConfig)
}
type apexJarModulePair struct {
apex string
jarModule android.Module
}
func getModulesForImage(ctx android.ModuleContext, imageConfig *bootImageConfig) []apexJarModulePair {
modules := make([]apexJarModulePair, 0, imageConfig.modules.Len())
for i := 0; i < imageConfig.modules.Len(); i++ {
found := false
for _, module := range gatherApexModulePairDepsWithTag(ctx, dexpreoptBootJarDepTag) {
name := android.RemoveOptionalPrebuiltPrefix(module.Name())
if name == imageConfig.modules.Jar(i) {
modules = append(modules, apexJarModulePair{
apex: imageConfig.modules.Apex(i),
jarModule: module,
})
found = true
break
}
}
if !found && !ctx.Config().AllowMissingDependencies() {
ctx.ModuleErrorf(
"Boot image '%s' module '%s' not added as a dependency of dex_bootjars",
imageConfig.name,
imageConfig.modules.Jar(i))
return []apexJarModulePair{}
}
}
return modules
}
// extractEncodedDexJarsFromModulesOrBootclasspathFragments gets the hidden API encoded dex jars for
// the given modules.
func extractEncodedDexJarsFromModulesOrBootclasspathFragments(ctx android.ModuleContext, apexJarModulePairs []apexJarModulePair) bootDexJarByModule {
encodedDexJarsByModuleName := bootDexJarByModule{}
for _, pair := range apexJarModulePairs {
var path android.Path
if android.IsConfiguredJarForPlatform(pair.apex) || android.IsModulePrebuilt(pair.jarModule) {
// This gives us the dex jar with the hidden API flags encoded from the monolithic hidden API
// files or the dex jar extracted from a prebuilt APEX. We can't use this for a boot jar for
// a source APEX because there is no guarantee that it is the same as the jar packed into the
// APEX. In practice, they are the same when we are building from a full source tree, but they
// are different when we are building from a thin manifest (e.g., master-art), where there is
// no monolithic hidden API files at all.
path = retrieveEncodedBootDexJarFromModule(ctx, pair.jarModule)
} else {
// Use exactly the same jar that is packed into the APEX.
fragment := getBootclasspathFragmentByApex(ctx, pair.apex)
if fragment == nil {
ctx.ModuleErrorf("Boot jar '%[1]s' is from APEX '%[2]s', but a bootclasspath_fragment for "+
"APEX '%[2]s' doesn't exist or is not added as a dependency of dex_bootjars",
pair.jarModule.Name(),
pair.apex)
}
bootclasspathFragmentInfo := ctx.OtherModuleProvider(fragment, BootclasspathFragmentApexContentInfoProvider).(BootclasspathFragmentApexContentInfo)
jar, err := bootclasspathFragmentInfo.DexBootJarPathForContentModule(pair.jarModule)
if err != nil {
ctx.ModuleErrorf("%s", err)
}
path = jar
}
encodedDexJarsByModuleName.addPath(pair.jarModule, path)
}
return encodedDexJarsByModuleName
}
// copyBootJarsToPredefinedLocations generates commands that will copy boot jars to predefined
// paths in the global config.
func copyBootJarsToPredefinedLocations(ctx android.ModuleContext, srcBootDexJarsByModule bootDexJarByModule, dstBootJarsByModule map[string]android.WritablePath) {
// Create the super set of module names.
names := []string{}
names = append(names, android.SortedKeys(srcBootDexJarsByModule)...)
names = append(names, android.SortedKeys(dstBootJarsByModule)...)
names = android.SortedUniqueStrings(names)
for _, name := range names {
src := srcBootDexJarsByModule[name]
dst := dstBootJarsByModule[name]
if src == nil {
// A dex boot jar should be provided by the source java module. It needs to be installable or
// have compile_dex=true - cf. assignments to java.Module.dexJarFile.
//
// However, the source java module may be either replaced or overridden (using prefer:true) by
// a prebuilt java module with the same name. In that case the dex boot jar needs to be
// provided by the corresponding prebuilt APEX module. That APEX is the one that refers
// through a exported_(boot|systemserver)classpath_fragments property to a
// prebuilt_(boot|systemserver)classpath_fragment module, which in turn lists the prebuilt
// java module in the contents property. If that chain is broken then this dependency will
// fail.
if !ctx.Config().AllowMissingDependencies() {
ctx.ModuleErrorf("module %s does not provide a dex boot jar (see comment next to this message in Soong for details)", name)
} else {
ctx.AddMissingDependencies([]string{name})
}
} else if dst == nil {
ctx.ModuleErrorf("module %s is not part of the boot configuration", name)
} else {
ctx.Build(pctx, android.BuildParams{
Rule: android.Cp,
Input: src,
Output: dst,
})
}
}
}
// buildBootImageVariantsForAndroidOs generates rules to build the boot image variants for the
// android.Android OsType and returns a map from the architectures to the paths of the generated
// boot image files.
//
// The paths are returned because they are needed elsewhere in Soong, e.g. for populating an APEX.
func buildBootImageVariantsForAndroidOs(ctx android.ModuleContext, image *bootImageConfig, profile android.WritablePath) bootImageOutputs {
return buildBootImageForOsType(ctx, image, profile, android.Android)
}
// buildBootImageVariantsForBuildOs generates rules to build the boot image variants for the
// config.BuildOS OsType, i.e. the type of OS on which the build is being running.
//
// The files need to be generated into their predefined location because they are used from there
// both within Soong and outside, e.g. for ART based host side testing and also for use by some
// cloud based tools. However, they are not needed by callers of this function and so the paths do
// not need to be returned from this func, unlike the buildBootImageVariantsForAndroidOs func.
func buildBootImageVariantsForBuildOs(ctx android.ModuleContext, image *bootImageConfig, profile android.WritablePath) {
buildBootImageForOsType(ctx, image, profile, ctx.Config().BuildOS)
}
// bootImageFilesByArch is a map from android.ArchType to the paths to the boot image files.
//
// The paths include the .art, .oat and .vdex files, one for each of the modules from which the boot
// image is created.
type bootImageFilesByArch map[android.ArchType]android.Paths
// bootImageOutputs encapsulates information about boot images that were created/obtained by
// commonBootclasspathFragment.produceBootImageFiles.
type bootImageOutputs struct {
// Map from arch to the paths to the boot image files created/obtained for that arch.
byArch bootImageFilesByArch
variants []bootImageVariantOutputs
// The path to the profile file created/obtained for the boot image.
profile android.WritablePath
}
// buildBootImageForOsType takes a bootImageConfig, a profile file and an android.OsType
// boot image files are required for and it creates rules to build the boot image
// files for all the required architectures for them.
//
// It returns a map from android.ArchType to the predefined paths of the boot image files.
func buildBootImageForOsType(ctx android.ModuleContext, image *bootImageConfig, profile android.WritablePath, requiredOsType android.OsType) bootImageOutputs {
filesByArch := bootImageFilesByArch{}
imageOutputs := bootImageOutputs{
byArch: filesByArch,
profile: profile,
}
for _, variant := range image.variants {
if variant.target.Os == requiredOsType {
variantOutputs := buildBootImageVariant(ctx, variant, profile)
imageOutputs.variants = append(imageOutputs.variants, variantOutputs)
filesByArch[variant.target.Arch.ArchType] = variant.imagesDeps.Paths()
}
}
return imageOutputs
}
// buildBootImageZipInPredefinedLocation generates a zip file containing all the boot image files.
//
// The supplied filesByArch is nil when the boot image files have not been generated. Otherwise, it
// is a map from android.ArchType to the predefined locations.
func buildBootImageZipInPredefinedLocation(ctx android.ModuleContext, image *bootImageConfig, filesByArch bootImageFilesByArch) {
if filesByArch == nil {
return
}
// Compute the list of files from all the architectures.
zipFiles := android.Paths{}
for _, archType := range android.ArchTypeList() {
zipFiles = append(zipFiles, filesByArch[archType]...)
}
rule := android.NewRuleBuilder(pctx, ctx)
rule.Command().
BuiltTool("soong_zip").
FlagWithOutput("-o ", image.zip).
FlagWithArg("-C ", image.dir.Join(ctx, android.Android.String()).String()).
FlagWithInputList("-f ", zipFiles, " -f ")
rule.Build("zip_"+image.name, "zip "+image.name+" image")
}
type bootImageVariantOutputs struct {
config *bootImageVariant
}
// Generate boot image build rules for a specific target.
func buildBootImageVariant(ctx android.ModuleContext, image *bootImageVariant, profile android.Path) bootImageVariantOutputs {
globalSoong := dexpreopt.GetGlobalSoongConfig(ctx)
global := dexpreopt.GetGlobalConfig(ctx)
arch := image.target.Arch.ArchType
os := image.target.Os.String() // We need to distinguish host-x86 and device-x86.
symbolsDir := image.symbolsDir.Join(ctx, os, image.installDir, arch.String())
symbolsFile := symbolsDir.Join(ctx, image.stem+".oat")
outputDir := image.dir.Join(ctx, os, image.installDir, arch.String())
outputPath := outputDir.Join(ctx, image.stem+".oat")
oatLocation := dexpreopt.PathToLocation(outputPath, arch)
imagePath := outputPath.ReplaceExtension(ctx, "art")
rule := android.NewRuleBuilder(pctx, ctx)
rule.Command().Text("mkdir").Flag("-p").Flag(symbolsDir.String())
rule.Command().Text("rm").Flag("-f").
Flag(symbolsDir.Join(ctx, "*.art").String()).
Flag(symbolsDir.Join(ctx, "*.oat").String()).
Flag(symbolsDir.Join(ctx, "*.vdex").String()).
Flag(symbolsDir.Join(ctx, "*.invocation").String())
rule.Command().Text("rm").Flag("-f").
Flag(outputDir.Join(ctx, "*.art").String()).
Flag(outputDir.Join(ctx, "*.oat").String()).
Flag(outputDir.Join(ctx, "*.vdex").String()).
Flag(outputDir.Join(ctx, "*.invocation").String())
cmd := rule.Command()
extraFlags := ctx.Config().Getenv("ART_BOOT_IMAGE_EXTRA_ARGS")
if extraFlags == "" {
// Use ANDROID_LOG_TAGS to suppress most logging by default...
cmd.Text(`ANDROID_LOG_TAGS="*:e"`)
} else {
// ...unless the boot image is generated specifically for testing, then allow all logging.
cmd.Text(`ANDROID_LOG_TAGS="*:v"`)
}
invocationPath := outputPath.ReplaceExtension(ctx, "invocation")
cmd.Tool(globalSoong.Dex2oat).
Flag("--avoid-storing-invocation").
FlagWithOutput("--write-invocation-to=", invocationPath).ImplicitOutput(invocationPath).
Flag("--runtime-arg").FlagWithArg("-Xms", global.Dex2oatImageXms).
Flag("--runtime-arg").FlagWithArg("-Xmx", global.Dex2oatImageXmx)
if image.isProfileGuided() && !global.DisableGenerateProfile {
if profile != nil {
cmd.FlagWithInput("--profile-file=", profile)
}
for _, apex := range image.profileImports {
fragment := getBootclasspathFragmentByApex(ctx, apex)
if fragment == nil {
ctx.ModuleErrorf("Boot image config '%[1]s' imports profile from '%[2]s', but a "+
"bootclasspath_fragment for APEX '%[2]s' doesn't exist or is not added as a "+
"dependency of dex_bootjars",
image.name,
apex)
return bootImageVariantOutputs{}
}
importedProfile := fragment.(commonBootclasspathFragment).getProfilePath()
if importedProfile == nil {
ctx.ModuleErrorf("Boot image config '%[1]s' imports profile from '%[2]s', but '%[2]s' "+
"doesn't provide a profile",
image.name,
apex)
return bootImageVariantOutputs{}
}
cmd.FlagWithInput("--profile-file=", importedProfile)
}
}
dirtyImageFile := "frameworks/base/config/dirty-image-objects"
dirtyImagePath := android.ExistentPathForSource(ctx, dirtyImageFile)
if dirtyImagePath.Valid() {
cmd.FlagWithInput("--dirty-image-objects=", dirtyImagePath.Path())
}
if image.extends != nil {
// It is a boot image extension, so it needs the boot images that it depends on.
baseImageLocations := make([]string, 0, len(image.baseImages))
for _, image := range image.baseImages {
baseImageLocations = append(baseImageLocations, dexpreopt.PathToLocation(image, arch))
}
cmd.
Flag("--runtime-arg").FlagWithInputList("-Xbootclasspath:", image.dexPathsDeps.Paths(), ":").
Flag("--runtime-arg").FlagWithList("-Xbootclasspath-locations:", image.dexLocationsDeps, ":").
// Add the path to the first file in the boot image with the arch specific directory removed,
// dex2oat will reconstruct the path to the actual file when it needs it. As the actual path
// to the file cannot be passed to the command make sure to add the actual path as an Implicit
// dependency to ensure that it is built before the command runs.
FlagWithList("--boot-image=", baseImageLocations, ":").Implicits(image.baseImages.Paths()).
// Similarly, the dex2oat tool will automatically find the paths to other files in the base
// boot image so make sure to add them as implicit dependencies to ensure that they are built
// before this command is run.
Implicits(image.baseImagesDeps)
} else {
// It is a primary image, so it needs a base address.
cmd.FlagWithArg("--base=", ctx.Config().LibartImgDeviceBaseAddress())
}
if len(image.preloadedClassesFile) > 0 {
// We always expect a preloaded classes file to be available. However, if we cannot find it, it's
// OK to not pass the flag to dex2oat.
preloadedClassesPath := android.ExistentPathForSource(ctx, image.preloadedClassesFile)
if preloadedClassesPath.Valid() {
cmd.FlagWithInput("--preloaded-classes=", preloadedClassesPath.Path())
}
}
cmd.
FlagForEachInput("--dex-file=", image.dexPaths.Paths()).
FlagForEachArg("--dex-location=", image.dexLocations).
Flag("--generate-debug-info").
Flag("--generate-build-id").
Flag("--image-format=lz4hc").
FlagWithArg("--oat-symbols=", symbolsFile.String()).
FlagWithArg("--oat-file=", outputPath.String()).
FlagWithArg("--oat-location=", oatLocation).
FlagWithArg("--image=", imagePath.String()).
FlagWithArg("--instruction-set=", arch.String()).
FlagWithArg("--android-root=", global.EmptyDirectory).
FlagWithArg("--no-inline-from=", "core-oj.jar").
Flag("--force-determinism").
Flag("--abort-on-hard-verifier-error")
// We don't strip on host to make perf tools work.
if image.target.Os == android.Android {
cmd.Flag("--strip")
}
// If the image is profile-guided but the profile is disabled, we omit "--compiler-filter" to
// leave the decision to dex2oat to pick the compiler filter.
if !(image.isProfileGuided() && global.DisableGenerateProfile) {
cmd.FlagWithArg("--compiler-filter=", image.compilerFilter)
}
if image.singleImage {
cmd.Flag("--single-image")
}
// Use the default variant/features for host builds.
// The map below contains only device CPU info (which might be x86 on some devices).
if image.target.Os == android.Android {
cmd.FlagWithArg("--instruction-set-variant=", global.CpuVariant[arch])
cmd.FlagWithArg("--instruction-set-features=", global.InstructionSetFeatures[arch])
}
if global.EnableUffdGc && image.target.Os == android.Android {
cmd.Flag("--runtime-arg").Flag("-Xgc:CMC")
}
if global.BootFlags != "" {
cmd.Flag(global.BootFlags)
}
if extraFlags != "" {
cmd.Flag(extraFlags)
}
cmd.Textf(`|| ( echo %s ; false )`, proptools.ShellEscape(failureMessage))
installDir := filepath.Dir(image.imagePathOnDevice)
var vdexInstalls android.RuleBuilderInstalls
var unstrippedInstalls android.RuleBuilderInstalls
for _, artOrOat := range image.moduleFiles(ctx, outputDir, ".art", ".oat") {
cmd.ImplicitOutput(artOrOat)
// Install the .oat and .art files
rule.Install(artOrOat, filepath.Join(installDir, artOrOat.Base()))
}
for _, vdex := range image.moduleFiles(ctx, outputDir, ".vdex") {
cmd.ImplicitOutput(vdex)
// Note that the vdex files are identical between architectures.
// Make rules will create symlinks to share them between architectures.
vdexInstalls = append(vdexInstalls,
android.RuleBuilderInstall{vdex, filepath.Join(installDir, vdex.Base())})
}
for _, unstrippedOat := range image.moduleFiles(ctx, symbolsDir, ".oat") {
cmd.ImplicitOutput(unstrippedOat)
// Install the unstripped oat files. The Make rules will put these in $(TARGET_OUT_UNSTRIPPED)
unstrippedInstalls = append(unstrippedInstalls,
android.RuleBuilderInstall{unstrippedOat, filepath.Join(installDir, unstrippedOat.Base())})
}
rule.Build(image.name+"JarsDexpreopt_"+image.target.String(), "dexpreopt "+image.name+" jars "+arch.String())
// save output and installed files for makevars
// TODO - these are always the same and so should be initialized in genBootImageConfigs
image.installs = rule.Installs()
image.vdexInstalls = vdexInstalls
image.unstrippedInstalls = unstrippedInstalls
// Only set the licenseMetadataFile from the active module.
if isActiveModule(ctx.Module()) {
image.licenseMetadataFile = android.OptionalPathForPath(ctx.LicenseMetadataFile())
}
return bootImageVariantOutputs{
image,
}
}
const failureMessage = `ERROR: Dex2oat failed to compile a boot image.
It is likely that the boot classpath is inconsistent.
Rebuild with ART_BOOT_IMAGE_EXTRA_ARGS="--runtime-arg -verbose:verifier" to see verification errors.`
func bootImageProfileRuleCommon(ctx android.ModuleContext, name string, dexFiles android.Paths, dexLocations []string) android.WritablePath {
globalSoong := dexpreopt.GetGlobalSoongConfig(ctx)
global := dexpreopt.GetGlobalConfig(ctx)
if global.DisableGenerateProfile {
return nil
}
defaultProfile := "frameworks/base/config/boot-image-profile.txt"
extraProfile := "frameworks/base/config/boot-image-profile-extra.txt"
rule := android.NewRuleBuilder(pctx, ctx)
var profiles android.Paths
if len(global.BootImageProfiles) > 0 {
profiles = append(profiles, global.BootImageProfiles...)
} else if path := android.ExistentPathForSource(ctx, defaultProfile); path.Valid() {
profiles = append(profiles, path.Path())
} else {
// No profile (not even a default one, which is the case on some branches
// like master-art-host that don't have frameworks/base).
// Return nil and continue without profile.
return nil
}
if path := android.ExistentPathForSource(ctx, extraProfile); path.Valid() {
profiles = append(profiles, path.Path())
}
bootImageProfile := android.PathForModuleOut(ctx, name, "boot-image-profile.txt")
rule.Command().Text("cat").Inputs(profiles).Text(">").Output(bootImageProfile)
profile := android.PathForModuleOut(ctx, name, "boot.prof")
rule.Command().
Text(`ANDROID_LOG_TAGS="*:e"`).
Tool(globalSoong.Profman).
Flag("--output-profile-type=boot").
FlagWithInput("--create-profile-from=", bootImageProfile).
FlagForEachInput("--apk=", dexFiles).
FlagForEachArg("--dex-location=", dexLocations).
FlagWithOutput("--reference-profile-file=", profile)
rule.Build("bootJarsProfile_"+name, "profile boot jars "+name)
return profile
}
func bootImageProfileRule(ctx android.ModuleContext, image *bootImageConfig) android.WritablePath {
if !image.isProfileGuided() {
return nil
}
profile := bootImageProfileRuleCommon(ctx, image.name, image.dexPathsDeps.Paths(), image.getAnyAndroidVariant().dexLocationsDeps)
if image == defaultBootImageConfig(ctx) {
rule := android.NewRuleBuilder(pctx, ctx)
rule.Install(profile, "/system/etc/boot-image.prof")
image.profileInstalls = append(image.profileInstalls, rule.Installs()...)
image.profileLicenseMetadataFile = android.OptionalPathForPath(ctx.LicenseMetadataFile())
}
return profile
}
// bootFrameworkProfileRule generates the rule to create the boot framework profile and
// returns a path to the generated file.
func bootFrameworkProfileRule(ctx android.ModuleContext, image *bootImageConfig) android.WritablePath {
globalSoong := dexpreopt.GetGlobalSoongConfig(ctx)
global := dexpreopt.GetGlobalConfig(ctx)
if global.DisableGenerateProfile || ctx.Config().UnbundledBuild() {
return nil
}
defaultProfile := "frameworks/base/config/boot-profile.txt"
bootFrameworkProfile := android.PathForSource(ctx, defaultProfile)
profile := image.dir.Join(ctx, "boot.bprof")
rule := android.NewRuleBuilder(pctx, ctx)
rule.Command().
Text(`ANDROID_LOG_TAGS="*:e"`).
Tool(globalSoong.Profman).
Flag("--output-profile-type=bprof").
FlagWithInput("--create-profile-from=", bootFrameworkProfile).
FlagForEachInput("--apk=", image.dexPathsDeps.Paths()).
FlagForEachArg("--dex-location=", image.getAnyAndroidVariant().dexLocationsDeps).
FlagWithOutput("--reference-profile-file=", profile)
rule.Install(profile, "/system/etc/boot-image.bprof")
rule.Build("bootFrameworkProfile", "profile boot framework jars")
image.profileInstalls = append(image.profileInstalls, rule.Installs()...)
image.profileLicenseMetadataFile = android.OptionalPathForPath(ctx.LicenseMetadataFile())
return profile
}
func dumpOatRules(ctx android.ModuleContext, image *bootImageConfig) {
var allPhonies android.Paths
name := image.name
global := dexpreopt.GetGlobalConfig(ctx)
for _, image := range image.variants {
arch := image.target.Arch.ArchType
suffix := arch.String()
// Host and target might both use x86 arch. We need to ensure the names are unique.
if image.target.Os.Class == android.Host {
suffix = "host-" + suffix
}
// Create a rule to call oatdump.
output := android.PathForOutput(ctx, name+"."+suffix+".oatdump.txt")
rule := android.NewRuleBuilder(pctx, ctx)
imageLocationsOnHost, _ := image.imageLocations()
cmd := rule.Command().
BuiltTool("oatdump").
FlagWithInputList("--runtime-arg -Xbootclasspath:", image.dexPathsDeps.Paths(), ":").
FlagWithList("--runtime-arg -Xbootclasspath-locations:", image.dexLocationsDeps, ":").
FlagWithArg("--image=", strings.Join(imageLocationsOnHost, ":")).Implicits(image.imagesDeps.Paths()).
FlagWithOutput("--output=", output).
FlagWithArg("--instruction-set=", arch.String())
if global.EnableUffdGc && image.target.Os == android.Android {
cmd.Flag("--runtime-arg").Flag("-Xgc:CMC")
}
rule.Build("dump-oat-"+name+"-"+suffix, "dump oat "+name+" "+arch.String())
// Create a phony rule that depends on the output file and prints the path.
phony := android.PathForPhony(ctx, "dump-oat-"+name+"-"+suffix)
rule = android.NewRuleBuilder(pctx, ctx)
rule.Command().
Implicit(output).
ImplicitOutput(phony).
Text("echo").FlagWithArg("Output in ", output.String())
rule.Build("phony-dump-oat-"+name+"-"+suffix, "dump oat "+name+" "+arch.String())
allPhonies = append(allPhonies, phony)
}
phony := android.PathForPhony(ctx, "dump-oat-"+name)
ctx.Build(pctx, android.BuildParams{
Rule: android.Phony,
Output: phony,
Inputs: allPhonies,
Description: "dump-oat-"+name,
})
}
func writeGlobalConfigForMake(ctx android.SingletonContext, path android.WritablePath) {
data := dexpreopt.GetGlobalConfigRawData(ctx)
android.WriteFileRule(ctx, path, string(data))
}
// Define Make variables for boot image names, paths, etc. These variables are used in makefiles
// (make/core/dex_preopt_libart.mk) to generate install rules that copy boot image files to the
// correct output directories.
func (d *dexpreoptBootJars) MakeVars(ctx android.MakeVarsContext) {
if d.dexpreoptConfigForMake != nil && !SkipDexpreoptBootJars(ctx) {
ctx.Strict("DEX_PREOPT_CONFIG_FOR_MAKE", d.dexpreoptConfigForMake.String())
ctx.Strict("DEX_PREOPT_SOONG_CONFIG_FOR_MAKE", android.PathForOutput(ctx, "dexpreopt_soong.config").String())
}
image := d.defaultBootImage
if image != nil {
ctx.Strict("DEXPREOPT_IMAGE_PROFILE_BUILT_INSTALLED", image.profileInstalls.String())
if image.profileLicenseMetadataFile.Valid() {
ctx.Strict("DEXPREOPT_IMAGE_PROFILE_LICENSE_METADATA", image.profileLicenseMetadataFile.String())
}
if SkipDexpreoptBootJars(ctx) {
return
}
global := dexpreopt.GetGlobalConfig(ctx)
dexPaths, dexLocations := bcpForDexpreopt(ctx, global.PreoptWithUpdatableBcp)
ctx.Strict("DEXPREOPT_BOOTCLASSPATH_DEX_FILES", strings.Join(dexPaths.Strings(), " "))
ctx.Strict("DEXPREOPT_BOOTCLASSPATH_DEX_LOCATIONS", strings.Join(dexLocations, " "))
// The primary ART boot image is exposed to Make for testing (gtests) and benchmarking
// (golem) purposes.
for _, current := range append(d.otherImages, image) {
for _, variant := range current.variants {
suffix := ""
if variant.target.Os.Class == android.Host {
suffix = "_host"
}
sfx := variant.name + suffix + "_" + variant.target.Arch.ArchType.String()
ctx.Strict("DEXPREOPT_IMAGE_VDEX_BUILT_INSTALLED_"+sfx, variant.vdexInstalls.String())
ctx.Strict("DEXPREOPT_IMAGE_"+sfx, variant.imagePathOnHost.String())
ctx.Strict("DEXPREOPT_IMAGE_DEPS_"+sfx, strings.Join(variant.imagesDeps.Strings(), " "))
ctx.Strict("DEXPREOPT_IMAGE_BUILT_INSTALLED_"+sfx, variant.installs.String())
ctx.Strict("DEXPREOPT_IMAGE_UNSTRIPPED_BUILT_INSTALLED_"+sfx, variant.unstrippedInstalls.String())
if variant.licenseMetadataFile.Valid() {
ctx.Strict("DEXPREOPT_IMAGE_LICENSE_METADATA_"+sfx, variant.licenseMetadataFile.String())
}
}
imageLocationsOnHost, imageLocationsOnDevice := current.getAnyAndroidVariant().imageLocations()
ctx.Strict("DEXPREOPT_IMAGE_LOCATIONS_ON_HOST"+current.name, strings.Join(imageLocationsOnHost, ":"))
ctx.Strict("DEXPREOPT_IMAGE_LOCATIONS_ON_DEVICE"+current.name, strings.Join(imageLocationsOnDevice, ":"))
ctx.Strict("DEXPREOPT_IMAGE_ZIP_"+current.name, current.zip.String())
}
ctx.Strict("DEXPREOPT_IMAGE_NAMES", strings.Join(getImageNames(), " "))
}
}