blob: 6513fa301ec5e9d581ba00b5ad5116142b86ad34 [file] [log] [blame]
// Copyright 2017 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package finder
import (
"bufio"
"bytes"
"encoding/json"
"errors"
"fmt"
"io"
"os"
"path/filepath"
"runtime"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"android/soong/finder/fs"
)
// This file provides a Finder struct that can quickly search for files satisfying
// certain criteria.
// This Finder gets its speed partially from parallelism and partially from caching.
// If a Stat call returns the same result as last time, then it means Finder
// can skip the ReadDir call for that dir.
// The primary data structure used by the finder is the field Finder.nodes ,
// which is a tree of nodes of type *pathMap .
// Each node represents a directory on disk, along with its stats, subdirectories,
// and contained files.
// The common use case for the Finder is that the caller creates a Finder and gives
// it the same query that was given to it in the previous execution.
// In this situation, the major events that take place are:
// 1. The Finder begins to load its db
// 2. The Finder begins to stat the directories mentioned in its db (using multiple threads)
// Calling Stat on each of these directories is generally a large fraction of the total time
// 3. The Finder begins to construct a separate tree of nodes in each of its threads
// 4. The Finder merges the individual node trees into the main node tree
// 5. The Finder may call ReadDir a few times if there are a few directories that are out-of-date
// These ReadDir calls might prompt additional Stat calls, etc
// 6. The Finder waits for all loading to complete
// 7. The Finder searches the cache for files matching the user's query (using multiple threads)
// These are the invariants regarding concurrency:
// 1. The public methods of Finder are threadsafe.
// The public methods are only performance-optimized for one caller at a time, however.
// For the moment, multiple concurrent callers shouldn't expect any better performance than
// multiple serial callers.
// 2. While building the node tree, only one thread may ever access the <children> collection of a
// *pathMap at once.
// a) The thread that accesses the <children> collection is the thread that discovers the
// children (by reading them from the cache or by having received a response to ReadDir).
// 1) Consequently, the thread that discovers the children also spawns requests to stat
// subdirs.
// b) Consequently, while building the node tree, no thread may do a lookup of its
// *pathMap via filepath because another thread may be adding children to the
// <children> collection of an ancestor node. Additionally, in rare cases, another thread
// may be removing children from an ancestor node if the children were only discovered to
// be irrelevant after calling ReadDir (which happens if a prune-file was just added).
// 3. No query will begin to be serviced until all loading (both reading the db
// and scanning the filesystem) is complete.
// Tests indicate that it only takes about 10% as long to search the in-memory cache as to
// generate it, making this not a huge loss in performance.
// 4. The parsing of the db and the initial setup of the pathMap tree must complete before
// beginning to call listDirSync (because listDirSync can create new entries in the pathMap)
// see cmd/finder.go or finder_test.go for usage examples
// Update versionString whenever making a backwards-incompatible change to the cache file format
const versionString = "Android finder version 1"
// a CacheParams specifies which files and directories the user wishes be scanned and
// potentially added to the cache
type CacheParams struct {
// WorkingDirectory is used as a base for any relative file paths given to the Finder
WorkingDirectory string
// RootDirs are the root directories used to initiate the search
RootDirs []string
// ExcludeDirs are directory names that if encountered are removed from the search
ExcludeDirs []string
// PruneFiles are file names that if encountered prune their entire directory
// (including siblings)
PruneFiles []string
// IncludeFiles are file names to include as matches
IncludeFiles []string
}
// a cacheConfig stores the inputs that determine what should be included in the cache
type cacheConfig struct {
CacheParams
// FilesystemView is a unique identifier telling which parts of which file systems
// are readable by the Finder. In practice its value is essentially username@hostname.
// FilesystemView is set to ensure that a cache file copied to another host or
// found by another user doesn't inadvertently get reused.
FilesystemView string
}
func (p *cacheConfig) Dump() ([]byte, error) {
bytes, err := json.Marshal(p)
return bytes, err
}
// a cacheMetadata stores version information about the cache
type cacheMetadata struct {
// The Version enables the Finder to determine whether it can even parse the file
// If the version changes, the entire cache file must be regenerated
Version string
// The CacheParams enables the Finder to determine whether the parameters match
// If the CacheParams change, the Finder can choose how much of the cache file to reuse
// (although in practice, the Finder will probably choose to ignore the entire file anyway)
Config cacheConfig
}
type Logger interface {
Output(calldepth int, s string) error
}
// the Finder is the main struct that callers will want to use
type Finder struct {
// configuration
DbPath string
numDbLoadingThreads int
numSearchingThreads int
cacheMetadata cacheMetadata
logger Logger
filesystem fs.FileSystem
// temporary state
threadPool *threadPool
mutex sync.Mutex
fsErrs []fsErr
errlock sync.Mutex
shutdownWaitgroup sync.WaitGroup
// non-temporary state
modifiedFlag int32
nodes pathMap
}
var defaultNumThreads = runtime.NumCPU() * 2
// New creates a new Finder for use
func New(cacheParams CacheParams, filesystem fs.FileSystem,
logger Logger, dbPath string) (f *Finder, err error) {
return newImpl(cacheParams, filesystem, logger, dbPath, defaultNumThreads)
}
// newImpl is like New but accepts more params
func newImpl(cacheParams CacheParams, filesystem fs.FileSystem,
logger Logger, dbPath string, numThreads int) (f *Finder, err error) {
numDbLoadingThreads := numThreads
numSearchingThreads := numThreads
metadata := cacheMetadata{
Version: versionString,
Config: cacheConfig{
CacheParams: cacheParams,
FilesystemView: filesystem.ViewId(),
},
}
f = &Finder{
numDbLoadingThreads: numDbLoadingThreads,
numSearchingThreads: numSearchingThreads,
cacheMetadata: metadata,
logger: logger,
filesystem: filesystem,
nodes: *newPathMap("/"),
DbPath: dbPath,
shutdownWaitgroup: sync.WaitGroup{},
}
f.loadFromFilesystem()
// check for any filesystem errors
err = f.getErr()
if err != nil {
return nil, err
}
// confirm that every path mentioned in the CacheConfig exists
for _, path := range cacheParams.RootDirs {
if !filepath.IsAbs(path) {
path = filepath.Join(f.cacheMetadata.Config.WorkingDirectory, path)
}
node := f.nodes.GetNode(filepath.Clean(path), false)
if node == nil || node.ModTime == 0 {
return nil, fmt.Errorf("path %v was specified to be included in the cache but does not exist\n", path)
}
}
return f, nil
}
// FindNamed searches for every cached file
func (f *Finder) FindAll() []string {
return f.FindAt("/")
}
// FindNamed searches for every cached file under <rootDir>
func (f *Finder) FindAt(rootDir string) []string {
filter := func(entries DirEntries) (dirNames []string, fileNames []string) {
return entries.DirNames, entries.FileNames
}
return f.FindMatching(rootDir, filter)
}
// FindNamed searches for every cached file named <fileName>
func (f *Finder) FindNamed(fileName string) []string {
return f.FindNamedAt("/", fileName)
}
// FindNamedAt searches under <rootPath> for every file named <fileName>
// The reason a caller might use FindNamedAt instead of FindNamed is if they want
// to limit their search to a subset of the cache
func (f *Finder) FindNamedAt(rootPath string, fileName string) []string {
filter := func(entries DirEntries) (dirNames []string, fileNames []string) {
matches := []string{}
for _, foundName := range entries.FileNames {
if foundName == fileName {
matches = append(matches, foundName)
}
}
return entries.DirNames, matches
}
return f.FindMatching(rootPath, filter)
}
// FindFirstNamed searches for every file named <fileName>
// Whenever it finds a match, it stops search subdirectories
func (f *Finder) FindFirstNamed(fileName string) []string {
return f.FindFirstNamedAt("/", fileName)
}
// FindFirstNamedAt searches for every file named <fileName>
// Whenever it finds a match, it stops search subdirectories
func (f *Finder) FindFirstNamedAt(rootPath string, fileName string) []string {
filter := func(entries DirEntries) (dirNames []string, fileNames []string) {
matches := []string{}
for _, foundName := range entries.FileNames {
if foundName == fileName {
matches = append(matches, foundName)
}
}
if len(matches) > 0 {
return []string{}, matches
}
return entries.DirNames, matches
}
return f.FindMatching(rootPath, filter)
}
// FindMatching is the most general exported function for searching for files in the cache
// The WalkFunc will be invoked repeatedly and is expected to modify the provided DirEntries
// in place, removing file paths and directories as desired.
// WalkFunc will be invoked potentially many times in parallel, and must be threadsafe.
func (f *Finder) FindMatching(rootPath string, filter WalkFunc) []string {
// set up some parameters
scanStart := time.Now()
var isRel bool
workingDir := f.cacheMetadata.Config.WorkingDirectory
isRel = !filepath.IsAbs(rootPath)
if isRel {
rootPath = filepath.Join(workingDir, rootPath)
}
rootPath = filepath.Clean(rootPath)
// ensure nothing else is using the Finder
f.verbosef("FindMatching waiting for finder to be idle\n")
f.lock()
defer f.unlock()
node := f.nodes.GetNode(rootPath, false)
if node == nil {
f.verbosef("No data for path %v ; apparently not included in cache params: %v\n",
rootPath, f.cacheMetadata.Config.CacheParams)
// path is not found; don't do a search
return []string{}
}
// search for matching files
f.verbosef("Finder finding %v using cache\n", rootPath)
results := f.findInCacheMultithreaded(node, filter, f.numSearchingThreads)
// format and return results
if isRel {
for i := 0; i < len(results); i++ {
results[i] = strings.Replace(results[i], workingDir+"/", "", 1)
}
}
sort.Strings(results)
f.verbosef("Found %v files under %v in %v using cache\n",
len(results), rootPath, time.Since(scanStart))
return results
}
// Shutdown declares that the finder is no longer needed and waits for its cleanup to complete
// Currently, that only entails waiting for the database dump to complete.
func (f *Finder) Shutdown() {
f.WaitForDbDump()
}
// WaitForDbDump returns once the database has been written to f.DbPath.
func (f *Finder) WaitForDbDump() {
f.shutdownWaitgroup.Wait()
}
// End of public api
func (f *Finder) goDumpDb() {
if f.wasModified() {
f.shutdownWaitgroup.Add(1)
go func() {
err := f.dumpDb()
if err != nil {
f.verbosef("%v\n", err)
}
f.shutdownWaitgroup.Done()
}()
} else {
f.verbosef("Skipping dumping unmodified db\n")
}
}
// joinCleanPaths is like filepath.Join but is faster because
// joinCleanPaths doesn't have to support paths ending in "/" or containing ".."
func joinCleanPaths(base string, leaf string) string {
if base == "" {
return leaf
}
if base == "/" {
return base + leaf
}
if leaf == "" {
return base
}
return base + "/" + leaf
}
func (f *Finder) verbosef(format string, args ...interface{}) {
f.logger.Output(2, fmt.Sprintf(format, args...))
}
// loadFromFilesystem populates the in-memory cache based on the contents of the filesystem
func (f *Finder) loadFromFilesystem() {
f.threadPool = newThreadPool(f.numDbLoadingThreads)
err := f.startFromExternalCache()
if err != nil {
f.startWithoutExternalCache()
}
f.goDumpDb()
f.threadPool = nil
}
func (f *Finder) startFind(path string) {
if !filepath.IsAbs(path) {
path = filepath.Join(f.cacheMetadata.Config.WorkingDirectory, path)
}
node := f.nodes.GetNode(path, true)
f.statDirAsync(node)
}
func (f *Finder) lock() {
f.mutex.Lock()
}
func (f *Finder) unlock() {
f.mutex.Unlock()
}
// a statResponse is the relevant portion of the response from the filesystem to a Stat call
type statResponse struct {
ModTime int64
Inode uint64
Device uint64
}
// a pathAndStats stores a path and its stats
type pathAndStats struct {
statResponse
Path string
}
// a dirFullInfo stores all of the relevant information we know about a directory
type dirFullInfo struct {
pathAndStats
FileNames []string
}
// a PersistedDirInfo is the information about a dir that we save to our cache on disk
type PersistedDirInfo struct {
// These field names are short because they are repeated many times in the output json file
P string // path
T int64 // modification time
I uint64 // inode number
F []string // relevant filenames contained
}
// a PersistedDirs is the information that we persist for a group of dirs
type PersistedDirs struct {
// the device on which each directory is stored
Device uint64
// the common root path to which all contained dirs are relative
Root string
// the directories themselves
Dirs []PersistedDirInfo
}
// a CacheEntry is the smallest unit that can be read and parsed from the cache (on disk) at a time
type CacheEntry []PersistedDirs
// a DirEntries lists the files and directories contained directly within a specific directory
type DirEntries struct {
Path string
// elements of DirNames are just the dir names; they don't include any '/' character
DirNames []string
// elements of FileNames are just the file names; they don't include '/' character
FileNames []string
}
// a WalkFunc is the type that is passed into various Find functions for determining which
// directories the caller wishes be walked. The WalkFunc is expected to decide which
// directories to walk and which files to consider as matches to the original query.
type WalkFunc func(DirEntries) (dirs []string, files []string)
// a mapNode stores the relevant stats about a directory to be stored in a pathMap
type mapNode struct {
statResponse
FileNames []string
}
// a pathMap implements the directory tree structure of nodes
type pathMap struct {
mapNode
path string
children map[string]*pathMap
// number of descendent nodes, including self
approximateNumDescendents int
}
func newPathMap(path string) *pathMap {
result := &pathMap{path: path, children: make(map[string]*pathMap, 4),
approximateNumDescendents: 1}
return result
}
// GetNode returns the node at <path>
func (m *pathMap) GetNode(path string, createIfNotFound bool) *pathMap {
if len(path) > 0 && path[0] == '/' {
path = path[1:]
}
node := m
for {
if path == "" {
return node
}
index := strings.Index(path, "/")
var firstComponent string
if index >= 0 {
firstComponent = path[:index]
path = path[index+1:]
} else {
firstComponent = path
path = ""
}
child, found := node.children[firstComponent]
if !found {
if createIfNotFound {
child = node.newChild(firstComponent)
} else {
return nil
}
}
node = child
}
}
func (m *pathMap) newChild(name string) (child *pathMap) {
path := joinCleanPaths(m.path, name)
newChild := newPathMap(path)
m.children[name] = newChild
return m.children[name]
}
func (m *pathMap) UpdateNumDescendents() int {
count := 1
for _, child := range m.children {
count += child.approximateNumDescendents
}
m.approximateNumDescendents = count
return count
}
func (m *pathMap) UpdateNumDescendentsRecursive() {
for _, child := range m.children {
child.UpdateNumDescendentsRecursive()
}
m.UpdateNumDescendents()
}
func (m *pathMap) MergeIn(other *pathMap) {
for key, theirs := range other.children {
ours, found := m.children[key]
if found {
ours.MergeIn(theirs)
} else {
m.children[key] = theirs
}
}
if other.ModTime != 0 {
m.mapNode = other.mapNode
}
m.UpdateNumDescendents()
}
func (m *pathMap) DumpAll() []dirFullInfo {
results := []dirFullInfo{}
m.dumpInto("", &results)
return results
}
func (m *pathMap) dumpInto(path string, results *[]dirFullInfo) {
*results = append(*results,
dirFullInfo{
pathAndStats{statResponse: m.statResponse, Path: path},
m.FileNames},
)
for key, child := range m.children {
childPath := joinCleanPaths(path, key)
if len(childPath) == 0 || childPath[0] != '/' {
childPath = "/" + childPath
}
child.dumpInto(childPath, results)
}
}
// a semaphore can be locked by up to <capacity> callers at once
type semaphore struct {
pool chan bool
}
func newSemaphore(capacity int) *semaphore {
return &semaphore{pool: make(chan bool, capacity)}
}
func (l *semaphore) Lock() {
l.pool <- true
}
func (l *semaphore) Unlock() {
<-l.pool
}
// A threadPool runs goroutines and supports throttling and waiting.
// Without throttling, Go may exhaust the maximum number of various resources, such as
// threads or file descriptors, and crash the program.
type threadPool struct {
receivedRequests sync.WaitGroup
activeRequests semaphore
}
func newThreadPool(maxNumConcurrentThreads int) *threadPool {
return &threadPool{
receivedRequests: sync.WaitGroup{},
activeRequests: *newSemaphore(maxNumConcurrentThreads),
}
}
// Run requests to run the given function in its own goroutine
func (p *threadPool) Run(function func()) {
p.receivedRequests.Add(1)
// If Run() was called from within a goroutine spawned by this threadPool,
// then we may need to return from Run() before having capacity to actually
// run <function>.
//
// It's possible that the body of <function> contains a statement (such as a syscall)
// that will cause Go to pin it to a thread, or will contain a statement that uses
// another resource that is in short supply (such as a file descriptor), so we can't
// actually run <function> until we have capacity.
//
// However, the semaphore used for synchronization is implemented via a channel and
// shouldn't require a new thread for each access.
go func() {
p.activeRequests.Lock()
function()
p.activeRequests.Unlock()
p.receivedRequests.Done()
}()
}
// Wait waits until all goroutines are done, just like sync.WaitGroup's Wait
func (p *threadPool) Wait() {
p.receivedRequests.Wait()
}
type fsErr struct {
path string
err error
}
func (e fsErr) String() string {
return e.path + ": " + e.err.Error()
}
func (f *Finder) serializeCacheEntry(dirInfos []dirFullInfo) ([]byte, error) {
// group each dirFullInfo by its Device, to avoid having to repeat it in the output
dirsByDevice := map[uint64][]PersistedDirInfo{}
for _, entry := range dirInfos {
_, found := dirsByDevice[entry.Device]
if !found {
dirsByDevice[entry.Device] = []PersistedDirInfo{}
}
dirsByDevice[entry.Device] = append(dirsByDevice[entry.Device],
PersistedDirInfo{P: entry.Path, T: entry.ModTime, I: entry.Inode, F: entry.FileNames})
}
cacheEntry := CacheEntry{}
for device, infos := range dirsByDevice {
// find common prefix
prefix := ""
if len(infos) > 0 {
prefix = infos[0].P
}
for _, info := range infos {
for !strings.HasPrefix(info.P+"/", prefix+"/") {
prefix = filepath.Dir(prefix)
if prefix == "/" {
break
}
}
}
// remove common prefix
for i := range infos {
suffix := strings.Replace(infos[i].P, prefix, "", 1)
if len(suffix) > 0 && suffix[0] == '/' {
suffix = suffix[1:]
}
infos[i].P = suffix
}
// turn the map (keyed by device) into a list of structs with labeled fields
// this is to improve readability of the output
cacheEntry = append(cacheEntry, PersistedDirs{Device: device, Root: prefix, Dirs: infos})
}
// convert to json.
// it would save some space to use a different format than json for the db file,
// but the space and time savings are small, and json is easy for humans to read
bytes, err := json.Marshal(cacheEntry)
return bytes, err
}
func (f *Finder) parseCacheEntry(bytes []byte) ([]dirFullInfo, error) {
var cacheEntry CacheEntry
err := json.Unmarshal(bytes, &cacheEntry)
if err != nil {
return nil, err
}
// convert from a CacheEntry to a []dirFullInfo (by copying a few fields)
capacity := 0
for _, element := range cacheEntry {
capacity += len(element.Dirs)
}
nodes := make([]dirFullInfo, capacity)
count := 0
for _, element := range cacheEntry {
for _, dir := range element.Dirs {
path := joinCleanPaths(element.Root, dir.P)
nodes[count] = dirFullInfo{
pathAndStats: pathAndStats{
statResponse: statResponse{
ModTime: dir.T, Inode: dir.I, Device: element.Device,
},
Path: path},
FileNames: dir.F}
count++
}
}
return nodes, nil
}
// We use the following separator byte to distinguish individually parseable blocks of json
// because we know this separator won't appear in the json that we're parsing.
//
// The newline byte can only appear in a UTF-8 stream if the newline character appears, because:
// - The newline character is encoded as "0000 1010" in binary ("0a" in hex)
// - UTF-8 dictates that bytes beginning with a "0" bit are never emitted as part of a multibyte
// character.
//
// We know that the newline character will never appear in our json string, because:
// - If a newline character appears as part of a data string, then json encoding will
// emit two characters instead: '\' and 'n'.
// - The json encoder that we use doesn't emit the optional newlines between any of its
// other outputs.
const lineSeparator = byte('\n')
func (f *Finder) readLine(reader *bufio.Reader) ([]byte, error) {
return reader.ReadBytes(lineSeparator)
}
// validateCacheHeader reads the cache header from cacheReader and tells whether the cache is compatible with this Finder
func (f *Finder) validateCacheHeader(cacheReader *bufio.Reader) bool {
cacheVersionBytes, err := f.readLine(cacheReader)
if err != nil {
f.verbosef("Failed to read database header; database is invalid\n")
return false
}
if len(cacheVersionBytes) > 0 && cacheVersionBytes[len(cacheVersionBytes)-1] == lineSeparator {
cacheVersionBytes = cacheVersionBytes[:len(cacheVersionBytes)-1]
}
cacheVersionString := string(cacheVersionBytes)
currentVersion := f.cacheMetadata.Version
if cacheVersionString != currentVersion {
f.verbosef("Version changed from %q to %q, database is not applicable\n", cacheVersionString, currentVersion)
return false
}
cacheParamBytes, err := f.readLine(cacheReader)
if err != nil {
f.verbosef("Failed to read database search params; database is invalid\n")
return false
}
if len(cacheParamBytes) > 0 && cacheParamBytes[len(cacheParamBytes)-1] == lineSeparator {
cacheParamBytes = cacheParamBytes[:len(cacheParamBytes)-1]
}
currentParamBytes, err := f.cacheMetadata.Config.Dump()
if err != nil {
panic("Finder failed to serialize its parameters")
}
cacheParamString := string(cacheParamBytes)
currentParamString := string(currentParamBytes)
if cacheParamString != currentParamString {
f.verbosef("Params changed from %q to %q, database is not applicable\n", cacheParamString, currentParamString)
return false
}
return true
}
// loadBytes compares the cache info in <data> to the state of the filesystem
// loadBytes returns a map representing <data> and also a slice of dirs that need to be re-walked
func (f *Finder) loadBytes(id int, data []byte) (m *pathMap, dirsToWalk []string, err error) {
helperStartTime := time.Now()
cachedNodes, err := f.parseCacheEntry(data)
if err != nil {
return nil, nil, fmt.Errorf("Failed to parse block %v: %v\n", id, err.Error())
}
unmarshalDate := time.Now()
f.verbosef("Unmarshaled %v objects for %v in %v\n",
len(cachedNodes), id, unmarshalDate.Sub(helperStartTime))
tempMap := newPathMap("/")
stats := make([]statResponse, len(cachedNodes))
for i, node := range cachedNodes {
// check the file system for an updated timestamp
stats[i] = f.statDirSync(node.Path)
}
dirsToWalk = []string{}
for i, cachedNode := range cachedNodes {
updated := stats[i]
// save the cached value
container := tempMap.GetNode(cachedNode.Path, true)
container.mapNode = mapNode{statResponse: updated}
// if the metadata changed and the directory still exists, then
// make a note to walk it later
if !f.isInfoUpToDate(cachedNode.statResponse, updated) && updated.ModTime != 0 {
f.setModified()
// make a note that the directory needs to be walked
dirsToWalk = append(dirsToWalk, cachedNode.Path)
} else {
container.mapNode.FileNames = cachedNode.FileNames
}
}
// count the number of nodes to improve our understanding of the shape of the tree,
// thereby improving parallelism of subsequent searches
tempMap.UpdateNumDescendentsRecursive()
f.verbosef("Statted inodes of block %v in %v\n", id, time.Now().Sub(unmarshalDate))
return tempMap, dirsToWalk, nil
}
// startFromExternalCache loads the cache database from disk
// startFromExternalCache waits to return until the load of the cache db is complete, but
// startFromExternalCache does not wait for all every listDir() or statDir() request to complete
func (f *Finder) startFromExternalCache() (err error) {
startTime := time.Now()
dbPath := f.DbPath
// open cache file and validate its header
reader, err := f.filesystem.Open(dbPath)
if err != nil {
return errors.New("No data to load from database\n")
}
bufferedReader := bufio.NewReader(reader)
if !f.validateCacheHeader(bufferedReader) {
return errors.New("Cache header does not match")
}
f.verbosef("Database header matches, will attempt to use database %v\n", f.DbPath)
// read the file and spawn threads to process it
nodesToWalk := [][]*pathMap{}
mainTree := newPathMap("/")
// read the blocks and stream them into <blockChannel>
type dataBlock struct {
id int
err error
data []byte
}
blockChannel := make(chan dataBlock, f.numDbLoadingThreads)
readBlocks := func() {
index := 0
for {
// It takes some time to unmarshal the input from json, so we want
// to unmarshal it in parallel. In order to find valid places to
// break the input, we scan for the line separators that we inserted
// (for this purpose) when we dumped the database.
data, err := f.readLine(bufferedReader)
var response dataBlock
done := false
if err != nil && err != io.EOF {
response = dataBlock{id: index, err: err, data: nil}
done = true
} else {
done = (err == io.EOF)
response = dataBlock{id: index, err: nil, data: data}
}
blockChannel <- response
index++
duration := time.Since(startTime)
f.verbosef("Read block %v after %v\n", index, duration)
if done {
f.verbosef("Read %v blocks in %v\n", index, duration)
close(blockChannel)
return
}
}
}
go readBlocks()
// Read from <blockChannel> and stream the responses into <resultChannel>.
type workResponse struct {
id int
err error
tree *pathMap
updatedDirs []string
}
resultChannel := make(chan workResponse)
processBlocks := func() {
numProcessed := 0
threadPool := newThreadPool(f.numDbLoadingThreads)
for {
// get a block to process
block, received := <-blockChannel
if !received {
break
}
if block.err != nil {
resultChannel <- workResponse{err: block.err}
break
}
numProcessed++
// wait until there is CPU available to process it
threadPool.Run(
func() {
processStartTime := time.Now()
f.verbosef("Starting to process block %v after %v\n",
block.id, processStartTime.Sub(startTime))
tempMap, updatedDirs, err := f.loadBytes(block.id, block.data)
var response workResponse
if err != nil {
f.verbosef(
"Block %v failed to parse with error %v\n",
block.id, err)
response = workResponse{err: err}
} else {
response = workResponse{
id: block.id,
err: nil,
tree: tempMap,
updatedDirs: updatedDirs,
}
}
f.verbosef("Processed block %v in %v\n",
block.id, time.Since(processStartTime),
)
resultChannel <- response
},
)
}
threadPool.Wait()
f.verbosef("Finished processing %v blocks in %v\n",
numProcessed, time.Since(startTime))
close(resultChannel)
}
go processBlocks()
// Read from <resultChannel> and use the results
combineResults := func() (err error) {
for {
result, received := <-resultChannel
if !received {
break
}
if err != nil {
// In case of an error, wait for work to complete before
// returning the error. This ensures that any subsequent
// work doesn't need to compete for resources (and possibly
// fail due to, for example, a filesystem limit on the number of
// concurrently open files) with past work.
continue
}
if result.err != nil {
err = result.err
continue
}
// update main tree
mainTree.MergeIn(result.tree)
// record any new directories that we will need to Stat()
updatedNodes := make([]*pathMap, len(result.updatedDirs))
for j, dir := range result.updatedDirs {
node := mainTree.GetNode(dir, false)
updatedNodes[j] = node
}
nodesToWalk = append(nodesToWalk, updatedNodes)
}
return err
}
err = combineResults()
if err != nil {
return err
}
f.nodes = *mainTree
// after having loaded the entire db and therefore created entries for
// the directories we know of, now it's safe to start calling ReadDir on
// any updated directories
for i := range nodesToWalk {
f.listDirsAsync(nodesToWalk[i])
}
f.verbosef("Loaded db and statted known dirs in %v\n", time.Since(startTime))
f.threadPool.Wait()
f.verbosef("Loaded db and statted all dirs in %v\n", time.Now().Sub(startTime))
return err
}
// startWithoutExternalCache starts scanning the filesystem according to the cache config
// startWithoutExternalCache should be called if startFromExternalCache is not applicable
func (f *Finder) startWithoutExternalCache() {
startTime := time.Now()
configDirs := f.cacheMetadata.Config.RootDirs
// clean paths
candidates := make([]string, len(configDirs))
for i, dir := range configDirs {
candidates[i] = filepath.Clean(dir)
}
// remove duplicates
dirsToScan := make([]string, 0, len(configDirs))
for _, candidate := range candidates {
include := true
for _, included := range dirsToScan {
if included == "/" || strings.HasPrefix(candidate+"/", included+"/") {
include = false
break
}
}
if include {
dirsToScan = append(dirsToScan, candidate)
}
}
// start searching finally
for _, path := range dirsToScan {
f.verbosef("Starting find of %v\n", path)
f.startFind(path)
}
f.threadPool.Wait()
f.verbosef("Scanned filesystem (not using cache) in %v\n", time.Now().Sub(startTime))
}
// isInfoUpToDate tells whether <new> can confirm that results computed at <old> are still valid
func (f *Finder) isInfoUpToDate(old statResponse, new statResponse) (equal bool) {
if old.Inode != new.Inode {
return false
}
if old.ModTime != new.ModTime {
return false
}
if old.Device != new.Device {
return false
}
return true
}
func (f *Finder) wasModified() bool {
return atomic.LoadInt32(&f.modifiedFlag) > 0
}
func (f *Finder) setModified() {
var newVal int32
newVal = 1
atomic.StoreInt32(&f.modifiedFlag, newVal)
}
// sortedDirEntries exports directory entries to facilitate dumping them to the external cache
func (f *Finder) sortedDirEntries() []dirFullInfo {
startTime := time.Now()
nodes := make([]dirFullInfo, 0)
for _, node := range f.nodes.DumpAll() {
if node.ModTime != 0 {
nodes = append(nodes, node)
}
}
discoveryDate := time.Now()
f.verbosef("Generated %v cache entries in %v\n", len(nodes), discoveryDate.Sub(startTime))
less := func(i int, j int) bool {
return nodes[i].Path < nodes[j].Path
}
sort.Slice(nodes, less)
sortDate := time.Now()
f.verbosef("Sorted %v cache entries in %v\n", len(nodes), sortDate.Sub(discoveryDate))
return nodes
}
// serializeDb converts the cache database into a form to save to disk
func (f *Finder) serializeDb() ([]byte, error) {
// sort dir entries
var entryList = f.sortedDirEntries()
// Generate an output file that can be conveniently loaded using the same number of threads
// as were used in this execution (because presumably that will be the number of threads
// used in the next execution too)
// generate header
header := []byte{}
header = append(header, []byte(f.cacheMetadata.Version)...)
header = append(header, lineSeparator)
configDump, err := f.cacheMetadata.Config.Dump()
if err != nil {
return nil, err
}
header = append(header, configDump...)
// serialize individual blocks in parallel
numBlocks := f.numDbLoadingThreads
if numBlocks > len(entryList) {
numBlocks = len(entryList)
}
blocks := make([][]byte, 1+numBlocks)
blocks[0] = header
blockMin := 0
wg := sync.WaitGroup{}
var errLock sync.Mutex
for i := 1; i <= numBlocks; i++ {
// identify next block
blockMax := len(entryList) * i / numBlocks
block := entryList[blockMin:blockMax]
// process block
wg.Add(1)
go func(index int, block []dirFullInfo) {
byteBlock, subErr := f.serializeCacheEntry(block)
f.verbosef("Serialized block %v into %v bytes\n", index, len(byteBlock))
if subErr != nil {
f.verbosef("%v\n", subErr.Error())
errLock.Lock()
err = subErr
errLock.Unlock()
} else {
blocks[index] = byteBlock
}
wg.Done()
}(i, block)
blockMin = blockMax
}
wg.Wait()
if err != nil {
return nil, err
}
content := bytes.Join(blocks, []byte{lineSeparator})
return content, nil
}
// dumpDb saves the cache database to disk
func (f *Finder) dumpDb() error {
startTime := time.Now()
f.verbosef("Dumping db\n")
tempPath := f.DbPath + ".tmp"
bytes, err := f.serializeDb()
if err != nil {
return err
}
serializeDate := time.Now()
f.verbosef("Serialized db in %v\n", serializeDate.Sub(startTime))
// dump file and atomically move
err = f.filesystem.WriteFile(tempPath, bytes, 0777)
if err != nil {
return err
}
err = f.filesystem.Rename(tempPath, f.DbPath)
if err != nil {
return err
}
f.verbosef("Wrote db in %v\n", time.Now().Sub(serializeDate))
return nil
}
// canIgnoreFsErr checks for certain classes of filesystem errors that are safe to ignore
func (f *Finder) canIgnoreFsErr(err error) bool {
pathErr, isPathErr := err.(*os.PathError)
if !isPathErr {
// Don't recognize this error
return false
}
if os.IsPermission(pathErr) {
// Permission errors are ignored:
// https://issuetracker.google.com/37553659
// https://github.com/google/kati/pull/116
return true
}
if pathErr.Err == os.ErrNotExist {
// If a directory doesn't exist, that generally means the cache is out-of-date
return true
}
// Don't recognize this error
return false
}
// onFsError should be called whenever a potentially fatal error is returned from a filesystem call
func (f *Finder) onFsError(path string, err error) {
if !f.canIgnoreFsErr(err) {
// We could send the errors through a channel instead, although that would cause this call
// to block unless we preallocated a sufficient buffer or spawned a reader thread.
// Although it wouldn't be too complicated to spawn a reader thread, it's still slightly
// more convenient to use a lock. Only in an unusual situation should this code be
// invoked anyway.
f.errlock.Lock()
f.fsErrs = append(f.fsErrs, fsErr{path: path, err: err})
f.errlock.Unlock()
}
}
// discardErrsForPrunedPaths removes any errors for paths that are no longer included in the cache
func (f *Finder) discardErrsForPrunedPaths() {
// This function could be somewhat inefficient due to being single-threaded,
// but the length of f.fsErrs should be approximately 0, so it shouldn't take long anyway.
relevantErrs := make([]fsErr, 0, len(f.fsErrs))
for _, fsErr := range f.fsErrs {
path := fsErr.path
node := f.nodes.GetNode(path, false)
if node != nil {
// The path in question wasn't pruned due to a failure to process a parent directory.
// So, the failure to process this path is important
relevantErrs = append(relevantErrs, fsErr)
}
}
f.fsErrs = relevantErrs
}
// getErr returns an error based on previous calls to onFsErr, if any
func (f *Finder) getErr() error {
f.discardErrsForPrunedPaths()
numErrs := len(f.fsErrs)
if numErrs < 1 {
return nil
}
maxNumErrsToInclude := 10
message := ""
if numErrs > maxNumErrsToInclude {
message = fmt.Sprintf("finder encountered %v errors: %v...", numErrs, f.fsErrs[:maxNumErrsToInclude])
} else {
message = fmt.Sprintf("finder encountered %v errors: %v", numErrs, f.fsErrs)
}
return errors.New(message)
}
func (f *Finder) statDirAsync(dir *pathMap) {
node := dir
path := dir.path
f.threadPool.Run(
func() {
updatedStats := f.statDirSync(path)
if !f.isInfoUpToDate(node.statResponse, updatedStats) {
node.mapNode = mapNode{
statResponse: updatedStats,
FileNames: []string{},
}
f.setModified()
if node.statResponse.ModTime != 0 {
// modification time was updated, so re-scan for
// child directories
f.listDirAsync(dir)
}
}
},
)
}
func (f *Finder) statDirSync(path string) statResponse {
fileInfo, err := f.filesystem.Lstat(path)
var stats statResponse
if err != nil {
// possibly record this error
f.onFsError(path, err)
// in case of a failure to stat the directory, treat the directory as missing (modTime = 0)
return stats
}
modTime := fileInfo.ModTime()
stats = statResponse{}
inode, err := f.filesystem.InodeNumber(fileInfo)
if err != nil {
panic(fmt.Sprintf("Could not get inode number of %v: %v\n", path, err.Error()))
}
stats.Inode = inode
device, err := f.filesystem.DeviceNumber(fileInfo)
if err != nil {
panic(fmt.Sprintf("Could not get device number of %v: %v\n", path, err.Error()))
}
stats.Device = device
permissionsChangeTime, err := f.filesystem.PermTime(fileInfo)
if err != nil {
panic(fmt.Sprintf("Could not get permissions modification time (CTime) of %v: %v\n", path, err.Error()))
}
// We're only interested in knowing whether anything about the directory
// has changed since last check, so we use the latest of the two
// modification times (content modification (mtime) and
// permission modification (ctime))
if permissionsChangeTime.After(modTime) {
modTime = permissionsChangeTime
}
stats.ModTime = modTime.UnixNano()
return stats
}
// pruneCacheCandidates removes the items that we don't want to include in our persistent cache
func (f *Finder) pruneCacheCandidates(items *DirEntries) {
for _, fileName := range items.FileNames {
for _, abortedName := range f.cacheMetadata.Config.PruneFiles {
if fileName == abortedName {
items.FileNames = []string{}
items.DirNames = []string{}
return
}
}
}
// remove any files that aren't the ones we want to include
writeIndex := 0
for _, fileName := range items.FileNames {
// include only these files
for _, includedName := range f.cacheMetadata.Config.IncludeFiles {
if fileName == includedName {
items.FileNames[writeIndex] = fileName
writeIndex++
break
}
}
}
// resize
items.FileNames = items.FileNames[:writeIndex]
writeIndex = 0
for _, dirName := range items.DirNames {
items.DirNames[writeIndex] = dirName
// ignore other dirs that are known to not be inputs to the build process
include := true
for _, excludedName := range f.cacheMetadata.Config.ExcludeDirs {
if dirName == excludedName {
// don't include
include = false
break
}
}
if include {
writeIndex++
}
}
// resize
items.DirNames = items.DirNames[:writeIndex]
}
func (f *Finder) listDirsAsync(nodes []*pathMap) {
f.threadPool.Run(
func() {
for i := range nodes {
f.listDirSync(nodes[i])
}
},
)
}
func (f *Finder) listDirAsync(node *pathMap) {
f.threadPool.Run(
func() {
f.listDirSync(node)
},
)
}
func (f *Finder) listDirSync(dir *pathMap) {
path := dir.path
children, err := f.filesystem.ReadDir(path)
if err != nil {
// possibly record this error
f.onFsError(path, err)
// if listing the contents of the directory fails (presumably due to
// permission denied), then treat the directory as empty
children = nil
}
var subdirs []string
var subfiles []string
for _, child := range children {
linkBits := child.Mode() & os.ModeSymlink
isLink := linkBits != 0
if isLink {
childPath := filepath.Join(path, child.Name())
childStat, err := f.filesystem.Stat(childPath)
if err != nil {
// If stat fails this is probably a broken or dangling symlink, treat it as a file.
subfiles = append(subfiles, child.Name())
} else if childStat.IsDir() {
// Skip symlink dirs.
// We don't have to support symlink dirs because
// that would cause duplicates.
} else {
// We do have to support symlink files because the link name might be
// different than the target name
// (for example, Android.bp -> build/soong/root.bp)
subfiles = append(subfiles, child.Name())
}
} else if child.IsDir() {
subdirs = append(subdirs, child.Name())
} else {
subfiles = append(subfiles, child.Name())
}
}
parentNode := dir
entry := &DirEntries{Path: path, DirNames: subdirs, FileNames: subfiles}
f.pruneCacheCandidates(entry)
// create a pathMap node for each relevant subdirectory
relevantChildren := map[string]*pathMap{}
for _, subdirName := range entry.DirNames {
childNode, found := parentNode.children[subdirName]
// if we already knew of this directory, then we already have a request pending to Stat it
// if we didn't already know of this directory, then we must Stat it now
if !found {
childNode = parentNode.newChild(subdirName)
f.statDirAsync(childNode)
}
relevantChildren[subdirName] = childNode
}
// Note that in rare cases, it's possible that we're reducing the set of
// children via this statement, if these are all true:
// 1. we previously had a cache that knew about subdirectories of parentNode
// 2. the user created a prune-file (described in pruneCacheCandidates)
// inside <parentNode>, which specifies that the contents of parentNode
// are to be ignored.
// The fact that it's possible to remove children here means that *pathMap structs
// must not be looked up from f.nodes by filepath (and instead must be accessed by
// direct pointer) until after every listDirSync completes
parentNode.FileNames = entry.FileNames
parentNode.children = relevantChildren
}
// listMatches takes a node and a function that specifies which subdirectories and
// files to include, and listMatches returns the matches
func (f *Finder) listMatches(node *pathMap,
filter WalkFunc) (subDirs []*pathMap, filePaths []string) {
entries := DirEntries{
FileNames: node.FileNames,
}
entries.DirNames = make([]string, 0, len(node.children))
for childName := range node.children {
entries.DirNames = append(entries.DirNames, childName)
}
dirNames, fileNames := filter(entries)
subDirs = []*pathMap{}
filePaths = make([]string, 0, len(fileNames))
for _, fileName := range fileNames {
filePaths = append(filePaths, joinCleanPaths(node.path, fileName))
}
subDirs = make([]*pathMap, 0, len(dirNames))
for _, childName := range dirNames {
child, ok := node.children[childName]
if ok {
subDirs = append(subDirs, child)
}
}
return subDirs, filePaths
}
// findInCacheMultithreaded spawns potentially multiple goroutines with which to search the cache.
func (f *Finder) findInCacheMultithreaded(node *pathMap, filter WalkFunc,
approxNumThreads int) []string {
if approxNumThreads < 2 {
// Done spawning threads; process remaining directories
return f.findInCacheSinglethreaded(node, filter)
}
totalWork := 0
for _, child := range node.children {
totalWork += child.approximateNumDescendents
}
childrenResults := make(chan []string, len(node.children))
subDirs, filePaths := f.listMatches(node, filter)
// process child directories
for _, child := range subDirs {
numChildThreads := approxNumThreads * child.approximateNumDescendents / totalWork
childProcessor := func(child *pathMap) {
childResults := f.findInCacheMultithreaded(child, filter, numChildThreads)
childrenResults <- childResults
}
// If we're allowed to use more than 1 thread to process this directory,
// then instead we use 1 thread for each subdirectory.
// It would be strange to spawn threads for only some subdirectories.
go childProcessor(child)
}
// collect results
for i := 0; i < len(subDirs); i++ {
childResults := <-childrenResults
filePaths = append(filePaths, childResults...)
}
close(childrenResults)
return filePaths
}
// findInCacheSinglethreaded synchronously searches the cache for all matching file paths
// note findInCacheSinglethreaded runs 2X to 4X as fast by being iterative rather than recursive
func (f *Finder) findInCacheSinglethreaded(node *pathMap, filter WalkFunc) []string {
if node == nil {
return []string{}
}
nodes := []*pathMap{node}
matches := []string{}
for len(nodes) > 0 {
currentNode := nodes[0]
nodes = nodes[1:]
subDirs, filePaths := f.listMatches(currentNode, filter)
nodes = append(nodes, subDirs...)
matches = append(matches, filePaths...)
}
return matches
}