| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * This program constructs binary patches for images -- such as boot.img |
| * and recovery.img -- that consist primarily of large chunks of gzipped |
| * data interspersed with uncompressed data. Doing a naive bsdiff of |
| * these files is not useful because small changes in the data lead to |
| * large changes in the compressed bitstream; bsdiff patches of gzipped |
| * data are typically as large as the data itself. |
| * |
| * To patch these usefully, we break the source and target images up into |
| * chunks of two types: "normal" and "gzip". Normal chunks are simply |
| * patched using a plain bsdiff. Gzip chunks are first expanded, then a |
| * bsdiff is applied to the uncompressed data, then the patched data is |
| * gzipped using the same encoder parameters. Patched chunks are |
| * concatenated together to create the output file; the output image |
| * should be *exactly* the same series of bytes as the target image used |
| * originally to generate the patch. |
| * |
| * To work well with this tool, the gzipped sections of the target |
| * image must have been generated using the same deflate encoder that |
| * is available in applypatch, namely, the one in the zlib library. |
| * In practice this means that images should be compressed using the |
| * "minigzip" tool included in the zlib distribution, not the GNU gzip |
| * program. |
| * |
| * An "imgdiff" patch consists of a header describing the chunk structure |
| * of the file and any encoding parameters needed for the gzipped |
| * chunks, followed by N bsdiff patches, one per chunk. |
| * |
| * For a diff to be generated, the source and target images must have the |
| * same "chunk" structure: that is, the same number of gzipped and normal |
| * chunks in the same order. Android boot and recovery images currently |
| * consist of five chunks: a small normal header, a gzipped kernel, a |
| * small normal section, a gzipped ramdisk, and finally a small normal |
| * footer. |
| * |
| * Caveats: we locate gzipped sections within the source and target |
| * images by searching for the byte sequence 1f8b0800: 1f8b is the gzip |
| * magic number; 08 specifies the "deflate" encoding [the only encoding |
| * supported by the gzip standard]; and 00 is the flags byte. We do not |
| * currently support any extra header fields (which would be indicated by |
| * a nonzero flags byte). We also don't handle the case when that byte |
| * sequence appears spuriously in the file. (Note that it would have to |
| * occur spuriously within a normal chunk to be a problem.) |
| * |
| * |
| * The imgdiff patch header looks like this: |
| * |
| * "IMGDIFF1" (8) [magic number and version] |
| * chunk count (4) |
| * for each chunk: |
| * chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}] |
| * if chunk type == CHUNK_NORMAL: |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * if chunk type == CHUNK_GZIP: (version 1 only) |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * source expanded len (8) [size of uncompressed source] |
| * target expected len (8) [size of uncompressed target] |
| * gzip level (4) |
| * method (4) |
| * windowBits (4) |
| * memLevel (4) |
| * strategy (4) |
| * gzip header len (4) |
| * gzip header (gzip header len) |
| * gzip footer (8) |
| * if chunk type == CHUNK_DEFLATE: (version 2 only) |
| * source start (8) |
| * source len (8) |
| * bsdiff patch offset (8) [from start of patch file] |
| * source expanded len (8) [size of uncompressed source] |
| * target expected len (8) [size of uncompressed target] |
| * gzip level (4) |
| * method (4) |
| * windowBits (4) |
| * memLevel (4) |
| * strategy (4) |
| * if chunk type == RAW: (version 2 only) |
| * target len (4) |
| * data (target len) |
| * |
| * All integers are little-endian. "source start" and "source len" |
| * specify the section of the input image that comprises this chunk, |
| * including the gzip header and footer for gzip chunks. "source |
| * expanded len" is the size of the uncompressed source data. "target |
| * expected len" is the size of the uncompressed data after applying |
| * the bsdiff patch. The next five parameters specify the zlib |
| * parameters to be used when compressing the patched data, and the |
| * next three specify the header and footer to be wrapped around the |
| * compressed data to create the output chunk (so that header contents |
| * like the timestamp are recreated exactly). |
| * |
| * After the header there are 'chunk count' bsdiff patches; the offset |
| * of each from the beginning of the file is specified in the header. |
| */ |
| |
| #include <errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/stat.h> |
| #include <unistd.h> |
| |
| #include "zlib.h" |
| #include "imgdiff.h" |
| #include "utils.h" |
| |
| typedef struct { |
| int type; // CHUNK_NORMAL, CHUNK_DEFLATE |
| size_t start; // offset of chunk in original image file |
| |
| size_t len; |
| unsigned char* data; // data to be patched (uncompressed, for deflate chunks) |
| |
| size_t source_start; |
| size_t source_len; |
| |
| // --- for CHUNK_DEFLATE chunks only: --- |
| |
| // original (compressed) deflate data |
| size_t deflate_len; |
| unsigned char* deflate_data; |
| |
| char* filename; // used for zip entries |
| |
| // deflate encoder parameters |
| int level, method, windowBits, memLevel, strategy; |
| |
| size_t source_uncompressed_len; |
| } ImageChunk; |
| |
| typedef struct { |
| int data_offset; |
| int deflate_len; |
| int uncomp_len; |
| char* filename; |
| } ZipFileEntry; |
| |
| static int fileentry_compare(const void* a, const void* b) { |
| int ao = ((ZipFileEntry*)a)->data_offset; |
| int bo = ((ZipFileEntry*)b)->data_offset; |
| if (ao < bo) { |
| return -1; |
| } else if (ao > bo) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| unsigned char* ReadZip(const char* filename, |
| int* num_chunks, ImageChunk** chunks, |
| int include_pseudo_chunk) { |
| struct stat st; |
| if (stat(filename, &st) != 0) { |
| fprintf(stderr, "failed to stat \"%s\": %s\n", filename, strerror(errno)); |
| return NULL; |
| } |
| |
| unsigned char* img = malloc(st.st_size); |
| FILE* f = fopen(filename, "rb"); |
| if (fread(img, 1, st.st_size, f) != st.st_size) { |
| fprintf(stderr, "failed to read \"%s\" %s\n", filename, strerror(errno)); |
| fclose(f); |
| return NULL; |
| } |
| fclose(f); |
| |
| // look for the end-of-central-directory record. |
| |
| int i; |
| for (i = st.st_size-20; i >= 0 && i > st.st_size - 65600; --i) { |
| if (img[i] == 0x50 && img[i+1] == 0x4b && |
| img[i+2] == 0x05 && img[i+3] == 0x06) { |
| break; |
| } |
| } |
| // double-check: this archive consists of a single "disk" |
| if (!(img[i+4] == 0 && img[i+5] == 0 && img[i+6] == 0 && img[i+7] == 0)) { |
| fprintf(stderr, "can't process multi-disk archive\n"); |
| return NULL; |
| } |
| |
| int cdcount = Read2(img+i+8); |
| int cdoffset = Read4(img+i+16); |
| |
| ZipFileEntry* temp_entries = malloc(cdcount * sizeof(ZipFileEntry)); |
| int entrycount = 0; |
| |
| unsigned char* cd = img+cdoffset; |
| for (i = 0; i < cdcount; ++i) { |
| if (!(cd[0] == 0x50 && cd[1] == 0x4b && cd[2] == 0x01 && cd[3] == 0x02)) { |
| fprintf(stderr, "bad central directory entry %d\n", i); |
| return NULL; |
| } |
| |
| int clen = Read4(cd+20); // compressed len |
| int ulen = Read4(cd+24); // uncompressed len |
| int nlen = Read2(cd+28); // filename len |
| int xlen = Read2(cd+30); // extra field len |
| int mlen = Read2(cd+32); // file comment len |
| int hoffset = Read4(cd+42); // local header offset |
| |
| char* filename = malloc(nlen+1); |
| memcpy(filename, cd+46, nlen); |
| filename[nlen] = '\0'; |
| |
| int method = Read2(cd+10); |
| |
| cd += 46 + nlen + xlen + mlen; |
| |
| if (method != 8) { // 8 == deflate |
| free(filename); |
| continue; |
| } |
| |
| unsigned char* lh = img + hoffset; |
| |
| if (!(lh[0] == 0x50 && lh[1] == 0x4b && lh[2] == 0x03 && lh[3] == 0x04)) { |
| fprintf(stderr, "bad local file header entry %d\n", i); |
| return NULL; |
| } |
| |
| if (Read2(lh+26) != nlen || memcmp(lh+30, filename, nlen) != 0) { |
| fprintf(stderr, "central dir filename doesn't match local header\n"); |
| return NULL; |
| } |
| |
| xlen = Read2(lh+28); // extra field len; might be different from CD entry? |
| |
| temp_entries[entrycount].data_offset = hoffset+30+nlen+xlen; |
| temp_entries[entrycount].deflate_len = clen; |
| temp_entries[entrycount].uncomp_len = ulen; |
| temp_entries[entrycount].filename = filename; |
| ++entrycount; |
| } |
| |
| qsort(temp_entries, entrycount, sizeof(ZipFileEntry), fileentry_compare); |
| |
| #if 0 |
| printf("found %d deflated entries\n", entrycount); |
| for (i = 0; i < entrycount; ++i) { |
| printf("off %10d len %10d unlen %10d %p %s\n", |
| temp_entries[i].data_offset, |
| temp_entries[i].deflate_len, |
| temp_entries[i].uncomp_len, |
| temp_entries[i].filename, |
| temp_entries[i].filename); |
| } |
| #endif |
| |
| *num_chunks = 0; |
| *chunks = malloc((entrycount*2+2) * sizeof(ImageChunk)); |
| ImageChunk* curr = *chunks; |
| |
| if (include_pseudo_chunk) { |
| curr->type = CHUNK_NORMAL; |
| curr->start = 0; |
| curr->len = st.st_size; |
| curr->data = img; |
| curr->filename = NULL; |
| ++curr; |
| ++*num_chunks; |
| } |
| |
| int pos = 0; |
| int nextentry = 0; |
| |
| while (pos < st.st_size) { |
| if (nextentry < entrycount && pos == temp_entries[nextentry].data_offset) { |
| curr->type = CHUNK_DEFLATE; |
| curr->start = pos; |
| curr->deflate_len = temp_entries[nextentry].deflate_len; |
| curr->deflate_data = img + pos; |
| curr->filename = temp_entries[nextentry].filename; |
| |
| curr->len = temp_entries[nextentry].uncomp_len; |
| curr->data = malloc(curr->len); |
| |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = curr->deflate_len; |
| strm.next_in = curr->deflate_data; |
| |
| // -15 means we are decoding a 'raw' deflate stream; zlib will |
| // not expect zlib headers. |
| int ret = inflateInit2(&strm, -15); |
| |
| strm.avail_out = curr->len; |
| strm.next_out = curr->data; |
| ret = inflate(&strm, Z_NO_FLUSH); |
| if (ret != Z_STREAM_END) { |
| fprintf(stderr, "failed to inflate \"%s\"; %d\n", curr->filename, ret); |
| return NULL; |
| } |
| |
| inflateEnd(&strm); |
| |
| pos += curr->deflate_len; |
| ++nextentry; |
| ++*num_chunks; |
| ++curr; |
| continue; |
| } |
| |
| // use a normal chunk to take all the data up to the start of the |
| // next deflate section. |
| |
| curr->type = CHUNK_NORMAL; |
| curr->start = pos; |
| if (nextentry < entrycount) { |
| curr->len = temp_entries[nextentry].data_offset - pos; |
| } else { |
| curr->len = st.st_size - pos; |
| } |
| curr->data = img + pos; |
| curr->filename = NULL; |
| pos += curr->len; |
| |
| ++*num_chunks; |
| ++curr; |
| } |
| |
| free(temp_entries); |
| return img; |
| } |
| |
| /* |
| * Read the given file and break it up into chunks, putting the number |
| * of chunks and their info in *num_chunks and **chunks, |
| * respectively. Returns a malloc'd block of memory containing the |
| * contents of the file; various pointers in the output chunk array |
| * will point into this block of memory. The caller should free the |
| * return value when done with all the chunks. Returns NULL on |
| * failure. |
| */ |
| unsigned char* ReadImage(const char* filename, |
| int* num_chunks, ImageChunk** chunks) { |
| struct stat st; |
| if (stat(filename, &st) != 0) { |
| fprintf(stderr, "failed to stat \"%s\": %s\n", filename, strerror(errno)); |
| return NULL; |
| } |
| |
| unsigned char* img = malloc(st.st_size + 4); |
| FILE* f = fopen(filename, "rb"); |
| if (fread(img, 1, st.st_size, f) != st.st_size) { |
| fprintf(stderr, "failed to read \"%s\" %s\n", filename, strerror(errno)); |
| fclose(f); |
| return NULL; |
| } |
| fclose(f); |
| |
| // append 4 zero bytes to the data so we can always search for the |
| // four-byte string 1f8b0800 starting at any point in the actual |
| // file data, without special-casing the end of the data. |
| memset(img+st.st_size, 0, 4); |
| |
| size_t pos = 0; |
| |
| *num_chunks = 0; |
| *chunks = NULL; |
| |
| while (pos < st.st_size) { |
| unsigned char* p = img+pos; |
| |
| if (st.st_size - pos >= 4 && |
| p[0] == 0x1f && p[1] == 0x8b && |
| p[2] == 0x08 && // deflate compression |
| p[3] == 0x00) { // no header flags |
| // 'pos' is the offset of the start of a gzip chunk. |
| |
| *num_chunks += 3; |
| *chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk)); |
| ImageChunk* curr = *chunks + (*num_chunks-3); |
| |
| // create a normal chunk for the header. |
| curr->start = pos; |
| curr->type = CHUNK_NORMAL; |
| curr->len = GZIP_HEADER_LEN; |
| curr->data = p; |
| |
| pos += curr->len; |
| p += curr->len; |
| ++curr; |
| |
| curr->type = CHUNK_DEFLATE; |
| curr->filename = NULL; |
| |
| // We must decompress this chunk in order to discover where it |
| // ends, and so we can put the uncompressed data and its length |
| // into curr->data and curr->len. |
| |
| size_t allocated = 32768; |
| curr->len = 0; |
| curr->data = malloc(allocated); |
| curr->start = pos; |
| curr->deflate_data = p; |
| |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = st.st_size - pos; |
| strm.next_in = p; |
| |
| // -15 means we are decoding a 'raw' deflate stream; zlib will |
| // not expect zlib headers. |
| int ret = inflateInit2(&strm, -15); |
| |
| do { |
| strm.avail_out = allocated - curr->len; |
| strm.next_out = curr->data + curr->len; |
| ret = inflate(&strm, Z_NO_FLUSH); |
| curr->len = allocated - strm.avail_out; |
| if (strm.avail_out == 0) { |
| allocated *= 2; |
| curr->data = realloc(curr->data, allocated); |
| } |
| } while (ret != Z_STREAM_END); |
| |
| curr->deflate_len = st.st_size - strm.avail_in - pos; |
| inflateEnd(&strm); |
| pos += curr->deflate_len; |
| p += curr->deflate_len; |
| ++curr; |
| |
| // create a normal chunk for the footer |
| |
| curr->type = CHUNK_NORMAL; |
| curr->start = pos; |
| curr->len = GZIP_FOOTER_LEN; |
| curr->data = img+pos; |
| |
| pos += curr->len; |
| p += curr->len; |
| ++curr; |
| |
| // The footer (that we just skipped over) contains the size of |
| // the uncompressed data. Double-check to make sure that it |
| // matches the size of the data we got when we actually did |
| // the decompression. |
| size_t footer_size = Read4(p-4); |
| if (footer_size != curr[-2].len) { |
| fprintf(stderr, "Error: footer size %d != decompressed size %d\n", |
| footer_size, curr[-2].len); |
| free(img); |
| return NULL; |
| } |
| } else { |
| // Reallocate the list for every chunk; we expect the number of |
| // chunks to be small (5 for typical boot and recovery images). |
| ++*num_chunks; |
| *chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk)); |
| ImageChunk* curr = *chunks + (*num_chunks-1); |
| curr->start = pos; |
| |
| // 'pos' is not the offset of the start of a gzip chunk, so scan |
| // forward until we find a gzip header. |
| curr->type = CHUNK_NORMAL; |
| curr->data = p; |
| |
| for (curr->len = 0; curr->len < (st.st_size - pos); ++curr->len) { |
| if (p[curr->len] == 0x1f && |
| p[curr->len+1] == 0x8b && |
| p[curr->len+2] == 0x08 && |
| p[curr->len+3] == 0x00) { |
| break; |
| } |
| } |
| pos += curr->len; |
| } |
| } |
| |
| return img; |
| } |
| |
| #define BUFFER_SIZE 32768 |
| |
| /* |
| * Takes the uncompressed data stored in the chunk, compresses it |
| * using the zlib parameters stored in the chunk, and checks that it |
| * matches exactly the compressed data we started with (also stored in |
| * the chunk). Return 0 on success. |
| */ |
| int TryReconstruction(ImageChunk* chunk, unsigned char* out) { |
| size_t p = 0; |
| |
| #if 0 |
| fprintf(stderr, "trying %d %d %d %d %d\n", |
| chunk->level, chunk->method, chunk->windowBits, |
| chunk->memLevel, chunk->strategy); |
| #endif |
| |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = chunk->len; |
| strm.next_in = chunk->data; |
| int ret; |
| ret = deflateInit2(&strm, chunk->level, chunk->method, chunk->windowBits, |
| chunk->memLevel, chunk->strategy); |
| do { |
| strm.avail_out = BUFFER_SIZE; |
| strm.next_out = out; |
| ret = deflate(&strm, Z_FINISH); |
| size_t have = BUFFER_SIZE - strm.avail_out; |
| |
| if (memcmp(out, chunk->deflate_data+p, have) != 0) { |
| // mismatch; data isn't the same. |
| deflateEnd(&strm); |
| return -1; |
| } |
| p += have; |
| } while (ret != Z_STREAM_END); |
| deflateEnd(&strm); |
| if (p != chunk->deflate_len) { |
| // mismatch; ran out of data before we should have. |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Verify that we can reproduce exactly the same compressed data that |
| * we started with. Sets the level, method, windowBits, memLevel, and |
| * strategy fields in the chunk to the encoding parameters needed to |
| * produce the right output. Returns 0 on success. |
| */ |
| int ReconstructDeflateChunk(ImageChunk* chunk) { |
| if (chunk->type != CHUNK_DEFLATE) { |
| fprintf(stderr, "attempt to reconstruct non-deflate chunk\n"); |
| return -1; |
| } |
| |
| size_t p = 0; |
| unsigned char* out = malloc(BUFFER_SIZE); |
| |
| // We only check two combinations of encoder parameters: level 6 |
| // (the default) and level 9 (the maximum). |
| for (chunk->level = 6; chunk->level <= 9; chunk->level += 3) { |
| chunk->windowBits = -15; // 32kb window; negative to indicate a raw stream. |
| chunk->memLevel = 8; // the default value. |
| chunk->method = Z_DEFLATED; |
| chunk->strategy = Z_DEFAULT_STRATEGY; |
| |
| if (TryReconstruction(chunk, out) == 0) { |
| free(out); |
| return 0; |
| } |
| } |
| |
| free(out); |
| return -1; |
| } |
| |
| /* |
| * Given source and target chunks, compute a bsdiff patch between them |
| * by running bsdiff in a subprocess. Return the patch data, placing |
| * its length in *size. Return NULL on failure. We expect the bsdiff |
| * program to be in the path. |
| */ |
| unsigned char* MakePatch(ImageChunk* src, ImageChunk* tgt, size_t* size) { |
| if (tgt->type == CHUNK_NORMAL) { |
| if (tgt->len <= 160) { |
| tgt->type = CHUNK_RAW; |
| *size = tgt->len; |
| return tgt->data; |
| } |
| } |
| |
| char stemp[] = "/tmp/imgdiff-src-XXXXXX"; |
| char ttemp[] = "/tmp/imgdiff-tgt-XXXXXX"; |
| char ptemp[] = "/tmp/imgdiff-patch-XXXXXX"; |
| mkstemp(stemp); |
| mkstemp(ttemp); |
| mkstemp(ptemp); |
| |
| FILE* f = fopen(stemp, "wb"); |
| if (f == NULL) { |
| fprintf(stderr, "failed to open src chunk %s: %s\n", |
| stemp, strerror(errno)); |
| return NULL; |
| } |
| if (fwrite(src->data, 1, src->len, f) != src->len) { |
| fprintf(stderr, "failed to write src chunk to %s: %s\n", |
| stemp, strerror(errno)); |
| return NULL; |
| } |
| fclose(f); |
| |
| f = fopen(ttemp, "wb"); |
| if (f == NULL) { |
| fprintf(stderr, "failed to open tgt chunk %s: %s\n", |
| ttemp, strerror(errno)); |
| return NULL; |
| } |
| if (fwrite(tgt->data, 1, tgt->len, f) != tgt->len) { |
| fprintf(stderr, "failed to write tgt chunk to %s: %s\n", |
| ttemp, strerror(errno)); |
| return NULL; |
| } |
| fclose(f); |
| |
| char cmd[200]; |
| sprintf(cmd, "bsdiff %s %s %s", stemp, ttemp, ptemp); |
| if (system(cmd) != 0) { |
| fprintf(stderr, "failed to run bsdiff: %s\n", strerror(errno)); |
| return NULL; |
| } |
| |
| struct stat st; |
| if (stat(ptemp, &st) != 0) { |
| fprintf(stderr, "failed to stat patch file %s: %s\n", |
| ptemp, strerror(errno)); |
| return NULL; |
| } |
| |
| unsigned char* data = malloc(st.st_size); |
| |
| if (tgt->type == CHUNK_NORMAL && tgt->len <= st.st_size) { |
| unlink(stemp); |
| unlink(ttemp); |
| unlink(ptemp); |
| |
| tgt->type = CHUNK_RAW; |
| *size = tgt->len; |
| return tgt->data; |
| } |
| |
| *size = st.st_size; |
| |
| f = fopen(ptemp, "rb"); |
| if (f == NULL) { |
| fprintf(stderr, "failed to open patch %s: %s\n", ptemp, strerror(errno)); |
| return NULL; |
| } |
| if (fread(data, 1, st.st_size, f) != st.st_size) { |
| fprintf(stderr, "failed to read patch %s: %s\n", ptemp, strerror(errno)); |
| return NULL; |
| } |
| fclose(f); |
| |
| unlink(stemp); |
| unlink(ttemp); |
| unlink(ptemp); |
| |
| tgt->source_start = src->start; |
| switch (tgt->type) { |
| case CHUNK_NORMAL: |
| tgt->source_len = src->len; |
| break; |
| case CHUNK_DEFLATE: |
| tgt->source_len = src->deflate_len; |
| tgt->source_uncompressed_len = src->len; |
| break; |
| } |
| |
| return data; |
| } |
| |
| /* |
| * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob |
| * of uninterpreted data). The resulting patch will likely be about |
| * as big as the target file, but it lets us handle the case of images |
| * where some gzip chunks are reconstructible but others aren't (by |
| * treating the ones that aren't as normal chunks). |
| */ |
| void ChangeDeflateChunkToNormal(ImageChunk* ch) { |
| if (ch->type != CHUNK_DEFLATE) return; |
| ch->type = CHUNK_NORMAL; |
| free(ch->data); |
| ch->data = ch->deflate_data; |
| ch->len = ch->deflate_len; |
| } |
| |
| /* |
| * Return true if the data in the chunk is identical (including the |
| * compressed representation, for gzip chunks). |
| */ |
| int AreChunksEqual(ImageChunk* a, ImageChunk* b) { |
| if (a->type != b->type) return 0; |
| |
| switch (a->type) { |
| case CHUNK_NORMAL: |
| return a->len == b->len && memcmp(a->data, b->data, a->len) == 0; |
| |
| case CHUNK_DEFLATE: |
| return a->deflate_len == b->deflate_len && |
| memcmp(a->deflate_data, b->deflate_data, a->deflate_len) == 0; |
| |
| default: |
| fprintf(stderr, "unknown chunk type %d\n", a->type); |
| return 0; |
| } |
| } |
| |
| /* |
| * Look for runs of adjacent normal chunks and compress them down into |
| * a single chunk. (Such runs can be produced when deflate chunks are |
| * changed to normal chunks.) |
| */ |
| void MergeAdjacentNormalChunks(ImageChunk* chunks, int* num_chunks) { |
| int out = 0; |
| int in_start = 0, in_end; |
| while (in_start < *num_chunks) { |
| if (chunks[in_start].type != CHUNK_NORMAL) { |
| in_end = in_start+1; |
| } else { |
| // in_start is a normal chunk. Look for a run of normal chunks |
| // that constitute a solid block of data (ie, each chunk begins |
| // where the previous one ended). |
| for (in_end = in_start+1; |
| in_end < *num_chunks && chunks[in_end].type == CHUNK_NORMAL && |
| (chunks[in_end].start == |
| chunks[in_end-1].start + chunks[in_end-1].len && |
| chunks[in_end].data == |
| chunks[in_end-1].data + chunks[in_end-1].len); |
| ++in_end); |
| } |
| |
| if (in_end == in_start+1) { |
| #if 0 |
| printf("chunk %d is now %d\n", in_start, out); |
| #endif |
| if (out != in_start) { |
| memcpy(chunks+out, chunks+in_start, sizeof(ImageChunk)); |
| } |
| } else { |
| #if 0 |
| printf("collapse normal chunks %d-%d into %d\n", in_start, in_end-1, out); |
| #endif |
| |
| // Merge chunks [in_start, in_end-1] into one chunk. Since the |
| // data member of each chunk is just a pointer into an in-memory |
| // copy of the file, this can be done without recopying (the |
| // output chunk has the first chunk's start location and data |
| // pointer, and length equal to the sum of the input chunk |
| // lengths). |
| chunks[out].type = CHUNK_NORMAL; |
| chunks[out].start = chunks[in_start].start; |
| chunks[out].data = chunks[in_start].data; |
| chunks[out].len = chunks[in_end-1].len + |
| (chunks[in_end-1].start - chunks[in_start].start); |
| } |
| |
| ++out; |
| in_start = in_end; |
| } |
| *num_chunks = out; |
| } |
| |
| ImageChunk* FindChunkByName(const char* name, |
| ImageChunk* chunks, int num_chunks) { |
| int i; |
| for (i = 0; i < num_chunks; ++i) { |
| if (chunks[i].type == CHUNK_DEFLATE && chunks[i].filename && |
| strcmp(name, chunks[i].filename) == 0) { |
| return chunks+i; |
| } |
| } |
| return NULL; |
| } |
| |
| int main(int argc, char** argv) { |
| if (argc != 4 && argc != 5) { |
| usage: |
| fprintf(stderr, "usage: %s [-z] <src-img> <tgt-img> <patch-file>\n", |
| argv[0]); |
| return 2; |
| } |
| |
| int zip_mode = 0; |
| |
| if (strcmp(argv[1], "-z") == 0) { |
| zip_mode = 1; |
| --argc; |
| ++argv; |
| } |
| |
| |
| int num_src_chunks; |
| ImageChunk* src_chunks; |
| int num_tgt_chunks; |
| ImageChunk* tgt_chunks; |
| int i; |
| |
| if (zip_mode) { |
| if (ReadZip(argv[1], &num_src_chunks, &src_chunks, 1) == NULL) { |
| fprintf(stderr, "failed to break apart source zip file\n"); |
| return 1; |
| } |
| if (ReadZip(argv[2], &num_tgt_chunks, &tgt_chunks, 0) == NULL) { |
| fprintf(stderr, "failed to break apart target zip file\n"); |
| return 1; |
| } |
| } else { |
| if (ReadImage(argv[1], &num_src_chunks, &src_chunks) == NULL) { |
| fprintf(stderr, "failed to break apart source image\n"); |
| return 1; |
| } |
| if (ReadImage(argv[2], &num_tgt_chunks, &tgt_chunks) == NULL) { |
| fprintf(stderr, "failed to break apart target image\n"); |
| return 1; |
| } |
| |
| // Verify that the source and target images have the same chunk |
| // structure (ie, the same sequence of deflate and normal chunks). |
| |
| if (num_src_chunks != num_tgt_chunks) { |
| fprintf(stderr, "source and target don't have same number of chunks!\n"); |
| return 1; |
| } |
| for (i = 0; i < num_src_chunks; ++i) { |
| if (src_chunks[i].type != tgt_chunks[i].type) { |
| fprintf(stderr, "source and target don't have same chunk " |
| "structure! (chunk %d)\n", i); |
| return 1; |
| } |
| } |
| } |
| |
| for (i = 0; i < num_tgt_chunks; ++i) { |
| if (tgt_chunks[i].type == CHUNK_DEFLATE) { |
| // Confirm that given the uncompressed chunk data in the target, we |
| // can recompress it and get exactly the same bits as are in the |
| // input target image. If this fails, treat the chunk as a normal |
| // non-deflated chunk. |
| if (ReconstructDeflateChunk(tgt_chunks+i) < 0) { |
| printf("failed to reconstruct target deflate chunk %d [%s]; " |
| "treating as normal\n", i, tgt_chunks[i].filename); |
| ChangeDeflateChunkToNormal(tgt_chunks+i); |
| if (zip_mode) { |
| ImageChunk* src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks); |
| if (src) { |
| ChangeDeflateChunkToNormal(src); |
| } |
| } else { |
| ChangeDeflateChunkToNormal(src_chunks+i); |
| } |
| continue; |
| } |
| |
| // If two deflate chunks are identical (eg, the kernel has not |
| // changed between two builds), treat them as normal chunks. |
| // This makes applypatch much faster -- it can apply a trivial |
| // patch to the compressed data, rather than uncompressing and |
| // recompressing to apply the trivial patch to the uncompressed |
| // data. |
| ImageChunk* src; |
| if (zip_mode) { |
| src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks); |
| } else { |
| src = src_chunks+i; |
| } |
| |
| if (src == NULL || AreChunksEqual(tgt_chunks+i, src)) { |
| ChangeDeflateChunkToNormal(tgt_chunks+i); |
| if (src) { |
| ChangeDeflateChunkToNormal(src); |
| } |
| } |
| } |
| } |
| |
| // Merging neighboring normal chunks. |
| if (zip_mode) { |
| // For zips, we only need to do this to the target: deflated |
| // chunks are matched via filename, and normal chunks are patched |
| // using the entire source file as the source. |
| MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks); |
| } else { |
| // For images, we need to maintain the parallel structure of the |
| // chunk lists, so do the merging in both the source and target |
| // lists. |
| MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks); |
| MergeAdjacentNormalChunks(src_chunks, &num_src_chunks); |
| if (num_src_chunks != num_tgt_chunks) { |
| // This shouldn't happen. |
| fprintf(stderr, "merging normal chunks went awry\n"); |
| return 1; |
| } |
| } |
| |
| // Compute bsdiff patches for each chunk's data (the uncompressed |
| // data, in the case of deflate chunks). |
| |
| printf("Construct patches for %d chunks...\n", num_tgt_chunks); |
| unsigned char** patch_data = malloc(num_tgt_chunks * sizeof(unsigned char*)); |
| size_t* patch_size = malloc(num_tgt_chunks * sizeof(size_t)); |
| for (i = 0; i < num_tgt_chunks; ++i) { |
| if (zip_mode) { |
| ImageChunk* src; |
| if (tgt_chunks[i].type == CHUNK_DEFLATE && |
| (src = FindChunkByName(tgt_chunks[i].filename, src_chunks, |
| num_src_chunks))) { |
| patch_data[i] = MakePatch(src, tgt_chunks+i, patch_size+i); |
| } else { |
| patch_data[i] = MakePatch(src_chunks, tgt_chunks+i, patch_size+i); |
| } |
| } else { |
| patch_data[i] = MakePatch(src_chunks+i, tgt_chunks+i, patch_size+i); |
| } |
| printf("patch %3d is %d bytes (of %d)\n", |
| i, patch_size[i], tgt_chunks[i].source_len); |
| } |
| |
| // Figure out how big the imgdiff file header is going to be, so |
| // that we can correctly compute the offset of each bsdiff patch |
| // within the file. |
| |
| size_t total_header_size = 12; |
| for (i = 0; i < num_tgt_chunks; ++i) { |
| total_header_size += 4; |
| switch (tgt_chunks[i].type) { |
| case CHUNK_NORMAL: |
| total_header_size += 8*3; |
| break; |
| case CHUNK_DEFLATE: |
| total_header_size += 8*5 + 4*5; |
| break; |
| case CHUNK_RAW: |
| total_header_size += 4 + patch_size[i]; |
| break; |
| } |
| } |
| |
| size_t offset = total_header_size; |
| |
| FILE* f = fopen(argv[3], "wb"); |
| |
| // Write out the headers. |
| |
| fwrite("IMGDIFF2", 1, 8, f); |
| Write4(num_tgt_chunks, f); |
| for (i = 0; i < num_tgt_chunks; ++i) { |
| Write4(tgt_chunks[i].type, f); |
| |
| switch (tgt_chunks[i].type) { |
| case CHUNK_NORMAL: |
| printf("chunk %3d: normal (%10d, %10d) %10d\n", i, |
| tgt_chunks[i].start, tgt_chunks[i].len, patch_size[i]); |
| Write8(tgt_chunks[i].source_start, f); |
| Write8(tgt_chunks[i].source_len, f); |
| Write8(offset, f); |
| offset += patch_size[i]; |
| break; |
| |
| case CHUNK_DEFLATE: |
| printf("chunk %3d: deflate (%10d, %10d) %10d %s\n", i, |
| tgt_chunks[i].start, tgt_chunks[i].deflate_len, patch_size[i], |
| tgt_chunks[i].filename); |
| Write8(tgt_chunks[i].source_start, f); |
| Write8(tgt_chunks[i].source_len, f); |
| Write8(offset, f); |
| Write8(tgt_chunks[i].source_uncompressed_len, f); |
| Write8(tgt_chunks[i].len, f); |
| Write4(tgt_chunks[i].level, f); |
| Write4(tgt_chunks[i].method, f); |
| Write4(tgt_chunks[i].windowBits, f); |
| Write4(tgt_chunks[i].memLevel, f); |
| Write4(tgt_chunks[i].strategy, f); |
| offset += patch_size[i]; |
| break; |
| |
| case CHUNK_RAW: |
| printf("chunk %3d: raw (%10d, %10d)\n", i, |
| tgt_chunks[i].start, tgt_chunks[i].len); |
| Write4(patch_size[i], f); |
| fwrite(patch_data[i], 1, patch_size[i], f); |
| break; |
| } |
| } |
| |
| // Append each chunk's bsdiff patch, in order. |
| |
| for (i = 0; i < num_tgt_chunks; ++i) { |
| if (tgt_chunks[i].type != CHUNK_RAW) { |
| fwrite(patch_data[i], 1, patch_size[i], f); |
| } |
| } |
| |
| fclose(f); |
| |
| return 0; |
| } |