blob: 75b586d4a154f8f762c0db747928cd7ea032cdde [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "recovery_utils/roots.h"
#include <fcntl.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/mount.h>
#include <iostream>
#include <string>
#include <vector>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/unique_fd.h>
#include <cryptfs.h>
#include <ext4_utils/wipe.h>
#include <fs_mgr.h>
#include <fs_mgr/roots.h>
#include "otautil/sysutil.h"
using android::fs_mgr::Fstab;
using android::fs_mgr::FstabEntry;
using android::fs_mgr::ReadDefaultFstab;
static Fstab fstab;
constexpr const char* CACHE_ROOT = "/cache";
void load_volume_table() {
if (!ReadDefaultFstab(&fstab)) {
LOG(ERROR) << "Failed to read default fstab";
return;
}
fstab.emplace_back(FstabEntry{
.blk_device = "ramdisk",
.mount_point = "/tmp",
.fs_type = "ramdisk",
.length = 0,
});
std::cout << "recovery filesystem table" << std::endl << "=========================" << std::endl;
for (size_t i = 0; i < fstab.size(); ++i) {
const auto& entry = fstab[i];
std::cout << " " << i << " " << entry.mount_point << " "
<< " " << entry.fs_type << " " << entry.blk_device << " " << entry.length
<< std::endl;
}
std::cout << std::endl;
}
Volume* volume_for_mount_point(const std::string& mount_point) {
return android::fs_mgr::GetEntryForMountPoint(&fstab, mount_point);
}
// Mount the volume specified by path at the given mount_point.
int ensure_path_mounted_at(const std::string& path, const std::string& mount_point) {
return android::fs_mgr::EnsurePathMounted(&fstab, path, mount_point) ? 0 : -1;
}
int ensure_path_mounted(const std::string& path) {
// Mount at the default mount point.
return android::fs_mgr::EnsurePathMounted(&fstab, path) ? 0 : -1;
}
int ensure_path_unmounted(const std::string& path) {
return android::fs_mgr::EnsurePathUnmounted(&fstab, path) ? 0 : -1;
}
int ensure_volume_unmounted(const std::string& blk_device) {
android::fs_mgr::Fstab mounted_fstab;
if (!android::fs_mgr::ReadFstabFromFile("/proc/mounts", &mounted_fstab)) {
LOG(ERROR) << "Failed to read /proc/mounts";
return -1;
}
/* find any entries with the volume */
for (auto& entry : mounted_fstab) {
if (entry.blk_device == blk_device) {
int result = umount(entry.mount_point.c_str());
if (result == -1) {
LOG(ERROR) << "Failed to unmount " << blk_device << " from " << entry.mount_point << ": "
<< errno;
return -1;
}
}
}
return 0;
}
static int exec_cmd(const std::vector<std::string>& args) {
CHECK(!args.empty());
auto argv = StringVectorToNullTerminatedArray(args);
pid_t child;
if ((child = fork()) == 0) {
execv(argv[0], argv.data());
_exit(EXIT_FAILURE);
}
int status;
waitpid(child, &status, 0);
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
LOG(ERROR) << args[0] << " failed with status " << WEXITSTATUS(status);
}
return WEXITSTATUS(status);
}
static int64_t get_file_size(int fd, uint64_t reserve_len) {
struct stat buf;
int ret = fstat(fd, &buf);
if (ret) return 0;
int64_t computed_size;
if (S_ISREG(buf.st_mode)) {
computed_size = buf.st_size - reserve_len;
} else if (S_ISBLK(buf.st_mode)) {
uint64_t block_device_size = get_block_device_size(fd);
if (block_device_size < reserve_len ||
block_device_size > std::numeric_limits<int64_t>::max()) {
computed_size = 0;
} else {
computed_size = block_device_size - reserve_len;
}
} else {
computed_size = 0;
}
return computed_size;
}
int format_volume(const std::string& volume, const std::string& directory) {
const FstabEntry* v = android::fs_mgr::GetEntryForPath(&fstab, volume);
if (v == nullptr) {
LOG(ERROR) << "unknown volume \"" << volume << "\"";
return -1;
}
if (v->fs_type == "ramdisk") {
LOG(ERROR) << "can't format_volume \"" << volume << "\"";
return -1;
}
if (v->mount_point != volume) {
LOG(ERROR) << "can't give path \"" << volume << "\" to format_volume";
return -1;
}
if (ensure_path_unmounted(volume) != 0) {
LOG(ERROR) << "format_volume: Failed to unmount \"" << v->mount_point << "\"";
return -1;
}
if (v->fs_type != "ext4" && v->fs_type != "f2fs") {
LOG(ERROR) << "format_volume: fs_type \"" << v->fs_type << "\" unsupported";
return -1;
}
bool needs_casefold = false;
bool needs_projid = false;
if (volume == "/data") {
needs_casefold = android::base::GetBoolProperty("external_storage.casefold.enabled", false);
needs_projid = android::base::GetBoolProperty("external_storage.projid.enabled", false);
}
// If there's a key_loc that looks like a path, it should be a block device for storing encryption
// metadata. Wipe it too.
if (!v->key_loc.empty() && v->key_loc[0] == '/') {
LOG(INFO) << "Wiping " << v->key_loc;
int fd = open(v->key_loc.c_str(), O_WRONLY | O_CREAT, 0644);
if (fd == -1) {
PLOG(ERROR) << "format_volume: Failed to open " << v->key_loc;
return -1;
}
wipe_block_device(fd, get_file_size(fd));
close(fd);
}
int64_t length = 0;
if (v->length > 0) {
length = v->length;
} else if (v->length < 0 || v->key_loc == "footer") {
android::base::unique_fd fd(open(v->blk_device.c_str(), O_RDONLY));
if (fd == -1) {
PLOG(ERROR) << "format_volume: failed to open " << v->blk_device;
return -1;
}
length = get_file_size(fd.get(), v->length ? -v->length : CRYPT_FOOTER_OFFSET);
if (length <= 0) {
LOG(ERROR) << "get_file_size: invalid size " << length << " for " << v->blk_device;
return -1;
}
}
if (v->fs_type == "ext4") {
static constexpr int kBlockSize = 4096;
std::vector<std::string> mke2fs_args = {
"/system/bin/mke2fs", "-F", "-t", "ext4", "-b", std::to_string(kBlockSize),
};
// Project ID's require wider inodes. The Quotas themselves are enabled by tune2fs on boot.
if (needs_projid) {
mke2fs_args.push_back("-I");
mke2fs_args.push_back("512");
}
if (v->fs_mgr_flags.ext_meta_csum) {
mke2fs_args.push_back("-O");
mke2fs_args.push_back("metadata_csum");
mke2fs_args.push_back("-O");
mke2fs_args.push_back("64bit");
mke2fs_args.push_back("-O");
mke2fs_args.push_back("extent");
}
int raid_stride = v->logical_blk_size / kBlockSize;
int raid_stripe_width = v->erase_blk_size / kBlockSize;
// stride should be the max of 8KB and logical block size
if (v->logical_blk_size != 0 && v->logical_blk_size < 8192) {
raid_stride = 8192 / kBlockSize;
}
if (v->erase_blk_size != 0 && v->logical_blk_size != 0) {
mke2fs_args.push_back("-E");
mke2fs_args.push_back(
android::base::StringPrintf("stride=%d,stripe-width=%d", raid_stride, raid_stripe_width));
}
mke2fs_args.push_back(v->blk_device);
if (length != 0) {
mke2fs_args.push_back(std::to_string(length / kBlockSize));
}
int result = exec_cmd(mke2fs_args);
if (result == 0 && !directory.empty()) {
std::vector<std::string> e2fsdroid_args = {
"/system/bin/e2fsdroid", "-e", "-f", directory, "-a", volume, v->blk_device,
};
result = exec_cmd(e2fsdroid_args);
}
if (result != 0) {
PLOG(ERROR) << "format_volume: Failed to make ext4 on " << v->blk_device;
return -1;
}
return 0;
}
// Has to be f2fs because we checked earlier.
static constexpr int kSectorSize = 4096;
std::vector<std::string> make_f2fs_cmd = {
"/system/bin/make_f2fs",
"-g",
"android",
};
if (needs_projid) {
make_f2fs_cmd.push_back("-O");
make_f2fs_cmd.push_back("project_quota,extra_attr");
}
if (needs_casefold) {
make_f2fs_cmd.push_back("-O");
make_f2fs_cmd.push_back("casefold");
make_f2fs_cmd.push_back("-C");
make_f2fs_cmd.push_back("utf8");
}
if (v->fs_mgr_flags.fs_compress) {
make_f2fs_cmd.push_back("-O");
make_f2fs_cmd.push_back("compression");
make_f2fs_cmd.push_back("-O");
make_f2fs_cmd.push_back("extra_attr");
}
make_f2fs_cmd.push_back(v->blk_device);
if (length >= kSectorSize) {
make_f2fs_cmd.push_back(std::to_string(length / kSectorSize));
}
if (exec_cmd(make_f2fs_cmd) != 0) {
PLOG(ERROR) << "format_volume: Failed to make_f2fs on " << v->blk_device;
return -1;
}
if (!directory.empty()) {
std::vector<std::string> sload_f2fs_cmd = {
"/system/bin/sload_f2fs", "-f", directory, "-t", volume, v->blk_device,
};
if (exec_cmd(sload_f2fs_cmd) != 0) {
PLOG(ERROR) << "format_volume: Failed to sload_f2fs on " << v->blk_device;
return -1;
}
}
return 0;
}
int format_volume(const std::string& volume) {
return format_volume(volume, "");
}
int setup_install_mounts() {
if (fstab.empty()) {
LOG(ERROR) << "can't set up install mounts: no fstab loaded";
return -1;
}
for (const FstabEntry& entry : fstab) {
// We don't want to do anything with "/".
if (entry.mount_point == "/") {
continue;
}
if (entry.mount_point == "/tmp" || entry.mount_point == "/cache") {
if (ensure_path_mounted(entry.mount_point) != 0) {
LOG(ERROR) << "Failed to mount " << entry.mount_point;
return -1;
}
} else {
if (ensure_path_unmounted(entry.mount_point) != 0) {
LOG(ERROR) << "Failed to unmount " << entry.mount_point;
return -1;
}
}
}
return 0;
}
bool HasCache() {
CHECK(!fstab.empty());
static bool has_cache = volume_for_mount_point(CACHE_ROOT) != nullptr;
return has_cache;
}