blob: ac239eeb41178a184bda4d9b5bf7ce0961c3358d [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This module creates a special filesystem containing two files.
//
// "/sideload/package.zip" appears to be a normal file, but reading
// from it causes data to be fetched from the adb host. We can use
// this to sideload packages over an adb connection without having to
// store the entire package in RAM on the device.
//
// Because we may not trust the adb host, this filesystem maintains
// the following invariant: each read of a given position returns the
// same data as the first read at that position. That is, once a
// section of the file is read, future reads of that section return
// the same data. (Otherwise, a malicious adb host process could
// return one set of bits when the package is read for signature
// verification, and then different bits for when the package is
// accessed by the installer.) If the adb host returns something
// different than it did on the first read, the reader of the file
// will see their read fail with EINVAL.
//
// The other file, "/sideload/exit", is used to control the subprocess
// that creates this filesystem. Calling stat() on the exit file
// causes the filesystem to be unmounted and the adb process on the
// device shut down.
//
// Note that only the minimal set of file operations needed for these
// two files is implemented. In particular, you can't opendir() or
// readdir() on the "/sideload" directory; ls on it won't work.
#include "fuse_sideload.h"
#include <errno.h>
#include <fcntl.h>
#include <limits.h> // PATH_MAX
#include <linux/fuse.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#include <sys/param.h> // MIN
#include <sys/stat.h>
#include <sys/uio.h>
#include <unistd.h>
#include <array>
#include <string>
#include <vector>
#include <android-base/stringprintf.h>
#include <android-base/unique_fd.h>
#include <openssl/sha.h>
static constexpr uint64_t PACKAGE_FILE_ID = FUSE_ROOT_ID + 1;
static constexpr uint64_t EXIT_FLAG_ID = FUSE_ROOT_ID + 2;
static constexpr int NO_STATUS = 1;
static constexpr int NO_STATUS_EXIT = 2;
using SHA256Digest = std::array<uint8_t, SHA256_DIGEST_LENGTH>;
#define INSTALL_REQUIRED_MEMORY (400 * 1024 * 1024)
struct fuse_data {
android::base::unique_fd ffd; // file descriptor for the fuse socket
FuseDataProvider* provider; // Provider of the source data.
uint64_t file_size; // bytes
uint32_t block_size; // block size that the adb host is using to send the file to us
uint32_t file_blocks; // file size in block_size blocks
uid_t uid;
gid_t gid;
uint32_t curr_block; // cache the block most recently used
uint8_t* block_data;
uint8_t* extra_block; // another block of storage for reads that span two blocks
std::vector<SHA256Digest>
hashes; // SHA-256 hash of each block (all zeros if block hasn't been read yet)
// Block cache
uint32_t block_cache_max_size; // Max allowed block cache size
uint32_t block_cache_size; // Current block cache size
uint8_t** block_cache; // Block cache data
};
static uint64_t free_memory() {
uint64_t mem = 0;
FILE* fp = fopen("/proc/meminfo", "r");
if (fp) {
char buf[256];
char* linebuf = buf;
size_t buflen = sizeof(buf);
while (getline(&linebuf, &buflen, fp) > 0) {
char* key = buf;
char* val = strchr(buf, ':');
*val = '\0';
++val;
if (strcmp(key, "MemFree") == 0) {
mem += strtoul(val, nullptr, 0) * 1024;
}
if (strcmp(key, "Buffers") == 0) {
mem += strtoul(val, nullptr, 0) * 1024;
}
if (strcmp(key, "Cached") == 0) {
mem += strtoul(val, nullptr, 0) * 1024;
}
}
fclose(fp);
}
return mem;
}
static int block_cache_fetch(struct fuse_data* fd, uint32_t block) {
if (fd->block_cache == nullptr) {
return -1;
}
if (fd->block_cache[block] == nullptr) {
return -1;
}
memcpy(fd->block_data, fd->block_cache[block], fd->block_size);
return 0;
}
static void block_cache_enter(struct fuse_data* fd, uint32_t block) {
if (!fd->block_cache) return;
if (fd->block_cache_size == fd->block_cache_max_size) {
// Evict a block from the cache. Since the file is typically read
// sequentially, start looking from the block behind the current
// block and proceed backward.
int n;
for (n = fd->curr_block - 1; n != (int)fd->curr_block; --n) {
if (n < 0) {
n = fd->file_blocks - 1;
}
if (fd->block_cache[n]) {
free(fd->block_cache[n]);
fd->block_cache[n] = nullptr;
fd->block_cache_size--;
break;
}
}
}
fd->block_cache[block] = (uint8_t*)malloc(fd->block_size);
memcpy(fd->block_cache[block], fd->block_data, fd->block_size);
fd->block_cache_size++;
}
static void fuse_reply(const fuse_data* fd, uint64_t unique, const void* data, size_t len) {
fuse_out_header hdr;
hdr.len = len + sizeof(hdr);
hdr.error = 0;
hdr.unique = unique;
struct iovec vec[2];
vec[0].iov_base = &hdr;
vec[0].iov_len = sizeof(hdr);
vec[1].iov_base = const_cast<void*>(data);
vec[1].iov_len = len;
int res = writev(fd->ffd, vec, 2);
if (res == -1) {
printf("*** REPLY FAILED *** %s\n", strerror(errno));
}
}
static int handle_init(void* data, fuse_data* fd, const fuse_in_header* hdr) {
const fuse_init_in* req = static_cast<const fuse_init_in*>(data);
// Kernel 2.6.16 is the first stable kernel with struct fuse_init_out defined (fuse version 7.6).
// The structure is the same from 7.6 through 7.22. Beginning with 7.23, the structure increased
// in size and added new parameters.
if (req->major != FUSE_KERNEL_VERSION || req->minor < 6) {
printf("Fuse kernel version mismatch: Kernel version %d.%d, Expected at least %d.6", req->major,
req->minor, FUSE_KERNEL_VERSION);
return -1;
}
fuse_init_out out;
out.minor = MIN(req->minor, FUSE_KERNEL_MINOR_VERSION);
size_t fuse_struct_size = sizeof(out);
#if defined(FUSE_COMPAT_22_INIT_OUT_SIZE)
/* FUSE_KERNEL_VERSION >= 23. */
// If the kernel only works on minor revs older than or equal to 22, then use the older structure
// size since this code only uses the 7.22 version of the structure.
if (req->minor <= 22) {
fuse_struct_size = FUSE_COMPAT_22_INIT_OUT_SIZE;
}
#endif
out.major = FUSE_KERNEL_VERSION;
out.max_readahead = req->max_readahead;
out.flags = 0;
out.max_background = 32;
out.congestion_threshold = 32;
out.max_write = 4096;
fuse_reply(fd, hdr->unique, &out, fuse_struct_size);
return NO_STATUS;
}
static void fill_attr(fuse_attr* attr, const fuse_data* fd, uint64_t nodeid, uint64_t size,
uint32_t mode) {
*attr = {};
attr->nlink = 1;
attr->uid = fd->uid;
attr->gid = fd->gid;
attr->blksize = 4096;
attr->ino = nodeid;
attr->size = size;
attr->blocks = (size == 0) ? 0 : (((size - 1) / attr->blksize) + 1);
attr->mode = mode;
}
static int handle_getattr(void* /* data */, const fuse_data* fd, const fuse_in_header* hdr) {
fuse_attr_out out = {};
out.attr_valid = 10;
if (hdr->nodeid == FUSE_ROOT_ID) {
fill_attr(&(out.attr), fd, hdr->nodeid, 4096, S_IFDIR | 0555);
} else if (hdr->nodeid == PACKAGE_FILE_ID) {
fill_attr(&(out.attr), fd, PACKAGE_FILE_ID, fd->file_size, S_IFREG | 0444);
} else if (hdr->nodeid == EXIT_FLAG_ID) {
fill_attr(&(out.attr), fd, EXIT_FLAG_ID, 0, S_IFREG | 0);
} else {
return -ENOENT;
}
fuse_reply(fd, hdr->unique, &out, sizeof(out));
return (hdr->nodeid == EXIT_FLAG_ID) ? NO_STATUS_EXIT : NO_STATUS;
}
static int handle_lookup(void* data, const fuse_data* fd, const fuse_in_header* hdr) {
if (data == nullptr) return -ENOENT;
fuse_entry_out out = {};
out.entry_valid = 10;
out.attr_valid = 10;
std::string filename(static_cast<const char*>(data));
if (filename == FUSE_SIDELOAD_HOST_FILENAME) {
out.nodeid = PACKAGE_FILE_ID;
out.generation = PACKAGE_FILE_ID;
fill_attr(&(out.attr), fd, PACKAGE_FILE_ID, fd->file_size, S_IFREG | 0444);
} else if (filename == FUSE_SIDELOAD_HOST_EXIT_FLAG) {
out.nodeid = EXIT_FLAG_ID;
out.generation = EXIT_FLAG_ID;
fill_attr(&(out.attr), fd, EXIT_FLAG_ID, 0, S_IFREG | 0);
} else {
return -ENOENT;
}
fuse_reply(fd, hdr->unique, &out, sizeof(out));
return (out.nodeid == EXIT_FLAG_ID) ? NO_STATUS_EXIT : NO_STATUS;
}
static int handle_open(void* /* data */, const fuse_data* fd, const fuse_in_header* hdr) {
if (hdr->nodeid == EXIT_FLAG_ID) return -EPERM;
if (hdr->nodeid != PACKAGE_FILE_ID) return -ENOENT;
fuse_open_out out = {};
out.fh = 10; // an arbitrary number; we always use the same handle
fuse_reply(fd, hdr->unique, &out, sizeof(out));
return NO_STATUS;
}
static int handle_flush(void* /* data */, fuse_data* /* fd */, const fuse_in_header* /* hdr */) {
return 0;
}
static int handle_release(void* /* data */, fuse_data* /* fd */, const fuse_in_header* /* hdr */) {
return 0;
}
// Fetch a block from the host into fd->curr_block and fd->block_data.
// Returns 0 on successful fetch, negative otherwise.
static int fetch_block(fuse_data* fd, uint32_t block) {
if (block == fd->curr_block) {
return 0;
}
if (block >= fd->file_blocks) {
memset(fd->block_data, 0, fd->block_size);
fd->curr_block = block;
return 0;
}
if (block_cache_fetch(fd, block) == 0) {
fd->curr_block = block;
return 0;
}
uint32_t fetch_size = fd->block_size;
if (block * fd->block_size + fetch_size > fd->file_size) {
// If we're reading the last (partial) block of the file, expect a shorter response from the
// host, and pad the rest of the block with zeroes.
fetch_size = fd->file_size - (block * fd->block_size);
memset(fd->block_data + fetch_size, 0, fd->block_size - fetch_size);
}
if (!fd->provider->ReadBlockAlignedData(fd->block_data, fetch_size, block)) {
return -EIO;
}
fd->curr_block = block;
// Verify the hash of the block we just got from the host.
//
// - If the hash of the just-received data matches the stored hash for the block, accept it.
// - If the stored hash is all zeroes, store the new hash and accept the block (this is the first
// time we've read this block).
// - Otherwise, return -EINVAL for the read.
SHA256Digest hash;
SHA256(fd->block_data, fd->block_size, hash.data());
const SHA256Digest& blockhash = fd->hashes[block];
if (hash == blockhash) {
return 0;
}
for (uint8_t i : blockhash) {
if (i != 0) {
fd->curr_block = -1;
return -EIO;
}
}
fd->hashes[block] = hash;
block_cache_enter(fd, block);
return 0;
}
static int handle_read(void* data, fuse_data* fd, const fuse_in_header* hdr) {
if (hdr->nodeid != PACKAGE_FILE_ID) return -ENOENT;
const fuse_read_in* req = static_cast<const fuse_read_in*>(data);
uint64_t offset = req->offset;
uint32_t size = req->size;
// The docs on the fuse kernel interface are vague about what to do when a read request extends
// past the end of the file. We can return a short read -- the return structure does include a
// length field -- but in testing that caused the program using the file to segfault. (I
// speculate that this is due to the reading program accessing it via mmap; maybe mmap dislikes
// when you return something short of a whole page?) To fix this we zero-pad reads that extend
// past the end of the file so we're always returning exactly as many bytes as were requested.
// (Users of the mapped file have to know its real length anyway.)
fuse_out_header outhdr;
outhdr.len = sizeof(outhdr) + size;
outhdr.error = 0;
outhdr.unique = hdr->unique;
struct iovec vec[3];
vec[0].iov_base = &outhdr;
vec[0].iov_len = sizeof(outhdr);
uint32_t block = offset / fd->block_size;
int result = fetch_block(fd, block);
if (result != 0) return result;
// Two cases:
//
// - the read request is entirely within this block. In this case we can reply immediately.
//
// - the read request goes over into the next block. Note that since we mount the filesystem
// with max_read=block_size, a read can never span more than two blocks. In this case we copy
// the block to extra_block and issue a fetch for the following block.
uint32_t block_offset = offset - (block * fd->block_size);
int vec_used;
if (size + block_offset <= fd->block_size) {
// First case: the read fits entirely in the first block.
vec[1].iov_base = fd->block_data + block_offset;
vec[1].iov_len = size;
vec_used = 2;
} else {
// Second case: the read spills over into the next block.
memcpy(fd->extra_block, fd->block_data + block_offset, fd->block_size - block_offset);
vec[1].iov_base = fd->extra_block;
vec[1].iov_len = fd->block_size - block_offset;
result = fetch_block(fd, block + 1);
if (result != 0) return result;
vec[2].iov_base = fd->block_data;
vec[2].iov_len = size - vec[1].iov_len;
vec_used = 3;
}
if (writev(fd->ffd, vec, vec_used) == -1) {
printf("*** READ REPLY FAILED: %s ***\n", strerror(errno));
}
return NO_STATUS;
}
int run_fuse_sideload(std::unique_ptr<FuseDataProvider>&& provider, const char* mount_point) {
// If something's already mounted on our mountpoint, try to remove it. (Mostly in case of a
// previous abnormal exit.)
umount2(mount_point, MNT_FORCE);
uint64_t file_size = provider->file_size();
uint32_t block_size = provider->fuse_block_size();
// fs/fuse/inode.c in kernel code uses the greater of 4096 and the passed-in max_read.
if (block_size < 4096) {
fprintf(stderr, "block size (%u) is too small\n", block_size);
return -1;
}
if (block_size > (1 << 22)) { // 4 MiB
fprintf(stderr, "block size (%u) is too large\n", block_size);
return -1;
}
fuse_data fd = {};
fd.provider = provider.get();
fd.file_size = file_size;
fd.block_size = block_size;
fd.file_blocks = (file_size == 0) ? 0 : (((file_size - 1) / block_size) + 1);
uint64_t mem = free_memory();
uint64_t avail = mem - (INSTALL_REQUIRED_MEMORY + fd.file_blocks * sizeof(uint8_t*));
int result;
if (fd.file_blocks > (1 << 18)) {
fprintf(stderr, "file has too many blocks (%u)\n", fd.file_blocks);
result = -1;
goto done;
}
// All hashes will be zero-initialized.
fd.hashes.resize(fd.file_blocks);
fd.uid = getuid();
fd.gid = getgid();
fd.curr_block = -1;
fd.block_data = static_cast<uint8_t*>(malloc(block_size));
if (fd.block_data == nullptr) {
fprintf(stderr, "failed to allocate %d bites for block_data\n", block_size);
result = -1;
goto done;
}
fd.extra_block = static_cast<uint8_t*>(malloc(block_size));
if (fd.extra_block == nullptr) {
fprintf(stderr, "failed to allocate %d bites for extra_block\n", block_size);
result = -1;
goto done;
}
fd.block_cache_max_size = 0;
fd.block_cache_size = 0;
fd.block_cache = nullptr;
if (mem > avail) {
uint32_t max_size = avail / fd.block_size;
if (max_size > fd.file_blocks) {
max_size = fd.file_blocks;
}
// The cache must be at least 1% of the file size or two blocks,
// whichever is larger.
if (max_size >= fd.file_blocks / 100 && max_size >= 2) {
fd.block_cache_max_size = max_size;
fd.block_cache = (uint8_t**)calloc(fd.file_blocks, sizeof(uint8_t*));
}
}
fd.ffd.reset(open("/dev/fuse", O_RDWR));
if (fd.ffd == -1) {
perror("open /dev/fuse");
result = -1;
goto done;
}
{
std::string opts = android::base::StringPrintf(
"fd=%d,user_id=%d,group_id=%d,max_read=%u,allow_other,rootmode=040000", fd.ffd.get(),
fd.uid, fd.gid, block_size);
result = mount("/dev/fuse", mount_point, "fuse", MS_NOSUID | MS_NODEV | MS_RDONLY | MS_NOEXEC,
opts.c_str());
if (result == -1) {
perror("mount");
goto done;
}
}
uint8_t request_buffer[sizeof(fuse_in_header) + PATH_MAX * 8];
for (;;) {
ssize_t len = TEMP_FAILURE_RETRY(read(fd.ffd, request_buffer, sizeof(request_buffer)));
if (len == -1) {
perror("read request");
if (errno == ENODEV) {
result = -1;
break;
}
continue;
}
if (static_cast<size_t>(len) < sizeof(fuse_in_header)) {
fprintf(stderr, "request too short: len=%zd\n", len);
continue;
}
fuse_in_header* hdr = reinterpret_cast<fuse_in_header*>(request_buffer);
void* data = request_buffer + sizeof(fuse_in_header);
result = -ENOSYS;
switch (hdr->opcode) {
case FUSE_INIT:
result = handle_init(data, &fd, hdr);
break;
case FUSE_LOOKUP:
result = handle_lookup(data, &fd, hdr);
break;
case FUSE_GETATTR:
result = handle_getattr(data, &fd, hdr);
break;
case FUSE_OPEN:
result = handle_open(data, &fd, hdr);
break;
case FUSE_READ:
result = handle_read(data, &fd, hdr);
break;
case FUSE_FLUSH:
result = handle_flush(data, &fd, hdr);
break;
case FUSE_RELEASE:
result = handle_release(data, &fd, hdr);
break;
default:
fprintf(stderr, "unknown fuse request opcode %d\n", hdr->opcode);
break;
}
if (result == NO_STATUS_EXIT) {
result = 0;
break;
}
if (result != NO_STATUS) {
fuse_out_header outhdr;
outhdr.len = sizeof(outhdr);
outhdr.error = result;
outhdr.unique = hdr->unique;
TEMP_FAILURE_RETRY(write(fd.ffd, &outhdr, sizeof(outhdr)));
}
}
done:
provider->Close();
if (umount2(mount_point, MNT_DETACH) == -1) {
fprintf(stderr, "fuse_sideload umount failed: %s\n", strerror(errno));
}
if (fd.block_cache) {
uint32_t n;
for (n = 0; n < fd.file_blocks; ++n) {
free(fd.block_cache[n]);
}
free(fd.block_cache);
}
free(fd.block_data);
free(fd.extra_block);
return result;
}