blob: 0f5378403fa708793e80fca9324648823259ae4d [file] [log] [blame]
/** @file
*
* Copyright (c) 2011-2015, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include <PiDxe.h>
#include <Library/ArmLib.h>
#include <Library/HobLib.h>
#include <Guid/ArmMpCoreInfo.h>
#include "LinuxLoader.h"
#define ALIGN(x, a) (((x) + ((a) - 1)) & ~((a) - 1))
#define PALIGN(p, a) ((void *)(ALIGN ((unsigned long)(p), (a))))
#define GET_CELL(p) (p += 4, *((const UINT32 *)(p-4)))
STATIC
UINTN
cpu_to_fdtn (UINTN x) {
if (sizeof (UINTN) == sizeof (UINT32)) {
return cpu_to_fdt32 (x);
} else {
return cpu_to_fdt64 (x);
}
}
typedef struct {
UINTN Base;
UINTN Size;
} FDT_REGION;
STATIC
BOOLEAN
IsLinuxReservedRegion (
IN EFI_MEMORY_TYPE MemoryType
)
{
switch (MemoryType) {
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiUnusableMemory:
case EfiACPIReclaimMemory:
case EfiACPIMemoryNVS:
case EfiReservedMemoryType:
return TRUE;
default:
return FALSE;
}
}
/**
** Relocate the FDT blob to a more appropriate location for the Linux kernel.
** This function will allocate memory for the relocated FDT blob.
**
** @retval EFI_SUCCESS on success.
** @retval EFI_OUT_OF_RESOURCES or EFI_INVALID_PARAMETER on failure.
*/
STATIC
EFI_STATUS
RelocateFdt (
EFI_PHYSICAL_ADDRESS SystemMemoryBase,
EFI_PHYSICAL_ADDRESS OriginalFdt,
UINTN OriginalFdtSize,
EFI_PHYSICAL_ADDRESS *RelocatedFdt,
UINTN *RelocatedFdtSize,
EFI_PHYSICAL_ADDRESS *RelocatedFdtAlloc
)
{
EFI_STATUS Status;
INTN Error;
UINT64 FdtAlignment;
*RelocatedFdtSize = OriginalFdtSize + FDT_ADDITIONAL_ENTRIES_SIZE;
// If FDT load address needs to be aligned, allocate more space.
FdtAlignment = PcdGet32 (PcdArmLinuxFdtAlignment);
if (FdtAlignment != 0) {
*RelocatedFdtSize += FdtAlignment;
}
// Try below a watermark address.
Status = EFI_NOT_FOUND;
if (PcdGet32 (PcdArmLinuxFdtMaxOffset) != 0) {
*RelocatedFdt = LINUX_FDT_MAX_OFFSET;
Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData,
EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_WARN, "Warning: Failed to load FDT below address 0x%lX (%r). Will try again at a random address anywhere.\n", *RelocatedFdt, Status));
}
}
// Try anywhere there is available space.
if (EFI_ERROR (Status)) {
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData,
EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt);
if (EFI_ERROR (Status)) {
ASSERT_EFI_ERROR (Status);
return EFI_OUT_OF_RESOURCES;
} else {
DEBUG ((EFI_D_WARN, "WARNING: Loaded FDT at random address 0x%lX.\nWARNING: There is a risk of accidental overwriting by other code/data.\n", *RelocatedFdt));
}
}
*RelocatedFdtAlloc = *RelocatedFdt;
if (FdtAlignment != 0) {
*RelocatedFdt = ALIGN (*RelocatedFdt, FdtAlignment);
}
// Load the Original FDT tree into the new region
Error = fdt_open_into ((VOID*)(UINTN) OriginalFdt,
(VOID*)(UINTN)(*RelocatedFdt), *RelocatedFdtSize);
if (Error) {
DEBUG ((EFI_D_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Error)));
gBS->FreePages (*RelocatedFdtAlloc, EFI_SIZE_TO_PAGES (*RelocatedFdtSize));
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
EFI_STATUS
PrepareFdt (
IN EFI_PHYSICAL_ADDRESS SystemMemoryBase,
IN CONST CHAR8* CommandLineArguments,
IN EFI_PHYSICAL_ADDRESS InitrdImage,
IN UINTN InitrdImageSize,
IN OUT EFI_PHYSICAL_ADDRESS *FdtBlobBase,
IN OUT UINTN *FdtBlobSize
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS NewFdtBlobBase;
EFI_PHYSICAL_ADDRESS NewFdtBlobAllocation;
UINTN NewFdtBlobSize;
VOID* fdt;
INTN err;
INTN node;
INTN cpu_node;
INT32 lenp;
CONST VOID* BootArg;
CONST VOID* Method;
EFI_PHYSICAL_ADDRESS InitrdImageStart;
EFI_PHYSICAL_ADDRESS InitrdImageEnd;
FDT_REGION Region;
UINTN Index;
CHAR8 Name[10];
LIST_ENTRY ResourceList;
SYSTEM_MEMORY_RESOURCE *Resource;
ARM_PROCESSOR_TABLE *ArmProcessorTable;
ARM_CORE_INFO *ArmCoreInfoTable;
UINT32 MpId;
UINT32 ClusterId;
UINT32 CoreId;
UINT64 CpuReleaseAddr;
UINTN MemoryMapSize;
EFI_MEMORY_DESCRIPTOR *MemoryMap;
EFI_MEMORY_DESCRIPTOR *MemoryMapPtr;
UINTN MapKey;
UINTN DescriptorSize;
UINT32 DescriptorVersion;
UINTN Pages;
UINTN OriginalFdtSize;
BOOLEAN CpusNodeExist;
UINTN CoreMpId;
NewFdtBlobAllocation = 0;
//
// Sanity checks on the original FDT blob.
//
err = fdt_check_header ((VOID*)(UINTN)(*FdtBlobBase));
if (err != 0) {
Print (L"ERROR: Device Tree header not valid (err:%d)\n", err);
return EFI_INVALID_PARAMETER;
}
// The original FDT blob might have been loaded partially.
// Check that it is not the case.
OriginalFdtSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase));
if (OriginalFdtSize > *FdtBlobSize) {
Print (L"ERROR: Incomplete FDT. Only %d/%d bytes have been loaded.\n",
*FdtBlobSize, OriginalFdtSize);
return EFI_INVALID_PARAMETER;
}
//
// Relocate the FDT to its final location.
//
Status = RelocateFdt (SystemMemoryBase, *FdtBlobBase, OriginalFdtSize,
&NewFdtBlobBase, &NewFdtBlobSize, &NewFdtBlobAllocation);
if (EFI_ERROR (Status)) {
goto FAIL_RELOCATE_FDT;
}
fdt = (VOID*)(UINTN)NewFdtBlobBase;
node = fdt_subnode_offset (fdt, 0, "chosen");
if (node < 0) {
// The 'chosen' node does not exist, create it
node = fdt_add_subnode (fdt, 0, "chosen");
if (node < 0) {
DEBUG ((EFI_D_ERROR, "Error on finding 'chosen' node\n"));
Status = EFI_INVALID_PARAMETER;
goto FAIL_COMPLETE_FDT;
}
}
DEBUG_CODE_BEGIN ();
BootArg = fdt_getprop (fdt, node, "bootargs", &lenp);
if (BootArg != NULL) {
DEBUG ((EFI_D_ERROR, "BootArg: %a\n", BootArg));
}
DEBUG_CODE_END ();
//
// Set Linux CmdLine
//
if ((CommandLineArguments != NULL) && (AsciiStrLen (CommandLineArguments) > 0)) {
err = fdt_setprop (fdt, node, "bootargs", CommandLineArguments, AsciiStrSize (CommandLineArguments));
if (err) {
DEBUG ((EFI_D_ERROR, "Fail to set new 'bootarg' (err:%d)\n", err));
}
}
//
// Set Linux Initrd
//
if (InitrdImageSize != 0) {
InitrdImageStart = cpu_to_fdt64 (InitrdImage);
err = fdt_setprop (fdt, node, "linux,initrd-start", &InitrdImageStart, sizeof (EFI_PHYSICAL_ADDRESS));
if (err) {
DEBUG ((EFI_D_ERROR, "Fail to set new 'linux,initrd-start' (err:%d)\n", err));
}
InitrdImageEnd = cpu_to_fdt64 (InitrdImage + InitrdImageSize);
err = fdt_setprop (fdt, node, "linux,initrd-end", &InitrdImageEnd, sizeof (EFI_PHYSICAL_ADDRESS));
if (err) {
DEBUG ((EFI_D_ERROR, "Fail to set new 'linux,initrd-start' (err:%d)\n", err));
}
}
//
// Set Physical memory setup if does not exist
//
node = fdt_subnode_offset (fdt, 0, "memory");
if (node < 0) {
// The 'memory' node does not exist, create it
node = fdt_add_subnode (fdt, 0, "memory");
if (node >= 0) {
fdt_setprop_string (fdt, node, "name", "memory");
fdt_setprop_string (fdt, node, "device_type", "memory");
GetSystemMemoryResources (&ResourceList);
Resource = (SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink;
Region.Base = cpu_to_fdtn ((UINTN)Resource->PhysicalStart);
Region.Size = cpu_to_fdtn ((UINTN)Resource->ResourceLength);
err = fdt_setprop (fdt, node, "reg", &Region, sizeof (Region));
if (err) {
DEBUG ((EFI_D_ERROR, "Fail to set new 'memory region' (err:%d)\n", err));
}
}
}
//
// Add the memory regions reserved by the UEFI Firmware
//
// Retrieve the UEFI Memory Map
MemoryMap = NULL;
MemoryMapSize = 0;
Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion);
if (Status == EFI_BUFFER_TOO_SMALL) {
// The UEFI specification advises to allocate more memory for the MemoryMap buffer between successive
// calls to GetMemoryMap(), since allocation of the new buffer may potentially increase memory map size.
Pages = EFI_SIZE_TO_PAGES (MemoryMapSize) + 1;
MemoryMap = AllocatePages (Pages);
if (MemoryMap == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto FAIL_COMPLETE_FDT;
}
Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion);
}
// Go through the list and add the reserved region to the Device Tree
if (!EFI_ERROR (Status)) {
MemoryMapPtr = MemoryMap;
for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) {
if (IsLinuxReservedRegion ((EFI_MEMORY_TYPE)MemoryMapPtr->Type)) {
DEBUG ((DEBUG_VERBOSE, "Reserved region of type %d [0x%lX, 0x%lX]\n",
MemoryMapPtr->Type,
(UINTN)MemoryMapPtr->PhysicalStart,
(UINTN)(MemoryMapPtr->PhysicalStart + MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE)));
err = fdt_add_mem_rsv (fdt, MemoryMapPtr->PhysicalStart, MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE);
if (err != 0) {
Print (L"Warning: Fail to add 'memreserve' (err:%d)\n", err);
}
}
MemoryMapPtr = (EFI_MEMORY_DESCRIPTOR*)((UINTN)MemoryMapPtr + DescriptorSize);
}
}
//
// Setup Arm Mpcore Info if it is a multi-core or multi-cluster platforms.
//
// For 'cpus' and 'cpu' device tree nodes bindings, refer to this file
// in the kernel documentation:
// Documentation/devicetree/bindings/arm/cpus.txt
//
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
// Check for correct GUID type
if (CompareGuid (&gArmMpCoreInfoGuid, &(gST->ConfigurationTable[Index].VendorGuid))) {
MpId = ArmReadMpidr ();
ClusterId = GET_CLUSTER_ID (MpId);
CoreId = GET_CORE_ID (MpId);
node = fdt_subnode_offset (fdt, 0, "cpus");
if (node < 0) {
// Create the /cpus node
node = fdt_add_subnode (fdt, 0, "cpus");
fdt_setprop_string (fdt, node, "name", "cpus");
fdt_setprop_cell (fdt, node, "#address-cells", sizeof (UINTN) / 4);
fdt_setprop_cell (fdt, node, "#size-cells", 0);
CpusNodeExist = FALSE;
} else {
CpusNodeExist = TRUE;
}
// Get pointer to ARM processor table
ArmProcessorTable = (ARM_PROCESSOR_TABLE *)gST->ConfigurationTable[Index].VendorTable;
ArmCoreInfoTable = ArmProcessorTable->ArmCpus;
for (Index = 0; Index < ArmProcessorTable->NumberOfEntries; Index++) {
CoreMpId = (UINTN) GET_MPID (ArmCoreInfoTable[Index].ClusterId,
ArmCoreInfoTable[Index].CoreId);
AsciiSPrint (Name, 10, "cpu@%x", CoreMpId);
// If the 'cpus' node did not exist then create all the 'cpu' nodes.
// In case 'cpus' node is provided in the original FDT then we do not add
// any 'cpu' node.
if (!CpusNodeExist) {
cpu_node = fdt_add_subnode (fdt, node, Name);
if (cpu_node < 0) {
DEBUG ((EFI_D_ERROR, "Error on creating '%s' node\n", Name));
Status = EFI_INVALID_PARAMETER;
goto FAIL_COMPLETE_FDT;
}
fdt_setprop_string (fdt, cpu_node, "device_type", "cpu");
CoreMpId = cpu_to_fdtn (CoreMpId);
fdt_setprop (fdt, cpu_node, "reg", &CoreMpId, sizeof (CoreMpId));
} else {
cpu_node = fdt_subnode_offset (fdt, node, Name);
}
if (cpu_node >= 0) {
Method = fdt_getprop (fdt, cpu_node, "enable-method", &lenp);
// We only care when 'enable-method' == 'spin-table'. If the enable-method is not defined
// or defined as 'psci' then we ignore its properties.
if ((Method != NULL) && (AsciiStrCmp ((CHAR8 *)Method, "spin-table") == 0)) {
// There are two cases;
// - UEFI firmware parked the secondary cores and/or UEFI firmware is aware of the CPU
// release addresses (PcdArmLinuxSpinTable == TRUE)
// - the parking of the secondary cores has been managed before starting UEFI and/or UEFI
// does not anything about the CPU release addresses - in this case we do nothing
if (FeaturePcdGet (PcdArmLinuxSpinTable)) {
CpuReleaseAddr = cpu_to_fdt64 (ArmCoreInfoTable[Index].MailboxSetAddress);
fdt_setprop (fdt, cpu_node, "cpu-release-addr", &CpuReleaseAddr, sizeof (CpuReleaseAddr));
// If it is not the primary core than the cpu should be disabled
if (((ArmCoreInfoTable[Index].ClusterId != ClusterId) || (ArmCoreInfoTable[Index].CoreId != CoreId))) {
fdt_setprop_string (fdt, cpu_node, "status", "disabled");
}
}
}
}
}
break;
}
}
// If we succeeded to generate the new Device Tree then free the old Device Tree
gBS->FreePages (*FdtBlobBase, EFI_SIZE_TO_PAGES (*FdtBlobSize));
// Update the real size of the Device Tree
fdt_pack ((VOID*)(UINTN)(NewFdtBlobBase));
*FdtBlobBase = NewFdtBlobBase;
*FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(NewFdtBlobBase));
return EFI_SUCCESS;
FAIL_COMPLETE_FDT:
gBS->FreePages (NewFdtBlobAllocation, EFI_SIZE_TO_PAGES (NewFdtBlobSize));
FAIL_RELOCATE_FDT:
*FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase));
// Return success even if we failed to update the FDT blob.
// The original one is still valid.
return EFI_SUCCESS;
}