/** @file | |
Provides the basic UNID functions. | |
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials | |
are licensed and made available under the terms and conditions of the BSD License | |
which accompanies this distribution. The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license.php | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
**/ | |
#include "Undi32.h" | |
// | |
// Global variables defined in this file | |
// | |
UNDI_CALL_TABLE api_table[PXE_OPCODE_LAST_VALID+1] = { \ | |
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, (UINT16)(ANY_STATE),UNDI_GetState },\ | |
{(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,0,(UINT16)(ANY_STATE),UNDI_Start },\ | |
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0,MUST_BE_STARTED,UNDI_Stop },\ | |
{PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_INIT_INFO),0,MUST_BE_STARTED, UNDI_GetInitInfo },\ | |
{PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_CONFIG_INFO),0,MUST_BE_STARTED, UNDI_GetConfigInfo },\ | |
{sizeof(PXE_CPB_INITIALIZE),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),MUST_BE_STARTED,UNDI_Initialize },\ | |
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Reset },\ | |
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, MUST_BE_INITIALIZED,UNDI_Shutdown },\ | |
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Interrupt },\ | |
{(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_RecFilter },\ | |
{(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_StnAddr },\ | |
{PXE_CPBSIZE_NOT_USED, (UINT16)(DONT_CHECK), (UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Statistics },\ | |
{sizeof(PXE_CPB_MCAST_IP_TO_MAC),sizeof(PXE_DB_MCAST_IP_TO_MAC), (UINT16)(DONT_CHECK),MUST_BE_INITIALIZED, UNDI_ip2mac },\ | |
{(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_NVData },\ | |
{PXE_CPBSIZE_NOT_USED,(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Status },\ | |
{(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_FillHeader },\ | |
{(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Transmit },\ | |
{sizeof(PXE_CPB_RECEIVE),sizeof(PXE_DB_RECEIVE),0,MUST_BE_INITIALIZED, UNDI_Receive } \ | |
}; | |
// | |
// end of global variables | |
// | |
/** | |
This routine determines the operational state of the UNDI. It updates the state flags in the | |
Command Descriptor Block based on information derived from the AdapterInfo instance data. | |
To ensure the command has completed successfully, CdbPtr->StatCode will contain the result of | |
the command execution. | |
The CdbPtr->StatFlags will contain a STOPPED, STARTED, or INITIALIZED state once the command | |
has successfully completed. | |
Keep in mind the AdapterInfo->State is the active state of the adapter (based on software | |
interrogation), and the CdbPtr->StateFlags is the passed back information that is reflected | |
to the caller of the UNDI API. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_GetState ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->State); | |
return ; | |
} | |
/** | |
This routine is used to change the operational state of the UNDI from stopped to started. | |
It will do this as long as the adapter's state is PXE_STATFLAGS_GET_STATE_STOPPED, otherwise | |
the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the | |
UNDI as having already been started. | |
This routine is modified to reflect the undi 1.1 specification changes. The | |
changes in the spec are mainly in the callback routines, the new spec adds | |
3 more callbacks and a unique id. | |
Since this UNDI supports both old and new undi specifications, | |
The NIC's data structure is filled in with the callback routines (depending | |
on the version) pointed to in the caller's CpbPtr. This seeds the Delay, | |
Virt2Phys, Block, and Mem_IO for old and new versions and Map_Mem, UnMap_Mem | |
and Sync_Mem routines and a unique id variable for the new version. | |
This is the function which an external entity (SNP, O/S, etc) would call | |
to provide it's I/O abstraction to the UNDI. | |
It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STARTED. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Start ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PXE_CPB_START_30 *CpbPtr; | |
PXE_CPB_START_31 *CpbPtr_31; | |
// | |
// check if it is already started. | |
// | |
if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_STOPPED) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_ALREADY_STARTED; | |
return ; | |
} | |
if (CdbPtr->CPBsize != sizeof(PXE_CPB_START_30) && | |
CdbPtr->CPBsize != sizeof(PXE_CPB_START_31)) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
CpbPtr = (PXE_CPB_START_30 *) (UINTN) (CdbPtr->CPBaddr); | |
CpbPtr_31 = (PXE_CPB_START_31 *) (UINTN) (CdbPtr->CPBaddr); | |
if (AdapterInfo->VersionFlag == 0x30) { | |
AdapterInfo->Delay_30 = (bsptr_30) (UINTN) CpbPtr->Delay; | |
AdapterInfo->Virt2Phys_30 = (virtphys_30) (UINTN) CpbPtr->Virt2Phys; | |
AdapterInfo->Block_30 = (block_30) (UINTN) CpbPtr->Block; | |
// | |
// patch for old buggy 3.0 code: | |
// In EFI1.0 undi used to provide the full (absolute) I/O address to the | |
// i/o calls and SNP used to provide a callback that used GlobalIoFncs and | |
// everything worked fine! In EFI 1.1, UNDI is not using the full | |
// i/o or memory address to access the device, The base values for the i/o | |
// and memory address is abstracted by the device specific PciIoFncs and | |
// UNDI only uses the offset values. Since UNDI3.0 cannot provide any | |
// identification to SNP, SNP cannot use nic specific PciIoFncs callback! | |
// | |
// To fix this and make undi3.0 work with SNP in EFI1.1 we | |
// use a TmpMemIo function that is defined in init.c | |
// This breaks the runtime driver feature of undi, but what to do | |
// if we have to provide the 3.0 compatibility (including the 3.0 bugs) | |
// | |
// This TmpMemIo function also takes a UniqueId parameter | |
// (as in undi3.1 design) and so initialize the UniqueId as well here | |
// Note: AdapterInfo->Mem_Io_30 is just filled for consistency with other | |
// parameters but never used, we only use Mem_Io field in the In/Out routines | |
// inside e100b.c. | |
// | |
AdapterInfo->Mem_Io_30 = (mem_io_30) (UINTN) CpbPtr->Mem_IO; | |
AdapterInfo->Mem_Io = (mem_io) (UINTN) TmpMemIo; | |
AdapterInfo->Unique_ID = (UINT64) (UINTN) AdapterInfo; | |
} else { | |
AdapterInfo->Delay = (bsptr) (UINTN) CpbPtr_31->Delay; | |
AdapterInfo->Virt2Phys = (virtphys) (UINTN) CpbPtr_31->Virt2Phys; | |
AdapterInfo->Block = (block) (UINTN) CpbPtr_31->Block; | |
AdapterInfo->Mem_Io = (mem_io) (UINTN) CpbPtr_31->Mem_IO; | |
AdapterInfo->Map_Mem = (map_mem) (UINTN) CpbPtr_31->Map_Mem; | |
AdapterInfo->UnMap_Mem = (unmap_mem) (UINTN) CpbPtr_31->UnMap_Mem; | |
AdapterInfo->Sync_Mem = (sync_mem) (UINTN) CpbPtr_31->Sync_Mem; | |
AdapterInfo->Unique_ID = CpbPtr_31->Unique_ID; | |
} | |
AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED; | |
return ; | |
} | |
/** | |
This routine is used to change the operational state of the UNDI from started to stopped. | |
It will not do this if the adapter's state is PXE_STATFLAGS_GET_STATE_INITIALIZED, otherwise | |
the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the | |
UNDI as having already not been shut down. | |
The NIC's data structure will have the Delay, Virt2Phys, and Block, pointers zero'd out.. | |
It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STOPPED. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Stop ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_NOT_SHUTDOWN; | |
return ; | |
} | |
AdapterInfo->Delay_30 = 0; | |
AdapterInfo->Virt2Phys_30 = 0; | |
AdapterInfo->Block_30 = 0; | |
AdapterInfo->Delay = 0; | |
AdapterInfo->Virt2Phys = 0; | |
AdapterInfo->Block = 0; | |
AdapterInfo->Map_Mem = 0; | |
AdapterInfo->UnMap_Mem = 0; | |
AdapterInfo->Sync_Mem = 0; | |
AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STOPPED; | |
return ; | |
} | |
/** | |
This routine is used to retrieve the initialization information that is needed by drivers and | |
applications to initialize the UNDI. This will fill in data in the Data Block structure that is | |
pointed to by the caller's CdbPtr->DBaddr. The fields filled in are as follows: | |
MemoryRequired, FrameDataLen, LinkSpeeds[0-3], NvCount, NvWidth, MediaHeaderLen, HWaddrLen, | |
MCastFilterCnt, TxBufCnt, TxBufSize, RxBufCnt, RxBufSize, IFtype, Duplex, and LoopBack. | |
In addition, the CdbPtr->StatFlags ORs in that this NIC supports cable detection. (APRIORI knowledge) | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_GetInitInfo ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PXE_DB_GET_INIT_INFO *DbPtr; | |
DbPtr = (PXE_DB_GET_INIT_INFO *) (UINTN) (CdbPtr->DBaddr); | |
DbPtr->MemoryRequired = MEMORY_NEEDED; | |
DbPtr->FrameDataLen = PXE_MAX_TXRX_UNIT_ETHER; | |
DbPtr->LinkSpeeds[0] = 10; | |
DbPtr->LinkSpeeds[1] = 100; | |
DbPtr->LinkSpeeds[2] = DbPtr->LinkSpeeds[3] = 0; | |
DbPtr->NvCount = MAX_EEPROM_LEN; | |
DbPtr->NvWidth = 4; | |
DbPtr->MediaHeaderLen = PXE_MAC_HEADER_LEN_ETHER; | |
DbPtr->HWaddrLen = PXE_HWADDR_LEN_ETHER; | |
DbPtr->MCastFilterCnt = MAX_MCAST_ADDRESS_CNT; | |
DbPtr->TxBufCnt = TX_BUFFER_COUNT; | |
DbPtr->TxBufSize = (UINT16) sizeof (TxCB); | |
DbPtr->RxBufCnt = RX_BUFFER_COUNT; | |
DbPtr->RxBufSize = (UINT16) sizeof (RxFD); | |
DbPtr->IFtype = PXE_IFTYPE_ETHERNET; | |
DbPtr->SupportedDuplexModes = PXE_DUPLEX_ENABLE_FULL_SUPPORTED | | |
PXE_DUPLEX_FORCE_FULL_SUPPORTED; | |
DbPtr->SupportedLoopBackModes = PXE_LOOPBACK_INTERNAL_SUPPORTED | | |
PXE_LOOPBACK_EXTERNAL_SUPPORTED; | |
CdbPtr->StatFlags |= (PXE_STATFLAGS_CABLE_DETECT_SUPPORTED | | |
PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED); | |
return ; | |
} | |
/** | |
This routine is used to retrieve the configuration information about the NIC being controlled by | |
this driver. This will fill in data in the Data Block structure that is pointed to by the caller's CdbPtr->DBaddr. | |
The fields filled in are as follows: | |
DbPtr->pci.BusType, DbPtr->pci.Bus, DbPtr->pci.Device, and DbPtr->pci. | |
In addition, the DbPtr->pci.Config.Dword[0-63] grabs a copy of this NIC's PCI configuration space. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_GetConfigInfo ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT16 Index; | |
PXE_DB_GET_CONFIG_INFO *DbPtr; | |
DbPtr = (PXE_DB_GET_CONFIG_INFO *) (UINTN) (CdbPtr->DBaddr); | |
DbPtr->pci.BusType = PXE_BUSTYPE_PCI; | |
DbPtr->pci.Bus = AdapterInfo->Bus; | |
DbPtr->pci.Device = AdapterInfo->Device; | |
DbPtr->pci.Function = AdapterInfo->Function; | |
for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) { | |
DbPtr->pci.Config.Dword[Index] = AdapterInfo->Config[Index]; | |
} | |
return ; | |
} | |
/** | |
This routine resets the network adapter and initializes the UNDI using the parameters supplied in | |
the CPB. This command must be issued before the network adapter can be setup to transmit and | |
receive packets. | |
Once the memory requirements of the UNDI are obtained by using the GetInitInfo command, a block | |
of non-swappable memory may need to be allocated. The address of this memory must be passed to | |
UNDI during the Initialize in the CPB. This memory is used primarily for transmit and receive buffers. | |
The fields CableDetect, LinkSpeed, Duplex, LoopBack, MemoryPtr, and MemoryLength are set with information | |
that was passed in the CPB and the NIC is initialized. | |
If the NIC initialization fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED | |
Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_INITIALIZED showing the state of | |
the UNDI is now initialized. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Initialize ( | |
IN PXE_CDB *CdbPtr, | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PXE_CPB_INITIALIZE *CpbPtr; | |
if ((CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DETECT_CABLE) && | |
(CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE)) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
// | |
// check if it is already initialized | |
// | |
if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_ALREADY_INITIALIZED; | |
return ; | |
} | |
CpbPtr = (PXE_CPB_INITIALIZE *) (UINTN) CdbPtr->CPBaddr; | |
if (CpbPtr->MemoryLength < (UINT32) MEMORY_NEEDED) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB; | |
return ; | |
} | |
// | |
// default behaviour is to detect the cable, if the 3rd param is 1, | |
// do not do that | |
// | |
AdapterInfo->CableDetect = (UINT8) ((CdbPtr->OpFlags == (UINT16) PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE) ? (UINT8) 0 : (UINT8) 1); | |
AdapterInfo->LinkSpeedReq = (UINT16) CpbPtr->LinkSpeed; | |
AdapterInfo->DuplexReq = CpbPtr->DuplexMode; | |
AdapterInfo->LoopBack = CpbPtr->LoopBackMode; | |
AdapterInfo->MemoryPtr = CpbPtr->MemoryAddr; | |
AdapterInfo->MemoryLength = CpbPtr->MemoryLength; | |
CdbPtr->StatCode = (PXE_STATCODE) E100bInit (AdapterInfo); | |
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
} else { | |
AdapterInfo->State = PXE_STATFLAGS_GET_STATE_INITIALIZED; | |
} | |
return ; | |
} | |
/** | |
This routine resets the network adapter and initializes the UNDI using the parameters supplied in | |
the CPB. The transmit and receive queues are emptied and any pending interrupts are cleared. | |
If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Reset ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
if (CdbPtr->OpFlags != PXE_OPFLAGS_NOT_USED && | |
CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS && | |
CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_FILTERS ) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
CdbPtr->StatCode = (UINT16) E100bReset (AdapterInfo, CdbPtr->OpFlags); | |
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
} | |
} | |
/** | |
This routine resets the network adapter and leaves it in a safe state for another driver to | |
initialize. Any pending transmits or receives are lost. Receive filters and external | |
interrupt enables are disabled. Once the UNDI has been shutdown, it can then be stopped | |
or initialized again. | |
If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED | |
Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_STARTED showing the state of | |
the NIC as being started. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Shutdown ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
// | |
// do the shutdown stuff here | |
// | |
CdbPtr->StatCode = (UINT16) E100bShutdown (AdapterInfo); | |
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
} else { | |
AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED; | |
} | |
return ; | |
} | |
/** | |
This routine can be used to read and/or change the current external interrupt enable | |
settings. Disabling an external interrupt enable prevents and external (hardware) | |
interrupt from being signaled by the network device. Internally the interrupt events | |
can still be polled by using the UNDI_GetState command. | |
The resulting information on the interrupt state will be passed back in the CdbPtr->StatFlags. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Interrupt ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT8 IntMask; | |
IntMask = (UINT8)(UINTN)(CdbPtr->OpFlags & (PXE_OPFLAGS_INTERRUPT_RECEIVE | | |
PXE_OPFLAGS_INTERRUPT_TRANSMIT | | |
PXE_OPFLAGS_INTERRUPT_COMMAND | | |
PXE_OPFLAGS_INTERRUPT_SOFTWARE)); | |
switch (CdbPtr->OpFlags & PXE_OPFLAGS_INTERRUPT_OPMASK) { | |
case PXE_OPFLAGS_INTERRUPT_READ: | |
break; | |
case PXE_OPFLAGS_INTERRUPT_ENABLE: | |
if (IntMask == 0) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
AdapterInfo->int_mask = IntMask; | |
E100bSetInterruptState (AdapterInfo); | |
break; | |
case PXE_OPFLAGS_INTERRUPT_DISABLE: | |
if (IntMask != 0) { | |
AdapterInfo->int_mask = (UINT16) (AdapterInfo->int_mask & ~(IntMask)); | |
E100bSetInterruptState (AdapterInfo); | |
break; | |
} | |
// | |
// else fall thru. | |
// | |
default: | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_RECEIVE) != 0) { | |
CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_RECEIVE; | |
} | |
if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_TRANSMIT) != 0) { | |
CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_TRANSMIT; | |
} | |
if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_COMMAND) != 0) { | |
CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_COMMAND; | |
} | |
return ; | |
} | |
/** | |
This routine is used to read and change receive filters and, if supported, read | |
and change multicast MAC address filter list. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_RecFilter ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT16 NewFilter; | |
UINT16 OpFlags; | |
PXE_DB_RECEIVE_FILTERS *DbPtr; | |
UINT8 *MacAddr; | |
UINTN MacCount; | |
UINT16 Index; | |
UINT16 copy_len; | |
UINT8 *ptr1; | |
UINT8 *ptr2; | |
BOOLEAN InvalidMacAddr; | |
OpFlags = CdbPtr->OpFlags; | |
NewFilter = (UINT16) (OpFlags & 0x1F); | |
switch (OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_OPMASK) { | |
case PXE_OPFLAGS_RECEIVE_FILTER_READ: | |
// | |
// not expecting a cpb, not expecting any filter bits | |
// | |
if ((NewFilter != 0) || (CdbPtr->CPBsize != 0)) { | |
goto BadCdb; | |
} | |
if ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) == 0) { | |
goto JustRead; | |
} | |
NewFilter = (UINT16) (NewFilter | AdapterInfo->Rx_Filter); | |
// | |
// all other flags are ignored except mcast_reset | |
// | |
break; | |
case PXE_OPFLAGS_RECEIVE_FILTER_ENABLE: | |
// | |
// there should be atleast one other filter bit set. | |
// | |
if (NewFilter == 0) { | |
// | |
// nothing to enable | |
// | |
goto BadCdb; | |
} | |
if (CdbPtr->CPBsize != 0) { | |
// | |
// this must be a multicast address list! | |
// don't accept the list unless selective_mcast is set | |
// don't accept confusing mcast settings with this | |
// | |
if (((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) == 0) || | |
((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) || | |
((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) || | |
((CdbPtr->CPBsize % sizeof (PXE_MAC_ADDR)) != 0) ) { | |
goto BadCdb; | |
} | |
MacAddr = (UINT8 *) ((UINTN) (CdbPtr->CPBaddr)); | |
MacCount = CdbPtr->CPBsize / sizeof (PXE_MAC_ADDR); | |
// | |
// The format of Ethernet multicast address for IPv6 is defined in RFC2464, | |
// for IPv4 is defined in RFC1112. Check whether the address is valid. | |
// | |
InvalidMacAddr = FALSE; | |
for (; MacCount-- != 0; MacAddr += sizeof (PXE_MAC_ADDR)) { | |
if (MacAddr[0] == 0x01) { | |
// | |
// This multicast MAC address is mapped from IPv4 address. | |
// | |
if (MacAddr[1] != 0x00 || MacAddr[2] != 0x5E || (MacAddr[3] & 0x80) != 0) { | |
InvalidMacAddr = TRUE; | |
} | |
} else if (MacAddr[0] == 0x33) { | |
// | |
// This multicast MAC address is mapped from IPv6 address. | |
// | |
if (MacAddr[1] != 0x33) { | |
InvalidMacAddr = TRUE; | |
} | |
} else { | |
InvalidMacAddr = TRUE; | |
} | |
if (InvalidMacAddr) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB; | |
return ; | |
} | |
} | |
} | |
// | |
// check selective mcast case enable case | |
// | |
if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) != 0) { | |
if (((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) || | |
((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ) { | |
goto BadCdb; | |
} | |
// | |
// if no cpb, make sure we have an old list | |
// | |
if ((CdbPtr->CPBsize == 0) && (AdapterInfo->mcast_list.list_len == 0)) { | |
goto BadCdb; | |
} | |
} | |
// | |
// if you want to enable anything, you got to have unicast | |
// and you have what you already enabled! | |
// | |
NewFilter = (UINT16) (NewFilter | (PXE_OPFLAGS_RECEIVE_FILTER_UNICAST | AdapterInfo->Rx_Filter)); | |
break; | |
case PXE_OPFLAGS_RECEIVE_FILTER_DISABLE: | |
// | |
// mcast list not expected, i.e. no cpb here! | |
// | |
if (CdbPtr->CPBsize != PXE_CPBSIZE_NOT_USED) { | |
goto BadCdb; | |
} | |
NewFilter = (UINT16) ((~(CdbPtr->OpFlags & 0x1F)) & AdapterInfo->Rx_Filter); | |
break; | |
default: | |
goto BadCdb; | |
} | |
if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) { | |
AdapterInfo->mcast_list.list_len = 0; | |
NewFilter &= (~PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST); | |
} | |
E100bSetfilter (AdapterInfo, NewFilter, CdbPtr->CPBaddr, CdbPtr->CPBsize); | |
JustRead: | |
// | |
// give the current mcast list | |
// | |
if ((CdbPtr->DBsize != 0) && (AdapterInfo->mcast_list.list_len != 0)) { | |
// | |
// copy the mc list to db | |
// | |
DbPtr = (PXE_DB_RECEIVE_FILTERS *) (UINTN) CdbPtr->DBaddr; | |
ptr1 = (UINT8 *) (&DbPtr->MCastList[0]); | |
// | |
// DbPtr->mc_count = AdapterInfo->mcast_list.list_len; | |
// | |
copy_len = (UINT16) (AdapterInfo->mcast_list.list_len * PXE_MAC_LENGTH); | |
if (copy_len > CdbPtr->DBsize) { | |
copy_len = CdbPtr->DBsize; | |
} | |
ptr2 = (UINT8 *) (&AdapterInfo->mcast_list.mc_list[0]); | |
for (Index = 0; Index < copy_len; Index++) { | |
ptr1[Index] = ptr2[Index]; | |
} | |
} | |
// | |
// give the stat flags here | |
// | |
if (AdapterInfo->Receive_Started) { | |
CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->Rx_Filter); | |
} | |
return ; | |
BadCdb: | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
} | |
/** | |
This routine is used to get the current station and broadcast MAC addresses, and to change the | |
current station MAC address. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_StnAddr ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PXE_CPB_STATION_ADDRESS *CpbPtr; | |
PXE_DB_STATION_ADDRESS *DbPtr; | |
UINT16 Index; | |
if (CdbPtr->OpFlags == PXE_OPFLAGS_STATION_ADDRESS_RESET) { | |
// | |
// configure the permanent address. | |
// change the AdapterInfo->CurrentNodeAddress field. | |
// | |
if (CompareMem ( | |
&AdapterInfo->CurrentNodeAddress[0], | |
&AdapterInfo->PermNodeAddress[0], | |
PXE_MAC_LENGTH | |
) != 0) { | |
for (Index = 0; Index < PXE_MAC_LENGTH; Index++) { | |
AdapterInfo->CurrentNodeAddress[Index] = AdapterInfo->PermNodeAddress[Index]; | |
} | |
E100bSetupIAAddr (AdapterInfo); | |
} | |
} | |
if (CdbPtr->CPBaddr != (UINT64) 0) { | |
CpbPtr = (PXE_CPB_STATION_ADDRESS *) (UINTN) (CdbPtr->CPBaddr); | |
// | |
// configure the new address | |
// | |
for (Index = 0; Index < PXE_MAC_LENGTH; Index++) { | |
AdapterInfo->CurrentNodeAddress[Index] = CpbPtr->StationAddr[Index]; | |
} | |
E100bSetupIAAddr (AdapterInfo); | |
} | |
if (CdbPtr->DBaddr != (UINT64) 0) { | |
DbPtr = (PXE_DB_STATION_ADDRESS *) (UINTN) (CdbPtr->DBaddr); | |
// | |
// fill it with the new values | |
// | |
for (Index = 0; Index < PXE_MAC_LENGTH; Index++) { | |
DbPtr->StationAddr[Index] = AdapterInfo->CurrentNodeAddress[Index]; | |
DbPtr->BroadcastAddr[Index] = AdapterInfo->BroadcastNodeAddress[Index]; | |
DbPtr->PermanentAddr[Index] = AdapterInfo->PermNodeAddress[Index]; | |
} | |
} | |
return ; | |
} | |
/** | |
This routine is used to read and clear the NIC traffic statistics. This command is supported only | |
if the !PXE structure's Implementation flags say so. | |
Results will be parsed out in the following manner: | |
CdbPtr->DBaddr.Data[0] R Total Frames (Including frames with errors and dropped frames) | |
CdbPtr->DBaddr.Data[1] R Good Frames (All frames copied into receive buffer) | |
CdbPtr->DBaddr.Data[2] R Undersize Frames (Frames below minimum length for media <64 for ethernet) | |
CdbPtr->DBaddr.Data[4] R Dropped Frames (Frames that were dropped because receive buffers were full) | |
CdbPtr->DBaddr.Data[8] R CRC Error Frames (Frames with alignment or CRC errors) | |
CdbPtr->DBaddr.Data[A] T Total Frames (Including frames with errors and dropped frames) | |
CdbPtr->DBaddr.Data[B] T Good Frames (All frames copied into transmit buffer) | |
CdbPtr->DBaddr.Data[C] T Undersize Frames (Frames below minimum length for media <64 for ethernet) | |
CdbPtr->DBaddr.Data[E] T Dropped Frames (Frames that were dropped because of collisions) | |
CdbPtr->DBaddr.Data[14] T Total Collision Frames (Total collisions on this subnet) | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Statistics ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
if ((CdbPtr->OpFlags &~(PXE_OPFLAGS_STATISTICS_RESET)) != 0) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
if ((CdbPtr->OpFlags & PXE_OPFLAGS_STATISTICS_RESET) != 0) { | |
// | |
// Reset the statistics | |
// | |
CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, 0, 0); | |
} else { | |
CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, CdbPtr->DBaddr, CdbPtr->DBsize); | |
} | |
return ; | |
} | |
/** | |
This routine is used to translate a multicast IP address to a multicast MAC address. | |
This results in a MAC address composed of 25 bits of fixed data with the upper 23 bits of the IP | |
address being appended to it. Results passed back in the equivalent of CdbPtr->DBaddr->MAC[0-5]. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_ip2mac ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PXE_CPB_MCAST_IP_TO_MAC *CpbPtr; | |
PXE_DB_MCAST_IP_TO_MAC *DbPtr; | |
UINT8 *TmpPtr; | |
CpbPtr = (PXE_CPB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->CPBaddr; | |
DbPtr = (PXE_DB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->DBaddr; | |
if ((CdbPtr->OpFlags & PXE_OPFLAGS_MCAST_IPV6_TO_MAC) != 0) { | |
// | |
// for now this is not supported | |
// | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED; | |
return ; | |
} | |
TmpPtr = (UINT8 *) (&CpbPtr->IP.IPv4); | |
// | |
// check if the ip given is a mcast IP | |
// | |
if ((TmpPtr[0] & 0xF0) != 0xE0) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB; | |
} | |
// | |
// take the last 23 bits in IP. | |
// be very careful. accessing word on a non-word boundary will hang motherboard codenamed Big Sur | |
// casting the mac array (in the middle) to a UINT32 pointer and accessing | |
// the UINT32 content hung the system... | |
// | |
DbPtr->MAC[0] = 0x01; | |
DbPtr->MAC[1] = 0x00; | |
DbPtr->MAC[2] = 0x5e; | |
DbPtr->MAC[3] = (UINT8) (TmpPtr[1] & 0x7f); | |
DbPtr->MAC[4] = (UINT8) TmpPtr[2]; | |
DbPtr->MAC[5] = (UINT8) TmpPtr[3]; | |
return ; | |
} | |
/** | |
This routine is used to read and write non-volatile storage on the NIC (if supported). The NVRAM | |
could be EEPROM, FLASH, or battery backed RAM. | |
This is an optional function according to the UNDI specification (or will be......) | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_NVData ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PXE_DB_NVDATA *DbPtr; | |
UINT16 Index; | |
if ((CdbPtr->OpFlags == PXE_OPFLAGS_NVDATA_READ) != 0) { | |
if ((CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) != 0) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
DbPtr = (PXE_DB_NVDATA *) (UINTN) CdbPtr->DBaddr; | |
for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) { | |
DbPtr->Data.Dword[Index] = AdapterInfo->NVData[Index]; | |
} | |
} else { | |
// | |
// no write for now | |
// | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED; | |
} | |
return ; | |
} | |
/** | |
This routine returns the current interrupt status and/or the transmitted buffer addresses. | |
If the current interrupt status is returned, pending interrupts will be acknowledged by this | |
command. Transmitted buffer addresses that are written to the DB are removed from the transmit | |
buffer queue. | |
Normally, this command would be polled with interrupts disabled. | |
The transmit buffers are returned in CdbPtr->DBaddr->TxBufer[0 - NumEntries]. | |
The interrupt status is returned in CdbPtr->StatFlags. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Status ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PXE_DB_GET_STATUS *DbPtr; | |
PXE_DB_GET_STATUS TmpGetStatus; | |
UINT16 Index; | |
UINT16 Status; | |
UINT16 NumEntries; | |
RxFD *RxPtr; | |
// | |
// Fill in temporary GetStatus storage. | |
// | |
RxPtr = &AdapterInfo->rx_ring[AdapterInfo->cur_rx_ind]; | |
if ((RxPtr->cb_header.status & RX_COMPLETE) != 0) { | |
TmpGetStatus.RxFrameLen = RxPtr->ActualCount & 0x3fff; | |
} else { | |
TmpGetStatus.RxFrameLen = 0; | |
} | |
TmpGetStatus.reserved = 0; | |
// | |
// Fill in size of next available receive packet and | |
// reserved field in caller's DB storage. | |
// | |
DbPtr = (PXE_DB_GET_STATUS *) (UINTN) CdbPtr->DBaddr; | |
if (CdbPtr->DBsize > 0 && CdbPtr->DBsize < sizeof (UINT32) * 2) { | |
CopyMem (DbPtr, &TmpGetStatus, CdbPtr->DBsize); | |
} else { | |
CopyMem (DbPtr, &TmpGetStatus, sizeof (UINT32) * 2); | |
} | |
// | |
// | |
// | |
if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS) != 0) { | |
// | |
// DBsize of zero is invalid if Tx buffers are requested. | |
// | |
if (CdbPtr->DBsize == 0) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
// | |
// remember this b4 we overwrite | |
// | |
NumEntries = (UINT16) (CdbPtr->DBsize - sizeof (UINT64)); | |
// | |
// We already filled in 2 UINT32s. | |
// | |
CdbPtr->DBsize = (UINT16) (sizeof (UINT32) * 2); | |
// | |
// will claim any hanging free CBs | |
// | |
CheckCBList (AdapterInfo); | |
if (AdapterInfo->xmit_done_head == AdapterInfo->xmit_done_tail) { | |
CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY; | |
} else { | |
for (Index = 0; ((Index < MAX_XMIT_BUFFERS) && (NumEntries >= sizeof (UINT64))); Index++, NumEntries -= sizeof (UINT64)) { | |
if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) { | |
DbPtr->TxBuffer[Index] = AdapterInfo->xmit_done[AdapterInfo->xmit_done_head]; | |
AdapterInfo->xmit_done_head = next (AdapterInfo->xmit_done_head); | |
CdbPtr->DBsize += sizeof (UINT64); | |
} else { | |
break; | |
} | |
} | |
} | |
if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) { | |
CdbPtr->StatFlags |= PXE_STATFLAGS_DB_WRITE_TRUNCATED; | |
} | |
// | |
// check for a receive buffer and give it's size in db | |
// | |
} | |
// | |
// | |
// | |
if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_INTERRUPT_STATUS) != 0) { | |
Status = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBStatus); | |
AdapterInfo->Int_Status = (UINT16) (AdapterInfo->Int_Status | Status); | |
// | |
// acknoledge the interrupts | |
// | |
OutWord (AdapterInfo, (UINT16) (Status & 0xfc00), (UINT32) (AdapterInfo->ioaddr + SCBStatus)); | |
// | |
// report all the outstanding interrupts | |
// | |
Status = AdapterInfo->Int_Status; | |
if ((Status & SCB_STATUS_FR) != 0) { | |
CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_RECEIVE; | |
} | |
if ((Status & SCB_STATUS_SWI) != 0) { | |
CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_SOFTWARE; | |
} | |
} | |
// | |
// Return current media status | |
// | |
if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_MEDIA_STATUS) != 0) { | |
AdapterInfo->PhyAddress = 0xFF; | |
AdapterInfo->CableDetect = 1; | |
if (!PhyDetect (AdapterInfo)) { | |
CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_NO_MEDIA; | |
} | |
} | |
return ; | |
} | |
/** | |
This routine is used to fill media header(s) in transmit packet(s). | |
Copies the MAC address into the media header whether it is dealing | |
with fragmented or non-fragmented packets. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_FillHeader ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PXE_CPB_FILL_HEADER *Cpb; | |
PXE_CPB_FILL_HEADER_FRAGMENTED *Cpbf; | |
EtherHeader *MacHeader; | |
UINTN Index; | |
if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
if ((CdbPtr->OpFlags & PXE_OPFLAGS_FILL_HEADER_FRAGMENTED) != 0) { | |
Cpbf = (PXE_CPB_FILL_HEADER_FRAGMENTED *) (UINTN) CdbPtr->CPBaddr; | |
// | |
// assume 1st fragment is big enough for the mac header | |
// | |
if ((Cpbf->FragCnt == 0) || (Cpbf->FragDesc[0].FragLen < PXE_MAC_HEADER_LEN_ETHER)) { | |
// | |
// no buffers given | |
// | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
MacHeader = (EtherHeader *) (UINTN) Cpbf->FragDesc[0].FragAddr; | |
// | |
// we don't swap the protocol bytes | |
// | |
MacHeader->type = Cpbf->Protocol; | |
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) { | |
MacHeader->dest_addr[Index] = Cpbf->DestAddr[Index]; | |
MacHeader->src_addr[Index] = Cpbf->SrcAddr[Index]; | |
} | |
} else { | |
Cpb = (PXE_CPB_FILL_HEADER *) (UINTN) CdbPtr->CPBaddr; | |
MacHeader = (EtherHeader *) (UINTN) Cpb->MediaHeader; | |
// | |
// we don't swap the protocol bytes | |
// | |
MacHeader->type = Cpb->Protocol; | |
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) { | |
MacHeader->dest_addr[Index] = Cpb->DestAddr[Index]; | |
MacHeader->src_addr[Index] = Cpb->SrcAddr[Index]; | |
} | |
} | |
return ; | |
} | |
/** | |
This routine is used to place a packet into the transmit queue. The data buffers given to | |
this command are to be considered locked and the application or network driver loses | |
ownership of these buffers and must not free or relocate them until the ownership returns. | |
When the packets are transmitted, a transmit complete interrupt is generated (if interrupts | |
are disabled, the transmit interrupt status is still set and can be checked using the UNDI_Status | |
command. | |
Some implementations and adapters support transmitting multiple packets with one transmit | |
command. If this feature is supported, the transmit CPBs can be linked in one transmit | |
command. | |
All UNDIs support fragmented frames, now all network devices or protocols do. If a fragmented | |
frame CPB is given to UNDI and the network device does not support fragmented frames | |
(see !PXE.Implementation flag), the UNDI will have to copy the fragments into a local buffer | |
before transmitting. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Transmit ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
CdbPtr->StatCode = (PXE_STATCODE) E100bTransmit (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->OpFlags); | |
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
} | |
return ; | |
} | |
/** | |
When the network adapter has received a frame, this command is used to copy the frame | |
into the driver/application storage location. Once a frame has been copied, it is | |
removed from the receive queue. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
VOID | |
UNDI_Receive ( | |
IN PXE_CDB *CdbPtr, | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
// | |
// check if RU has started... | |
// | |
if (!AdapterInfo->Receive_Started) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED; | |
return ; | |
} | |
CdbPtr->StatCode = (UINT16) E100bReceive (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->DBaddr); | |
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
} | |
return ; | |
} | |
/** | |
This is the main SW UNDI API entry using the newer nii protocol. | |
The parameter passed in is a 64 bit flat model virtual | |
address of the cdb. We then jump into the common routine for both old and | |
new nii protocol entries. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
// TODO: cdb - add argument and description to function comment | |
VOID | |
UNDI_APIEntry_new ( | |
IN UINT64 cdb | |
) | |
{ | |
PXE_CDB *CdbPtr; | |
NIC_DATA_INSTANCE *AdapterInfo; | |
if (cdb == (UINT64) 0) { | |
return ; | |
} | |
CdbPtr = (PXE_CDB *) (UINTN) cdb; | |
if (CdbPtr->IFnum >= pxe_31->IFcnt) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo); | |
// | |
// entering from older entry point | |
// | |
AdapterInfo->VersionFlag = 0x31; | |
UNDI_APIEntry_Common (cdb); | |
} | |
/** | |
This is the common routine for both old and new entry point procedures. | |
The parameter passed in is a 64 bit flat model virtual | |
address of the cdb. We then jump into the service routine pointed to by the | |
Api_Table[OpCode]. | |
@param CdbPtr Pointer to the command descriptor block. | |
@param AdapterInfo Pointer to the NIC data structure information which | |
the UNDI driver is layering on.. | |
@return None | |
**/ | |
// TODO: cdb - add argument and description to function comment | |
VOID | |
UNDI_APIEntry_Common ( | |
IN UINT64 cdb | |
) | |
{ | |
PXE_CDB *CdbPtr; | |
NIC_DATA_INSTANCE *AdapterInfo; | |
UNDI_CALL_TABLE *tab_ptr; | |
CdbPtr = (PXE_CDB *) (UINTN) cdb; | |
// | |
// check the OPCODE range | |
// | |
if ((CdbPtr->OpCode > PXE_OPCODE_LAST_VALID) || | |
(CdbPtr->StatCode != PXE_STATCODE_INITIALIZE) || | |
(CdbPtr->StatFlags != PXE_STATFLAGS_INITIALIZE) || | |
(CdbPtr->IFnum >= pxe_31->IFcnt) ) { | |
goto badcdb; | |
} | |
if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) { | |
if (CdbPtr->CPBaddr != PXE_CPBADDR_NOT_USED) { | |
goto badcdb; | |
} | |
} else if (CdbPtr->CPBaddr == PXE_CPBADDR_NOT_USED) { | |
goto badcdb; | |
} | |
if (CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) { | |
if (CdbPtr->DBaddr != PXE_DBADDR_NOT_USED) { | |
goto badcdb; | |
} | |
} else if (CdbPtr->DBaddr == PXE_DBADDR_NOT_USED) { | |
goto badcdb; | |
} | |
// | |
// check if cpbsize and dbsize are as needed | |
// check if opflags are as expected | |
// | |
tab_ptr = &api_table[CdbPtr->OpCode]; | |
if (tab_ptr->cpbsize != (UINT16) (DONT_CHECK) && tab_ptr->cpbsize != CdbPtr->CPBsize) { | |
goto badcdb; | |
} | |
if (tab_ptr->dbsize != (UINT16) (DONT_CHECK) && tab_ptr->dbsize != CdbPtr->DBsize) { | |
goto badcdb; | |
} | |
if (tab_ptr->opflags != (UINT16) (DONT_CHECK) && tab_ptr->opflags != CdbPtr->OpFlags) { | |
goto badcdb; | |
} | |
AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo); | |
// | |
// check if UNDI_State is valid for this call | |
// | |
if (tab_ptr->state != (UINT16) (-1)) { | |
// | |
// should atleast be started | |
// | |
if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_STOPPED) { | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_NOT_STARTED; | |
return ; | |
} | |
// | |
// check if it should be initialized | |
// | |
if (tab_ptr->state == 2) { | |
if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_INITIALIZED) { | |
CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED; | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
return ; | |
} | |
} | |
} | |
// | |
// set the return variable for success case here | |
// | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_COMPLETE; | |
CdbPtr->StatCode = PXE_STATCODE_SUCCESS; | |
tab_ptr->api_ptr (CdbPtr, AdapterInfo); | |
return ; | |
// | |
// %% AVL - check for command linking | |
// | |
badcdb: | |
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED; | |
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB; | |
return ; | |
} | |
/** | |
When called with a null NicPtr, this routine decrements the number of NICs | |
this UNDI is supporting and removes the NIC_DATA_POINTER from the array. | |
Otherwise, it increments the number of NICs this UNDI is supported and | |
updates the pxe.Fudge to ensure a proper check sum results. | |
@param NicPtr Pointer to the NIC data structure. | |
@return None | |
**/ | |
VOID | |
PxeUpdate ( | |
IN NIC_DATA_INSTANCE *NicPtr, | |
IN PXE_SW_UNDI *PxePtr | |
) | |
{ | |
if (NicPtr == NULL) { | |
if (PxePtr->IFcnt > 0) { | |
// | |
// number of NICs this undi supports | |
// | |
PxePtr->IFcnt--; | |
} | |
PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len)); | |
return ; | |
} | |
// | |
// number of NICs this undi supports | |
// | |
PxePtr->IFcnt++; | |
PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len)); | |
return ; | |
} | |
/** | |
Initialize the !PXE structure | |
@param PxePtr Pointer to SW_UNDI data structure. | |
@retval EFI_SUCCESS This driver is added to Controller. | |
@retval other This driver does not support this device. | |
**/ | |
VOID | |
PxeStructInit ( | |
IN PXE_SW_UNDI *PxePtr | |
) | |
{ | |
// | |
// Initialize the !PXE structure | |
// | |
PxePtr->Signature = PXE_ROMID_SIGNATURE; | |
PxePtr->Len = (UINT8) sizeof (PXE_SW_UNDI); | |
// | |
// cksum | |
// | |
PxePtr->Fudge = 0; | |
// | |
// number of NICs this undi supports | |
// | |
PxePtr->IFcnt = 0; | |
PxePtr->Rev = PXE_ROMID_REV; | |
PxePtr->MajorVer = PXE_ROMID_MAJORVER; | |
PxePtr->MinorVer = PXE_ROMID_MINORVER; | |
PxePtr->reserved1 = 0; | |
PxePtr->Implementation = PXE_ROMID_IMP_SW_VIRT_ADDR | | |
PXE_ROMID_IMP_FRAG_SUPPORTED | | |
PXE_ROMID_IMP_CMD_LINK_SUPPORTED | | |
PXE_ROMID_IMP_NVDATA_READ_ONLY | | |
PXE_ROMID_IMP_STATION_ADDR_SETTABLE | | |
PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED | | |
PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED | | |
PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED | | |
PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED | | |
PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED | | |
PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED; | |
PxePtr->EntryPoint = (UINT64) (UINTN) UNDI_APIEntry_new; | |
PxePtr->MinorVer = PXE_ROMID_MINORVER_31; | |
PxePtr->reserved2[0] = 0; | |
PxePtr->reserved2[1] = 0; | |
PxePtr->reserved2[2] = 0; | |
PxePtr->BusCnt = 1; | |
PxePtr->BusType[0] = PXE_BUSTYPE_PCI; | |
PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len)); | |
} | |