/** @file | |
RTC Architectural Protocol GUID as defined in DxeCis 0.96. | |
Copyright (c) 2006 - 2007, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials | |
are licensed and made available under the terms and conditions of the BSD License | |
which accompanies this distribution. The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license.php | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
**/ | |
#include "PcRtc.h" | |
/** | |
Compare the Hour, Minute and Second of the From time and the To time. | |
Only compare H/M/S in EFI_TIME and ignore other fields here. | |
@param From the first time | |
@param To the second time | |
@return >0 The H/M/S of the From time is later than those of To time | |
@return ==0 The H/M/S of the From time is same as those of To time | |
@return <0 The H/M/S of the From time is earlier than those of To time | |
**/ | |
INTN | |
CompareHMS ( | |
IN EFI_TIME *From, | |
IN EFI_TIME *To | |
); | |
/** | |
To check if second date is later than first date within 24 hours. | |
@param From the first date | |
@param To the second date | |
@retval TRUE From is previous to To within 24 hours. | |
@retval FALSE From is later, or it is previous to To more than 24 hours. | |
**/ | |
BOOLEAN | |
IsWithinOneDay ( | |
IN EFI_TIME *From, | |
IN EFI_TIME *To | |
); | |
/** | |
Read RTC content through its registers. | |
@param Address Address offset of RTC. It is recommended to use macros such as | |
RTC_ADDRESS_SECONDS. | |
@return The data of UINT8 type read from RTC. | |
**/ | |
UINT8 | |
RtcRead ( | |
IN UINT8 Address | |
) | |
{ | |
IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80))); | |
return IoRead8 (PCAT_RTC_DATA_REGISTER); | |
} | |
/** | |
Write RTC through its registers. | |
@param Address Address offset of RTC. It is recommended to use macros such as | |
RTC_ADDRESS_SECONDS. | |
@param Data The content you want to write into RTC. | |
**/ | |
VOID | |
RtcWrite ( | |
IN UINT8 Address, | |
IN UINT8 Data | |
) | |
{ | |
IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80))); | |
IoWrite8 (PCAT_RTC_DATA_REGISTER, Data); | |
} | |
/** | |
Initialize RTC. | |
@param Global For global use inside this module. | |
@retval EFI_DEVICE_ERROR Initialization failed due to device error. | |
@retval EFI_SUCCESS Initialization successful. | |
**/ | |
EFI_STATUS | |
PcRtcInit ( | |
IN PC_RTC_MODULE_GLOBALS *Global | |
) | |
{ | |
EFI_STATUS Status; | |
RTC_REGISTER_A RegisterA; | |
RTC_REGISTER_B RegisterB; | |
RTC_REGISTER_D RegisterD; | |
UINT8 Century; | |
EFI_TIME Time; | |
UINTN DataSize; | |
UINT32 TimerVar; | |
// | |
// Acquire RTC Lock to make access to RTC atomic | |
// | |
if (!EfiAtRuntime ()) { | |
EfiAcquireLock (&Global->RtcLock); | |
} | |
// | |
// Initialize RTC Register | |
// | |
// Make sure Division Chain is properly configured, | |
// or RTC clock won't "tick" -- time won't increment | |
// | |
RegisterA.Data = RTC_INIT_REGISTER_A; | |
RtcWrite (RTC_ADDRESS_REGISTER_A, RegisterA.Data); | |
// | |
// Read Register B | |
// | |
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
// | |
// Clear RTC flag register | |
// | |
RtcRead (RTC_ADDRESS_REGISTER_C); | |
// | |
// Clear RTC register D | |
// | |
RegisterD.Data = RTC_INIT_REGISTER_D; | |
RtcWrite (RTC_ADDRESS_REGISTER_D, RegisterD.Data); | |
// | |
// Wait for up to 0.1 seconds for the RTC to be updated | |
// | |
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
if (EFI_ERROR (Status)) { | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
return EFI_DEVICE_ERROR; | |
} | |
// | |
// Get the Time/Date/Daylight Savings values. | |
// | |
Time.Second = RtcRead (RTC_ADDRESS_SECONDS); | |
Time.Minute = RtcRead (RTC_ADDRESS_MINUTES); | |
Time.Hour = RtcRead (RTC_ADDRESS_HOURS); | |
Time.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); | |
Time.Month = RtcRead (RTC_ADDRESS_MONTH); | |
Time.Year = RtcRead (RTC_ADDRESS_YEAR); | |
Century = RtcRead (RTC_ADDRESS_CENTURY); | |
// | |
// Set RTC configuration after get original time | |
// The value of bit AIE should be reserved. | |
// | |
RtcWrite (RTC_ADDRESS_REGISTER_B, (UINT8)(RTC_INIT_REGISTER_B | (RegisterB.Data & BIT5))); | |
// | |
// Release RTC Lock. | |
// | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
// | |
// Get the data of Daylight saving and time zone, if they have been | |
// stored in NV variable during previous boot. | |
// | |
DataSize = sizeof (UINT32); | |
Status = EfiGetVariable ( | |
L"RTC", | |
&gEfiCallerIdGuid, | |
NULL, | |
&DataSize, | |
(VOID *) &TimerVar | |
); | |
if (!EFI_ERROR (Status)) { | |
Time.TimeZone = (INT16) TimerVar; | |
Time.Daylight = (UINT8) (TimerVar >> 16); | |
} else { | |
Time.TimeZone = EFI_UNSPECIFIED_TIMEZONE; | |
Time.Daylight = 0; | |
} | |
// | |
// Validate time fields | |
// | |
Status = ConvertRtcTimeToEfiTime (&Time, Century, RegisterB); | |
if (!EFI_ERROR (Status)) { | |
Status = RtcTimeFieldsValid (&Time); | |
} | |
if (EFI_ERROR (Status)) { | |
Time.Second = RTC_INIT_SECOND; | |
Time.Minute = RTC_INIT_MINUTE; | |
Time.Hour = RTC_INIT_HOUR; | |
Time.Day = RTC_INIT_DAY; | |
Time.Month = RTC_INIT_MONTH; | |
Time.Year = RTC_INIT_YEAR; | |
Time.Nanosecond = 0; | |
} | |
// | |
// Reset time value according to new RTC configuration | |
// | |
Status = PcRtcSetTime (&Time, Global); | |
if(!EFI_ERROR (Status)) { | |
return EFI_SUCCESS; | |
} else { | |
return EFI_DEVICE_ERROR; | |
} | |
} | |
/** | |
Returns the current time and date information, and the time-keeping capabilities | |
of the hardware platform. | |
@param Time A pointer to storage to receive a snapshot of the current time. | |
@param Capabilities An optional pointer to a buffer to receive the real time clock | |
device's capabilities. | |
@param Global For global use inside this module. | |
@retval EFI_SUCCESS The operation completed successfully. | |
@retval EFI_INVALID_PARAMETER Time is NULL. | |
@retval EFI_DEVICE_ERROR The time could not be retrieved due to hardware error. | |
**/ | |
EFI_STATUS | |
PcRtcGetTime ( | |
OUT EFI_TIME *Time, | |
OUT EFI_TIME_CAPABILITIES *Capabilities, OPTIONAL | |
IN PC_RTC_MODULE_GLOBALS *Global | |
) | |
{ | |
EFI_STATUS Status; | |
RTC_REGISTER_B RegisterB; | |
UINT8 Century; | |
// | |
// Check parameters for null pointer | |
// | |
if (Time == NULL) { | |
return EFI_INVALID_PARAMETER; | |
} | |
// | |
// Acquire RTC Lock to make access to RTC atomic | |
// | |
if (!EfiAtRuntime ()) { | |
EfiAcquireLock (&Global->RtcLock); | |
} | |
// | |
// Wait for up to 0.1 seconds for the RTC to be updated | |
// | |
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
if (EFI_ERROR (Status)) { | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
return Status; | |
} | |
// | |
// Read Register B | |
// | |
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
// | |
// Get the Time/Date/Daylight Savings values. | |
// | |
Time->Second = RtcRead (RTC_ADDRESS_SECONDS); | |
Time->Minute = RtcRead (RTC_ADDRESS_MINUTES); | |
Time->Hour = RtcRead (RTC_ADDRESS_HOURS); | |
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); | |
Time->Month = RtcRead (RTC_ADDRESS_MONTH); | |
Time->Year = RtcRead (RTC_ADDRESS_YEAR); | |
Century = RtcRead (RTC_ADDRESS_CENTURY); | |
// | |
// Release RTC Lock. | |
// | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
// | |
// Get the variable that contains the TimeZone and Daylight fields | |
// | |
Time->TimeZone = Global->SavedTimeZone; | |
Time->Daylight = Global->Daylight; | |
// | |
// Make sure all field values are in correct range | |
// | |
Status = ConvertRtcTimeToEfiTime (Time, Century, RegisterB); | |
if (!EFI_ERROR (Status)) { | |
Status = RtcTimeFieldsValid (Time); | |
} | |
if (EFI_ERROR (Status)) { | |
return EFI_DEVICE_ERROR; | |
} | |
// | |
// Fill in Capabilities if it was passed in | |
// | |
if (Capabilities != NULL) { | |
Capabilities->Resolution = 1; | |
// | |
// 1 hertz | |
// | |
Capabilities->Accuracy = 50000000; | |
// | |
// 50 ppm | |
// | |
Capabilities->SetsToZero = FALSE; | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Sets the current local time and date information. | |
@param Time A pointer to the current time. | |
@param Global For global use inside this module. | |
@retval EFI_SUCCESS The operation completed successfully. | |
@retval EFI_INVALID_PARAMETER A time field is out of range. | |
@retval EFI_DEVICE_ERROR The time could not be set due due to hardware error. | |
**/ | |
EFI_STATUS | |
PcRtcSetTime ( | |
IN EFI_TIME *Time, | |
IN PC_RTC_MODULE_GLOBALS *Global | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_TIME RtcTime; | |
RTC_REGISTER_B RegisterB; | |
UINT8 Century; | |
UINT32 TimerVar; | |
if (Time == NULL) { | |
return EFI_INVALID_PARAMETER; | |
} | |
// | |
// Make sure that the time fields are valid | |
// | |
Status = RtcTimeFieldsValid (Time); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
CopyMem (&RtcTime, Time, sizeof (EFI_TIME)); | |
// | |
// Acquire RTC Lock to make access to RTC atomic | |
// | |
if (!EfiAtRuntime ()) { | |
EfiAcquireLock (&Global->RtcLock); | |
} | |
// | |
// Wait for up to 0.1 seconds for the RTC to be updated | |
// | |
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
if (EFI_ERROR (Status)) { | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
return Status; | |
} | |
// | |
// Read Register B, and inhibit updates of the RTC | |
// | |
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
RegisterB.Bits.Set = 1; | |
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century); | |
RtcWrite (RTC_ADDRESS_SECONDS, RtcTime.Second); | |
RtcWrite (RTC_ADDRESS_MINUTES, RtcTime.Minute); | |
RtcWrite (RTC_ADDRESS_HOURS, RtcTime.Hour); | |
RtcWrite (RTC_ADDRESS_DAY_OF_THE_MONTH, RtcTime.Day); | |
RtcWrite (RTC_ADDRESS_MONTH, RtcTime.Month); | |
RtcWrite (RTC_ADDRESS_YEAR, (UINT8) RtcTime.Year); | |
RtcWrite (RTC_ADDRESS_CENTURY, Century); | |
// | |
// Allow updates of the RTC registers | |
// | |
RegisterB.Bits.Set = 0; | |
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
// | |
// Release RTC Lock. | |
// | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
// | |
// Set the variable that contains the TimeZone and Daylight fields | |
// | |
Global->SavedTimeZone = Time->TimeZone; | |
Global->Daylight = Time->Daylight; | |
TimerVar = Time->Daylight; | |
TimerVar = (UINT32) ((TimerVar << 16) | Time->TimeZone); | |
Status = EfiSetVariable ( | |
L"RTC", | |
&gEfiCallerIdGuid, | |
EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE, | |
sizeof (TimerVar), | |
&TimerVar | |
); | |
ASSERT_EFI_ERROR (Status); | |
return EFI_SUCCESS; | |
} | |
/** | |
Returns the current wakeup alarm clock setting. | |
@param Enabled Indicates if the alarm is currently enabled or disabled. | |
@param Pending Indicates if the alarm signal is pending and requires acknowledgment. | |
@param Time The current alarm setting. | |
@param Global For global use inside this module. | |
@retval EFI_SUCCESS The alarm settings were returned. | |
@retval EFI_INVALID_PARAMETER Enabled is NULL. | |
@retval EFI_INVALID_PARAMETER Pending is NULL. | |
@retval EFI_INVALID_PARAMETER Time is NULL. | |
@retval EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error. | |
@retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform. | |
**/ | |
EFI_STATUS | |
PcRtcGetWakeupTime ( | |
OUT BOOLEAN *Enabled, | |
OUT BOOLEAN *Pending, | |
OUT EFI_TIME *Time, | |
IN PC_RTC_MODULE_GLOBALS *Global | |
) | |
{ | |
EFI_STATUS Status; | |
RTC_REGISTER_B RegisterB; | |
RTC_REGISTER_C RegisterC; | |
UINT8 Century; | |
// | |
// Check parameters for null pointers | |
// | |
if ((Enabled == NULL) || (Pending == NULL) || (Time == NULL)) { | |
return EFI_INVALID_PARAMETER; | |
} | |
// | |
// Acquire RTC Lock to make access to RTC atomic | |
// | |
if (!EfiAtRuntime ()) { | |
EfiAcquireLock (&Global->RtcLock); | |
} | |
// | |
// Wait for up to 0.1 seconds for the RTC to be updated | |
// | |
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
if (EFI_ERROR (Status)) { | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
return EFI_DEVICE_ERROR; | |
} | |
// | |
// Read Register B and Register C | |
// | |
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C); | |
// | |
// Get the Time/Date/Daylight Savings values. | |
// | |
*Enabled = RegisterB.Bits.Aie; | |
if (*Enabled) { | |
Time->Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM); | |
Time->Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM); | |
Time->Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM); | |
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); | |
Time->Month = RtcRead (RTC_ADDRESS_MONTH); | |
Time->Year = RtcRead (RTC_ADDRESS_YEAR); | |
} else { | |
Time->Second = 0; | |
Time->Minute = 0; | |
Time->Hour = 0; | |
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); | |
Time->Month = RtcRead (RTC_ADDRESS_MONTH); | |
Time->Year = RtcRead (RTC_ADDRESS_YEAR); | |
} | |
Century = RtcRead (RTC_ADDRESS_CENTURY); | |
// | |
// Release RTC Lock. | |
// | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
// | |
// Get the variable that contains the TimeZone and Daylight fields | |
// | |
Time->TimeZone = Global->SavedTimeZone; | |
Time->Daylight = Global->Daylight; | |
// | |
// Make sure all field values are in correct range | |
// | |
Status = ConvertRtcTimeToEfiTime (Time, Century, RegisterB); | |
if (!EFI_ERROR (Status)) { | |
Status = RtcTimeFieldsValid (Time); | |
} | |
if (EFI_ERROR (Status)) { | |
return EFI_DEVICE_ERROR; | |
} | |
*Pending = RegisterC.Bits.Af; | |
return EFI_SUCCESS; | |
} | |
/** | |
Sets the system wakeup alarm clock time. | |
@param Enabled Enable or disable the wakeup alarm. | |
@param Time If Enable is TRUE, the time to set the wakeup alarm for. | |
If Enable is FALSE, then this parameter is optional, and may be NULL. | |
@param Global For global use inside this module. | |
@retval EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. | |
If Enable is FALSE, then the wakeup alarm was disabled. | |
@retval EFI_INVALID_PARAMETER A time field is out of range. | |
@retval EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error. | |
@retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform. | |
**/ | |
EFI_STATUS | |
PcRtcSetWakeupTime ( | |
IN BOOLEAN Enable, | |
IN EFI_TIME *Time, OPTIONAL | |
IN PC_RTC_MODULE_GLOBALS *Global | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_TIME RtcTime; | |
RTC_REGISTER_B RegisterB; | |
UINT8 Century; | |
EFI_TIME_CAPABILITIES Capabilities; | |
if (Enable) { | |
if (Time == NULL) { | |
return EFI_INVALID_PARAMETER; | |
} | |
// | |
// Make sure that the time fields are valid | |
// | |
Status = RtcTimeFieldsValid (Time); | |
if (EFI_ERROR (Status)) { | |
return EFI_INVALID_PARAMETER; | |
} | |
// | |
// Just support set alarm time within 24 hours | |
// | |
PcRtcGetTime (&RtcTime, &Capabilities, Global); | |
Status = RtcTimeFieldsValid (&RtcTime); | |
if (EFI_ERROR (Status)) { | |
return EFI_DEVICE_ERROR; | |
} | |
if (!IsWithinOneDay (&RtcTime, Time)) { | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// Make a local copy of the time and date | |
// | |
CopyMem (&RtcTime, Time, sizeof (EFI_TIME)); | |
} | |
// | |
// Acquire RTC Lock to make access to RTC atomic | |
// | |
if (!EfiAtRuntime ()) { | |
EfiAcquireLock (&Global->RtcLock); | |
} | |
// | |
// Wait for up to 0.1 seconds for the RTC to be updated | |
// | |
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
if (EFI_ERROR (Status)) { | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
return EFI_DEVICE_ERROR; | |
} | |
// | |
// Read Register B, and inhibit updates of the RTC | |
// | |
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
RegisterB.Bits.Set = 1; | |
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
if (Enable) { | |
ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century); | |
// | |
// Set RTC alarm time | |
// | |
RtcWrite (RTC_ADDRESS_SECONDS_ALARM, RtcTime.Second); | |
RtcWrite (RTC_ADDRESS_MINUTES_ALARM, RtcTime.Minute); | |
RtcWrite (RTC_ADDRESS_HOURS_ALARM, RtcTime.Hour); | |
RegisterB.Bits.Aie = 1; | |
} else { | |
RegisterB.Bits.Aie = 0; | |
} | |
// | |
// Allow updates of the RTC registers | |
// | |
RegisterB.Bits.Set = 0; | |
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
// | |
// Release RTC Lock. | |
// | |
if (!EfiAtRuntime ()) { | |
EfiReleaseLock (&Global->RtcLock); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Checks an 8-bit BCD value, and converts to an 8-bit value if valid. | |
This function checks the 8-bit BCD value specified by Value. | |
If valid, the function converts it to an 8-bit value and returns it. | |
Otherwise, return 0xff. | |
@param Value The 8-bit BCD value to check and convert | |
@return The 8-bit value converted. Or 0xff if Value is invalid. | |
**/ | |
UINT8 | |
CheckAndConvertBcd8ToDecimal8 ( | |
IN UINT8 Value | |
) | |
{ | |
if ((Value < 0xa0) && ((Value & 0xf) < 0xa)) { | |
return BcdToDecimal8 (Value); | |
} | |
return 0xff; | |
} | |
/** | |
Converts time read from RTC to EFI_TIME format defined by UEFI spec. | |
This function converts raw time data read from RTC to the EFI_TIME format | |
defined by UEFI spec. | |
If data mode of RTC is BCD, then converts it to decimal, | |
If RTC is in 12-hour format, then converts it to 24-hour format. | |
@param Time On input, the time data read from RTC to convert | |
On output, the time converted to UEFI format | |
@param Century Value of century read from RTC. | |
@param RegisterB Value of Register B of RTC, indicating data mode | |
and hour format. | |
@retval EFI_INVALID_PARAMETER Parameters passed in are invalid. | |
@retval EFI_SUCCESS Convert RTC time to EFI time successfully. | |
**/ | |
EFI_STATUS | |
ConvertRtcTimeToEfiTime ( | |
IN OUT EFI_TIME *Time, | |
IN UINT8 Century, | |
IN RTC_REGISTER_B RegisterB | |
) | |
{ | |
BOOLEAN IsPM; | |
if ((Time->Hour & 0x80) != 0) { | |
IsPM = TRUE; | |
} else { | |
IsPM = FALSE; | |
} | |
Time->Hour = (UINT8) (Time->Hour & 0x7f); | |
if (RegisterB.Bits.Dm == 0) { | |
Time->Year = CheckAndConvertBcd8ToDecimal8 ((UINT8) Time->Year); | |
Time->Month = CheckAndConvertBcd8ToDecimal8 (Time->Month); | |
Time->Day = CheckAndConvertBcd8ToDecimal8 (Time->Day); | |
Time->Hour = CheckAndConvertBcd8ToDecimal8 (Time->Hour); | |
Time->Minute = CheckAndConvertBcd8ToDecimal8 (Time->Minute); | |
Time->Second = CheckAndConvertBcd8ToDecimal8 (Time->Second); | |
} | |
Century = CheckAndConvertBcd8ToDecimal8 (Century); | |
if (Time->Year == 0xff || Time->Month == 0xff || Time->Day == 0xff || | |
Time->Hour == 0xff || Time->Minute == 0xff || Time->Second == 0xff || | |
Century == 0xff) { | |
return EFI_INVALID_PARAMETER; | |
} | |
Time->Year = (UINT16) (Century * 100 + Time->Year); | |
// | |
// If time is in 12 hour format, convert it to 24 hour format | |
// | |
if (RegisterB.Bits.Mil == 0) { | |
if (IsPM && Time->Hour < 12) { | |
Time->Hour = (UINT8) (Time->Hour + 12); | |
} | |
if (!IsPM && Time->Hour == 12) { | |
Time->Hour = 0; | |
} | |
} | |
Time->Nanosecond = 0; | |
return EFI_SUCCESS; | |
} | |
/** | |
Wait for a period for the RTC to be ready. | |
@param Timeout Tell how long it should take to wait. | |
@retval EFI_DEVICE_ERROR RTC device error. | |
@retval EFI_SUCCESS RTC is updated and ready. | |
**/ | |
EFI_STATUS | |
RtcWaitToUpdate ( | |
UINTN Timeout | |
) | |
{ | |
RTC_REGISTER_A RegisterA; | |
RTC_REGISTER_D RegisterD; | |
// | |
// See if the RTC is functioning correctly | |
// | |
RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D); | |
if (RegisterD.Bits.Vrt == 0) { | |
return EFI_DEVICE_ERROR; | |
} | |
// | |
// Wait for up to 0.1 seconds for the RTC to be ready. | |
// | |
Timeout = (Timeout / 10) + 1; | |
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A); | |
while (RegisterA.Bits.Uip == 1 && Timeout > 0) { | |
MicroSecondDelay (10); | |
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A); | |
Timeout--; | |
} | |
RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D); | |
if (Timeout == 0 || RegisterD.Bits.Vrt == 0) { | |
return EFI_DEVICE_ERROR; | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
See if all fields of a variable of EFI_TIME type is correct. | |
@param Time The time to be checked. | |
@retval EFI_INVALID_PARAMETER Some fields of Time are not correct. | |
@retval EFI_SUCCESS Time is a valid EFI_TIME variable. | |
**/ | |
EFI_STATUS | |
RtcTimeFieldsValid ( | |
IN EFI_TIME *Time | |
) | |
{ | |
if (Time->Year < 1998 || | |
Time->Year > 2099 || | |
Time->Month < 1 || | |
Time->Month > 12 || | |
(!DayValid (Time)) || | |
Time->Hour > 23 || | |
Time->Minute > 59 || | |
Time->Second > 59 || | |
Time->Nanosecond > 999999999 || | |
(!(Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE || (Time->TimeZone >= -1440 && Time->TimeZone <= 1440))) || | |
((Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT))) != 0)) { | |
return EFI_INVALID_PARAMETER; | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
See if field Day of an EFI_TIME is correct. | |
@param Time Its Day field is to be checked. | |
@retval TRUE Day field of Time is correct. | |
@retval FALSE Day field of Time is NOT correct. | |
**/ | |
BOOLEAN | |
DayValid ( | |
IN EFI_TIME *Time | |
) | |
{ | |
INTN DayOfMonth[12]; | |
DayOfMonth[0] = 31; | |
DayOfMonth[1] = 29; | |
DayOfMonth[2] = 31; | |
DayOfMonth[3] = 30; | |
DayOfMonth[4] = 31; | |
DayOfMonth[5] = 30; | |
DayOfMonth[6] = 31; | |
DayOfMonth[7] = 31; | |
DayOfMonth[8] = 30; | |
DayOfMonth[9] = 31; | |
DayOfMonth[10] = 30; | |
DayOfMonth[11] = 31; | |
// | |
// The validity of Time->Month field should be checked before | |
// | |
ASSERT (Time->Month >=1); | |
ASSERT (Time->Month <=12); | |
if (Time->Day < 1 || | |
Time->Day > DayOfMonth[Time->Month - 1] || | |
(Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28)) | |
) { | |
return FALSE; | |
} | |
return TRUE; | |
} | |
/** | |
Check if it is a leap year. | |
@param Time The time to be checked. | |
@retval TRUE It is a leap year. | |
@retval FALSE It is NOT a leap year. | |
**/ | |
BOOLEAN | |
IsLeapYear ( | |
IN EFI_TIME *Time | |
) | |
{ | |
if (Time->Year % 4 == 0) { | |
if (Time->Year % 100 == 0) { | |
if (Time->Year % 400 == 0) { | |
return TRUE; | |
} else { | |
return FALSE; | |
} | |
} else { | |
return TRUE; | |
} | |
} else { | |
return FALSE; | |
} | |
} | |
/** | |
Converts time from EFI_TIME format defined by UEFI spec to RTC's. | |
This function converts time from EFI_TIME format defined by UEFI spec to RTC's. | |
If data mode of RTC is BCD, then converts EFI_TIME to it. | |
If RTC is in 12-hour format, then converts EFI_TIME to it. | |
@param Time On input, the time data read from UEFI to convert | |
On output, the time converted to RTC format | |
@param RegisterB Value of Register B of RTC, indicating data mode | |
@param Century It is set according to EFI_TIME Time. | |
**/ | |
VOID | |
ConvertEfiTimeToRtcTime ( | |
IN OUT EFI_TIME *Time, | |
IN RTC_REGISTER_B RegisterB, | |
OUT UINT8 *Century | |
) | |
{ | |
BOOLEAN IsPM; | |
IsPM = TRUE; | |
// | |
// Adjust hour field if RTC is in 12 hour mode | |
// | |
if (RegisterB.Bits.Mil == 0) { | |
if (Time->Hour < 12) { | |
IsPM = FALSE; | |
} | |
if (Time->Hour >= 13) { | |
Time->Hour = (UINT8) (Time->Hour - 12); | |
} else if (Time->Hour == 0) { | |
Time->Hour = 12; | |
} | |
} | |
// | |
// Set the Time/Date/Daylight Savings values. | |
// | |
*Century = DecimalToBcd8 ((UINT8) (Time->Year / 100)); | |
Time->Year = (UINT16) (Time->Year % 100); | |
if (RegisterB.Bits.Dm == 0) { | |
Time->Year = DecimalToBcd8 ((UINT8) Time->Year); | |
Time->Month = DecimalToBcd8 (Time->Month); | |
Time->Day = DecimalToBcd8 (Time->Day); | |
Time->Hour = DecimalToBcd8 (Time->Hour); | |
Time->Minute = DecimalToBcd8 (Time->Minute); | |
Time->Second = DecimalToBcd8 (Time->Second); | |
} | |
// | |
// If we are in 12 hour mode and PM is set, then set bit 7 of the Hour field. | |
// | |
if (RegisterB.Bits.Mil == 0 && IsPM) { | |
Time->Hour = (UINT8) (Time->Hour | 0x80); | |
} | |
} | |
/** | |
Compare the Hour, Minute and Second of the From time and the To time. | |
Only compare H/M/S in EFI_TIME and ignore other fields here. | |
@param From the first time | |
@param To the second time | |
@return >0 The H/M/S of the From time is later than those of To time | |
@return ==0 The H/M/S of the From time is same as those of To time | |
@return <0 The H/M/S of the From time is earlier than those of To time | |
**/ | |
INTN | |
CompareHMS ( | |
IN EFI_TIME *From, | |
IN EFI_TIME *To | |
) | |
{ | |
if ((From->Hour > To->Hour) || | |
((From->Hour == To->Hour) && (From->Minute > To->Minute)) || | |
((From->Hour == To->Hour) && (From->Minute == To->Minute) && (From->Second > To->Second))) { | |
return 1; | |
} else if ((From->Hour == To->Hour) && (From->Minute == To->Minute) && (From->Second == To->Second)) { | |
return 0; | |
} else { | |
return -1; | |
} | |
} | |
/** | |
To check if second date is later than first date within 24 hours. | |
@param From the first date | |
@param To the second date | |
@retval TRUE From is previous to To within 24 hours. | |
@retval FALSE From is later, or it is previous to To more than 24 hours. | |
**/ | |
BOOLEAN | |
IsWithinOneDay ( | |
IN EFI_TIME *From, | |
IN EFI_TIME *To | |
) | |
{ | |
UINT8 DayOfMonth[12]; | |
BOOLEAN Adjacent; | |
DayOfMonth[0] = 31; | |
DayOfMonth[1] = 29; | |
DayOfMonth[2] = 31; | |
DayOfMonth[3] = 30; | |
DayOfMonth[4] = 31; | |
DayOfMonth[5] = 30; | |
DayOfMonth[6] = 31; | |
DayOfMonth[7] = 31; | |
DayOfMonth[8] = 30; | |
DayOfMonth[9] = 31; | |
DayOfMonth[10] = 30; | |
DayOfMonth[11] = 31; | |
Adjacent = FALSE; | |
// | |
// The validity of From->Month field should be checked before | |
// | |
ASSERT (From->Month >=1); | |
ASSERT (From->Month <=12); | |
if (From->Year == To->Year) { | |
if (From->Month == To->Month) { | |
if ((From->Day + 1) == To->Day) { | |
if ((CompareHMS(From, To) >= 0)) { | |
Adjacent = TRUE; | |
} | |
} else if (From->Day == To->Day) { | |
if ((CompareHMS(From, To) <= 0)) { | |
Adjacent = TRUE; | |
} | |
} | |
} else if (((From->Month + 1) == To->Month) && (To->Day == 1)) { | |
if ((From->Month == 2) && !IsLeapYear(From)) { | |
if (From->Day == 28) { | |
if ((CompareHMS(From, To) >= 0)) { | |
Adjacent = TRUE; | |
} | |
} | |
} else if (From->Day == DayOfMonth[From->Month - 1]) { | |
if ((CompareHMS(From, To) >= 0)) { | |
Adjacent = TRUE; | |
} | |
} | |
} | |
} else if (((From->Year + 1) == To->Year) && | |
(From->Month == 12) && | |
(From->Day == 31) && | |
(To->Month == 1) && | |
(To->Day == 1)) { | |
if ((CompareHMS(From, To) >= 0)) { | |
Adjacent = TRUE; | |
} | |
} | |
return Adjacent; | |
} | |