blob: 56753fd421da583b5975f7fefac0ad80cd8004c5 [file] [log] [blame]
/**@file
Copyright (c) 2006, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
SecMain.c
Abstract:
WinNt emulator of SEC phase. It's really a Win32 application, but this is
Ok since all the other modules for NT32 are NOT Win32 applications.
This program gets NT32 PCD setting and figures out what the memory layout
will be, how may FD's will be loaded and also what the boot mode is.
The SEC registers a set of services with the SEC core. gPrivateDispatchTable
is a list of PPI's produced by the SEC that are availble for usage in PEI.
This code produces 128 K of temporary memory for the PEI stack by directly
allocate memory space with ReadWrite and Execute attribute.
**/
#include "SecMain.h"
//
// Globals
//
EFI_PEI_PE_COFF_LOADER_PROTOCOL_INSTANCE mPeiEfiPeiPeCoffLoaderInstance = {
{
SecNt32PeCoffGetImageInfo,
SecNt32PeCoffLoadImage,
SecNt32PeCoffRelocateImage,
SecNt32PeCoffUnloadimage
},
NULL
};
EFI_PEI_PE_COFF_LOADER_PROTOCOL *gPeiEfiPeiPeCoffLoader = &mPeiEfiPeiPeCoffLoaderInstance.PeCoff;
NT_PEI_LOAD_FILE_PPI mSecNtLoadFilePpi = { SecWinNtPeiLoadFile };
PEI_NT_AUTOSCAN_PPI mSecNtAutoScanPpi = { SecWinNtPeiAutoScan };
PEI_NT_THUNK_PPI mSecWinNtThunkPpi = { SecWinNtWinNtThunkAddress };
EFI_PEI_PROGRESS_CODE_PPI mSecStatusCodePpi = { SecPeiReportStatusCode };
NT_FWH_PPI mSecFwhInformationPpi = { SecWinNtFdAddress };
TEMPORARY_RAM_SUPPORT_PPI mSecTemporaryRamSupportPpi = {SecTemporaryRamSupport};
EFI_PEI_PPI_DESCRIPTOR gPrivateDispatchTable[] = {
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gEfiPeiPeCoffLoaderGuid,
NULL
},
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gNtPeiLoadFilePpiGuid,
&mSecNtLoadFilePpi
},
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gPeiNtAutoScanPpiGuid,
&mSecNtAutoScanPpi
},
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gPeiNtThunkPpiGuid,
&mSecWinNtThunkPpi
},
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gEfiPeiStatusCodePpiGuid,
&mSecStatusCodePpi
},
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gEfiTemporaryRamSupportPpiGuid,
&mSecTemporaryRamSupportPpi
},
{
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gNtFwhPpiGuid,
&mSecFwhInformationPpi
}
};
//
// Default information about where the FD is located.
// This array gets filled in with information from PcdWinNtFirmwareVolume
// The number of array elements is allocated base on parsing
// PcdWinNtFirmwareVolume and the memory is never freed.
//
UINTN gFdInfoCount = 0;
NT_FD_INFO *gFdInfo;
//
// Array that supports seperate memory rantes.
// The memory ranges are set by PcdWinNtMemorySizeForSecMain.
// The number of array elements is allocated base on parsing
// PcdWinNtMemorySizeForSecMain value and the memory is never freed.
//
UINTN gSystemMemoryCount = 0;
NT_SYSTEM_MEMORY *gSystemMemory;
UINTN mPdbNameModHandleArraySize = 0;
PDB_NAME_TO_MOD_HANDLE *mPdbNameModHandleArray = NULL;
VOID
EFIAPI
SecSwitchStack (
UINT32 TemporaryMemoryBase,
UINT32 PermenentMemoryBase
);
INTN
EFIAPI
main (
IN INTN Argc,
IN CHAR8 **Argv,
IN CHAR8 **Envp
)
/*++
Routine Description:
Main entry point to SEC for WinNt. This is a Windows program
Arguments:
Argc - Number of command line arguments
Argv - Array of command line argument strings
Envp - Array of environmemt variable strings
Returns:
0 - Normal exit
1 - Abnormal exit
--*/
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS InitialStackMemory;
UINT64 InitialStackMemorySize;
UINTN Index;
UINTN Index1;
UINTN Index2;
CHAR16 *FileName;
CHAR16 *FileNamePtr;
BOOLEAN Done;
VOID *PeiCoreFile;
CHAR16 *MemorySizeStr;
CHAR16 *FirmwareVolumesStr;
UINTN *StackPointer;
MemorySizeStr = (CHAR16 *) FixedPcdGetPtr (PcdWinNtMemorySizeForSecMain);
FirmwareVolumesStr = (CHAR16 *) FixedPcdGetPtr (PcdWinNtFirmwareVolume);
printf ("\nEDK SEC Main NT Emulation Environment from www.TianoCore.org\n");
//
// Make some Windows calls to Set the process to the highest priority in the
// idle class. We need this to have good performance.
//
SetPriorityClass (GetCurrentProcess (), IDLE_PRIORITY_CLASS);
SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_HIGHEST);
//
// Allocate space for gSystemMemory Array
//
gSystemMemoryCount = CountSeperatorsInString (MemorySizeStr, '!') + 1;
gSystemMemory = calloc (gSystemMemoryCount, sizeof (NT_SYSTEM_MEMORY));
if (gSystemMemory == NULL) {
wprintf (L"ERROR : Can not allocate memory for %s. Exiting.\n", MemorySizeStr);
exit (1);
}
//
// Allocate space for gSystemMemory Array
//
gFdInfoCount = CountSeperatorsInString (FirmwareVolumesStr, '!') + 1;
gFdInfo = calloc (gFdInfoCount, sizeof (NT_FD_INFO));
if (gFdInfo == NULL) {
wprintf (L"ERROR : Can not allocate memory for %s. Exiting.\n", FirmwareVolumesStr);
exit (1);
}
//
// Setup Boot Mode. If BootModeStr == "" then BootMode = 0 (BOOT_WITH_FULL_CONFIGURATION)
//
printf (" BootMode 0x%02x\n", FixedPcdGet32 (PcdWinNtBootMode));
//
// Allocate 128K memory to emulate temp memory for PEI.
// on a real platform this would be SRAM, or using the cache as RAM.
// Set InitialStackMemory to zero so WinNtOpenFile will allocate a new mapping
//
InitialStackMemorySize = STACK_SIZE;
InitialStackMemory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (InitialStackMemorySize), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (InitialStackMemory == 0) {
printf ("ERROR : Can not allocate enough space for SecStack\n");
exit (1);
}
for (StackPointer = (UINTN*) (UINTN) InitialStackMemory;
StackPointer < (UINTN*) ((UINTN)InitialStackMemory + (SIZE_T) InitialStackMemorySize);
StackPointer ++) {
*StackPointer = 0x5AA55AA5;
}
wprintf (L" SEC passing in %d bytes of temp RAM to PEI\n", InitialStackMemorySize);
//
// Open All the firmware volumes and remember the info in the gFdInfo global
//
FileNamePtr = (CHAR16 *)malloc (StrLen ((CHAR16 *)FirmwareVolumesStr) * sizeof(CHAR16));
if (FileNamePtr == NULL) {
printf ("ERROR : Can not allocate memory for firmware volume string\n");
exit (1);
}
StrCpy (FileNamePtr, (CHAR16*)FirmwareVolumesStr);
for (Done = FALSE, Index = 0, PeiCoreFile = NULL; !Done; Index++) {
FileName = FileNamePtr;
for (Index1 = 0; (FileNamePtr[Index1] != '!') && (FileNamePtr[Index1] != 0); Index1++)
;
if (FileNamePtr[Index1] == 0) {
Done = TRUE;
} else {
FileNamePtr[Index1] = '\0';
FileNamePtr = FileNamePtr + Index1 + 1;
}
//
// Open the FD and remmeber where it got mapped into our processes address space
//
Status = WinNtOpenFile (
FileName,
0,
OPEN_EXISTING,
&gFdInfo[Index].Address,
&gFdInfo[Index].Size
);
if (EFI_ERROR (Status)) {
printf ("ERROR : Can not open Firmware Device File %S (0x%X). Exiting.\n", FileName, Status);
exit (1);
}
printf (" FD loaded from");
//
// printf can't print filenames directly as the \ gets interperted as an
// escape character.
//
for (Index2 = 0; FileName[Index2] != '\0'; Index2++) {
printf ("%c", FileName[Index2]);
}
if (PeiCoreFile == NULL) {
//
// Assume the beginning of the FD is an FV and look for the PEI Core.
// Load the first one we find.
//
Status = SecFfsFindPeiCore ((EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) gFdInfo[Index].Address, &PeiCoreFile);
if (!EFI_ERROR (Status)) {
printf (" contains SEC Core");
}
}
printf ("\n");
}
//
// Calculate memory regions and store the information in the gSystemMemory
// global for later use. The autosizing code will use this data to
// map this memory into the SEC process memory space.
//
for (Index = 0, Done = FALSE; !Done; Index++) {
//
// Save the size of the memory and make a Unicode filename SystemMemory00, ...
//
gSystemMemory[Index].Size = _wtoi (MemorySizeStr) * 0x100000;
//
// Find the next region
//
for (Index1 = 0; MemorySizeStr[Index1] != '!' && MemorySizeStr[Index1] != 0; Index1++)
;
if (MemorySizeStr[Index1] == 0) {
Done = TRUE;
}
MemorySizeStr = MemorySizeStr + Index1 + 1;
}
printf ("\n");
//
// Hand off to PEI Core
//
SecLoadFromCore ((UINTN) InitialStackMemory, (UINTN) InitialStackMemorySize, (UINTN) gFdInfo[0].Address, PeiCoreFile);
//
// If we get here, then the PEI Core returned. This is an error as PEI should
// always hand off to DXE.
//
printf ("ERROR : PEI Core returned\n");
exit (1);
}
EFI_STATUS
WinNtOpenFile (
IN CHAR16 *FileName,
IN UINT32 MapSize,
IN DWORD CreationDisposition,
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
OUT UINT64 *Length
)
/*++
Routine Description:
Opens and memory maps a file using WinNt services. If BaseAddress is non zero
the process will try and allocate the memory starting at BaseAddress.
Arguments:
FileName - The name of the file to open and map
MapSize - The amount of the file to map in bytes
CreationDisposition - The flags to pass to CreateFile(). Use to create new files for
memory emulation, and exiting files for firmware volume emulation
BaseAddress - The base address of the mapped file in the user address space.
If passed in as NULL the a new memory region is used.
If passed in as non NULL the request memory region is used for
the mapping of the file into the process space.
Length - The size of the mapped region in bytes
Returns:
EFI_SUCCESS - The file was opened and mapped.
EFI_NOT_FOUND - FileName was not found in the current directory
EFI_DEVICE_ERROR - An error occured attempting to map the opened file
--*/
{
HANDLE NtFileHandle;
HANDLE NtMapHandle;
VOID *VirtualAddress;
UINTN FileSize;
//
// Use Win API to open/create a file
//
NtFileHandle = CreateFile (
FileName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ,
NULL,
CreationDisposition,
FILE_ATTRIBUTE_NORMAL,
NULL
);
if (NtFileHandle == INVALID_HANDLE_VALUE) {
return EFI_NOT_FOUND;
}
//
// Map the open file into a memory range
//
NtMapHandle = CreateFileMapping (
NtFileHandle,
NULL,
PAGE_READWRITE,
0,
MapSize,
NULL
);
if (NtMapHandle == NULL) {
return EFI_DEVICE_ERROR;
}
//
// Get the virtual address (address in the emulator) of the mapped file
//
VirtualAddress = MapViewOfFileEx (
NtMapHandle,
FILE_MAP_ALL_ACCESS,
0,
0,
MapSize,
(LPVOID) (UINTN) *BaseAddress
);
if (VirtualAddress == NULL) {
return EFI_DEVICE_ERROR;
}
if (MapSize == 0) {
//
// Seek to the end of the file to figure out the true file size.
//
FileSize = SetFilePointer (
NtFileHandle,
0,
NULL,
FILE_END
);
if (FileSize == -1) {
return EFI_DEVICE_ERROR;
}
*Length = (UINT64) FileSize;
} else {
*Length = (UINT64) MapSize;
}
*BaseAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAddress;
return EFI_SUCCESS;
}
#define BYTES_PER_RECORD 512
EFI_STATUS
EFIAPI
SecPeiReportStatusCode (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_STATUS_CODE_TYPE CodeType,
IN EFI_STATUS_CODE_VALUE Value,
IN UINT32 Instance,
IN CONST EFI_GUID *CallerId,
IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
)
/*++
Routine Description:
This routine produces the ReportStatusCode PEI service. It's passed
up to the PEI Core via a PPI. T
This code currently uses the NT clib printf. This does not work the same way
as the EFI Print (), as %t, %g, %s as Unicode are not supported.
Arguments:
(see EFI_PEI_REPORT_STATUS_CODE)
Returns:
EFI_SUCCESS - Always return success
--*/
// TODO: PeiServices - add argument and description to function comment
// TODO: CodeType - add argument and description to function comment
// TODO: Value - add argument and description to function comment
// TODO: Instance - add argument and description to function comment
// TODO: CallerId - add argument and description to function comment
// TODO: Data - add argument and description to function comment
{
CHAR8 *Format;
VA_LIST Marker;
CHAR8 PrintBuffer[BYTES_PER_RECORD * 2];
CHAR8 *Filename;
CHAR8 *Description;
UINT32 LineNumber;
UINT32 ErrorLevel;
if (Data == NULL) {
} else if (ReportStatusCodeExtractAssertInfo (CodeType, Value, Data, &Filename, &Description, &LineNumber)) {
//
// Processes ASSERT ()
//
printf ("ASSERT %s(%d): %s\n", Filename, (int)LineNumber, Description);
} else if (ReportStatusCodeExtractDebugInfo (Data, &ErrorLevel, &Marker, &Format)) {
//
// Process DEBUG () macro
//
AsciiVSPrint (PrintBuffer, BYTES_PER_RECORD, Format, Marker);
printf (PrintBuffer);
}
return EFI_SUCCESS;
}
/**
Transfers control to a function starting with a new stack.
Transfers control to the function specified by EntryPoint using the new stack
specified by NewStack and passing in the parameters specified by Context1 and
Context2. Context1 and Context2 are optional and may be NULL. The function
EntryPoint must never return.
If EntryPoint is NULL, then ASSERT().
If NewStack is NULL, then ASSERT().
@param EntryPoint A pointer to function to call with the new stack.
@param Context1 A pointer to the context to pass into the EntryPoint
function.
@param Context2 A pointer to the context to pass into the EntryPoint
function.
@param NewStack A pointer to the new stack to use for the EntryPoint
function.
@param NewBsp A pointer to the new BSP for the EntryPoint on IPF. It's
Reserved on other architectures.
**/
VOID
EFIAPI
PeiSwitchStacks (
IN SWITCH_STACK_ENTRY_POINT EntryPoint,
IN VOID *Context1, OPTIONAL
IN VOID *Context2, OPTIONAL
IN VOID *Context3, OPTIONAL
IN VOID *NewStack
)
{
BASE_LIBRARY_JUMP_BUFFER JumpBuffer;
ASSERT (EntryPoint != NULL);
ASSERT (NewStack != NULL);
//
// Stack should be aligned with CPU_STACK_ALIGNMENT
//
ASSERT (((UINTN)NewStack & (CPU_STACK_ALIGNMENT - 1)) == 0);
JumpBuffer.Eip = (UINTN)EntryPoint;
JumpBuffer.Esp = (UINTN)NewStack - sizeof (VOID*);
JumpBuffer.Esp -= sizeof (Context1) + sizeof (Context2) + sizeof(Context3);
((VOID**)JumpBuffer.Esp)[1] = Context1;
((VOID**)JumpBuffer.Esp)[2] = Context2;
((VOID**)JumpBuffer.Esp)[3] = Context3;
LongJump (&JumpBuffer, (UINTN)-1);
//
// InternalSwitchStack () will never return
//
ASSERT (FALSE);
}
VOID
SecLoadFromCore (
IN UINTN LargestRegion,
IN UINTN LargestRegionSize,
IN UINTN BootFirmwareVolumeBase,
IN VOID *PeiCorePe32File
)
/*++
Routine Description:
This is the service to load the PEI Core from the Firmware Volume
Arguments:
LargestRegion - Memory to use for PEI.
LargestRegionSize - Size of Memory to use for PEI
BootFirmwareVolumeBase - Start of the Boot FV
PeiCorePe32File - PEI Core PE32
Returns:
Success means control is transfered and thus we should never return
--*/
{
EFI_STATUS Status;
VOID *TopOfStack;
UINT64 PeiCoreSize;
EFI_PHYSICAL_ADDRESS PeiCoreEntryPoint;
EFI_PHYSICAL_ADDRESS PeiImageAddress;
EFI_SEC_PEI_HAND_OFF *SecCoreData;
UINTN PeiStackSize;
//
// Compute Top Of Memory for Stack and PEI Core Allocations
//
PeiStackSize = (UINTN)RShiftU64((UINT64)STACK_SIZE,1);
//
// |-----------| <---- TemporaryRamBase + TemporaryRamSize
// | Heap |
// | |
// |-----------| <---- StackBase / PeiTemporaryMemoryBase
// | |
// | Stack |
// |-----------| <---- TemporaryRamBase
//
TopOfStack = (VOID *)(LargestRegion + PeiStackSize);
//
// Reservet space for storing PeiCore's parament in stack.
//
TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT);
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
//
// Patch value in dispatch table values
//
gPrivateDispatchTable[0].Ppi = gPeiEfiPeiPeCoffLoader;
//
// Bind this information into the SEC hand-off state
//
SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN) TopOfStack;
SecCoreData->DataSize = sizeof(EFI_SEC_PEI_HAND_OFF);
SecCoreData->BootFirmwareVolumeBase = (VOID*)BootFirmwareVolumeBase;
SecCoreData->BootFirmwareVolumeSize = FixedPcdGet32(PcdWinNtFirmwareFdSize);
SecCoreData->TemporaryRamBase = (VOID*)(UINTN)LargestRegion;
SecCoreData->TemporaryRamSize = STACK_SIZE;
SecCoreData->StackBase = SecCoreData->TemporaryRamBase;
SecCoreData->StackSize = PeiStackSize;
SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + PeiStackSize);
SecCoreData->PeiTemporaryRamSize = STACK_SIZE - PeiStackSize;
//
// Load the PEI Core from a Firmware Volume
//
Status = SecWinNtPeiLoadFile (
PeiCorePe32File,
&PeiImageAddress,
&PeiCoreSize,
&PeiCoreEntryPoint
);
if (EFI_ERROR (Status)) {
return ;
}
//
// Transfer control to the PEI Core
//
PeiSwitchStacks (
(SWITCH_STACK_ENTRY_POINT) (UINTN) PeiCoreEntryPoint,
SecCoreData,
(VOID *) (UINTN) ((EFI_PEI_PPI_DESCRIPTOR *) &gPrivateDispatchTable),
NULL,
TopOfStack
);
//
// If we get here, then the PEI Core returned. This is an error
//
return ;
}
EFI_STATUS
EFIAPI
SecWinNtPeiAutoScan (
IN UINTN Index,
OUT EFI_PHYSICAL_ADDRESS *MemoryBase,
OUT UINT64 *MemorySize
)
/*++
Routine Description:
This service is called from Index == 0 until it returns EFI_UNSUPPORTED.
It allows discontiguous memory regions to be supported by the emulator.
It uses gSystemMemory[] and gSystemMemoryCount that were created by
parsing PcdWinNtMemorySizeForSecMain value.
The size comes from the Pcd value and the address comes from the memory space
with ReadWrite and Execute attributes allocated by VirtualAlloc() API.
Arguments:
Index - Which memory region to use
MemoryBase - Return Base address of memory region
MemorySize - Return size in bytes of the memory region
Returns:
EFI_SUCCESS - If memory region was mapped
EFI_UNSUPPORTED - If Index is not supported
--*/
{
if (Index >= gSystemMemoryCount) {
return EFI_UNSUPPORTED;
}
//
// Allocate enough memory space for emulator
//
gSystemMemory[Index].Memory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (gSystemMemory[Index].Size), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (gSystemMemory[Index].Memory == 0) {
return EFI_OUT_OF_RESOURCES;
}
*MemoryBase = gSystemMemory[Index].Memory;
*MemorySize = gSystemMemory[Index].Size;
return EFI_SUCCESS;
}
VOID *
EFIAPI
SecWinNtWinNtThunkAddress (
VOID
)
/*++
Routine Description:
Since the SEC is the only Windows program in stack it must export
an interface to do Win API calls. That's what the WinNtThunk address
is for. gWinNt is initailized in WinNtThunk.c.
Arguments:
InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL);
InterfaceBase - Address of the gWinNt global
Returns:
EFI_SUCCESS - Data returned
--*/
{
return gWinNt;
}
EFI_STATUS
EFIAPI
SecWinNtPeiLoadFile (
IN VOID *Pe32Data,
IN EFI_PHYSICAL_ADDRESS *ImageAddress,
IN UINT64 *ImageSize,
IN EFI_PHYSICAL_ADDRESS *EntryPoint
)
/*++
Routine Description:
Loads and relocates a PE/COFF image into memory.
Arguments:
Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated
ImageAddress - The base address of the relocated PE/COFF image
ImageSize - The size of the relocated PE/COFF image
EntryPoint - The entry point of the relocated PE/COFF image
Returns:
EFI_SUCCESS - The file was loaded and relocated
EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file
--*/
{
EFI_STATUS Status;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
ZeroMem (&ImageContext, sizeof (ImageContext));
ImageContext.Handle = Pe32Data;
ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead;
Status = gPeiEfiPeiPeCoffLoader->GetImageInfo (gPeiEfiPeiPeCoffLoader, &ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Allocate space in NT (not emulator) memory with ReadWrite and Execute attribue.
// Extra space is for alignment
//
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (ImageContext.ImageAddress == 0) {
return EFI_OUT_OF_RESOURCES;
}
//
// Align buffer on section boundry
//
ImageContext.ImageAddress += ImageContext.SectionAlignment;
ImageContext.ImageAddress &= ~(ImageContext.SectionAlignment - 1);
Status = gPeiEfiPeiPeCoffLoader->LoadImage (gPeiEfiPeiPeCoffLoader, &ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
Status = gPeiEfiPeiPeCoffLoader->RelocateImage (gPeiEfiPeiPeCoffLoader, &ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
//
// BugBug: Flush Instruction Cache Here when CPU Lib is ready
//
*ImageAddress = ImageContext.ImageAddress;
*ImageSize = ImageContext.ImageSize;
*EntryPoint = ImageContext.EntryPoint;
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
SecWinNtFdAddress (
IN UINTN Index,
IN OUT EFI_PHYSICAL_ADDRESS *FdBase,
IN OUT UINT64 *FdSize
)
/*++
Routine Description:
Return the FD Size and base address. Since the FD is loaded from a
file into Windows memory only the SEC will know it's address.
Arguments:
Index - Which FD, starts at zero.
FdSize - Size of the FD in bytes
FdBase - Start address of the FD. Assume it points to an FV Header
Returns:
EFI_SUCCESS - Return the Base address and size of the FV
EFI_UNSUPPORTED - Index does nto map to an FD in the system
--*/
{
if (Index >= gFdInfoCount) {
return EFI_UNSUPPORTED;
}
*FdBase = gFdInfo[Index].Address;
*FdSize = gFdInfo[Index].Size;
if (*FdBase == 0 && *FdSize == 0) {
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
SecImageRead (
IN VOID *FileHandle,
IN UINTN FileOffset,
IN OUT UINTN *ReadSize,
OUT VOID *Buffer
)
/*++
Routine Description:
Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
Arguments:
FileHandle - The handle to the PE/COFF file
FileOffset - The offset, in bytes, into the file to read
ReadSize - The number of bytes to read from the file starting at FileOffset
Buffer - A pointer to the buffer to read the data into.
Returns:
EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
--*/
{
CHAR8 *Destination8;
CHAR8 *Source8;
UINTN Length;
Destination8 = Buffer;
Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
Length = *ReadSize;
while (Length--) {
*(Destination8++) = *(Source8++);
}
return EFI_SUCCESS;
}
CHAR16 *
AsciiToUnicode (
IN CHAR8 *Ascii,
IN UINTN *StrLen OPTIONAL
)
/*++
Routine Description:
Convert the passed in Ascii string to Unicode.
Optionally return the length of the strings.
Arguments:
Ascii - Ascii string to convert
StrLen - Length of string
Returns:
Pointer to malloc'ed Unicode version of Ascii
--*/
{
UINTN Index;
CHAR16 *Unicode;
//
// Allocate a buffer for unicode string
//
for (Index = 0; Ascii[Index] != '\0'; Index++)
;
Unicode = malloc ((Index + 1) * sizeof (CHAR16));
if (Unicode == NULL) {
return NULL;
}
for (Index = 0; Ascii[Index] != '\0'; Index++) {
Unicode[Index] = (CHAR16) Ascii[Index];
}
Unicode[Index] = '\0';
if (StrLen != NULL) {
*StrLen = Index;
}
return Unicode;
}
UINTN
CountSeperatorsInString (
IN CONST CHAR16 *String,
IN CHAR16 Seperator
)
/*++
Routine Description:
Count the number of seperators in String
Arguments:
String - String to process
Seperator - Item to count
Returns:
Number of Seperator in String
--*/
{
UINTN Count;
for (Count = 0; *String != '\0'; String++) {
if (*String == Seperator) {
Count++;
}
}
return Count;
}
EFI_STATUS
AddModHandle (
IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext,
IN VOID *ModHandle
)
/*++
Routine Description:
Store the ModHandle in an array indexed by the Pdb File name.
The ModHandle is needed to unload the image.
Arguments:
ImageContext - Input data returned from PE Laoder Library. Used to find the
.PDB file name of the PE Image.
ModHandle - Returned from LoadLibraryEx() and stored for call to
FreeLibrary().
Returns:
EFI_SUCCESS - ModHandle was stored.
--*/
{
UINTN Index;
PDB_NAME_TO_MOD_HANDLE *Array;
UINTN PreviousSize;
Array = mPdbNameModHandleArray;
for (Index = 0; Index < mPdbNameModHandleArraySize; Index++, Array++) {
if (Array->PdbPointer == NULL) {
//
// Make a copy of the stirng and store the ModHandle
//
Array->PdbPointer = malloc (strlen (ImageContext->PdbPointer) + 1);
ASSERT (Array->PdbPointer != NULL);
strcpy (Array->PdbPointer, ImageContext->PdbPointer);
Array->ModHandle = ModHandle;
return EFI_SUCCESS;
}
}
//
// No free space in mPdbNameModHandleArray so grow it by
// MAX_PDB_NAME_TO_MOD_HANDLE_ARRAY_SIZE entires. realloc will
// copy the old values to the new locaiton. But it does
// not zero the new memory area.
//
PreviousSize = mPdbNameModHandleArraySize * sizeof (PDB_NAME_TO_MOD_HANDLE);
mPdbNameModHandleArraySize += MAX_PDB_NAME_TO_MOD_HANDLE_ARRAY_SIZE;
mPdbNameModHandleArray = realloc (mPdbNameModHandleArray, mPdbNameModHandleArraySize * sizeof (PDB_NAME_TO_MOD_HANDLE));
if (mPdbNameModHandleArray == NULL) {
ASSERT (FALSE);
return EFI_OUT_OF_RESOURCES;
}
memset (mPdbNameModHandleArray + PreviousSize, 0, MAX_PDB_NAME_TO_MOD_HANDLE_ARRAY_SIZE * sizeof (PDB_NAME_TO_MOD_HANDLE));
return AddModHandle (ImageContext, ModHandle);
}
VOID *
RemoveModeHandle (
IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
)
/*++
Routine Description:
Return the ModHandle and delete the entry in the array.
Arguments:
ImageContext - Input data returned from PE Laoder Library. Used to find the
.PDB file name of the PE Image.
Returns:
ModHandle - ModHandle assoicated with ImageContext is returned
NULL - No ModHandle associated with ImageContext
--*/
{
UINTN Index;
PDB_NAME_TO_MOD_HANDLE *Array;
if (ImageContext->PdbPointer == NULL) {
//
// If no PDB pointer there is no ModHandle so return NULL
//
return NULL;
}
Array = mPdbNameModHandleArray;
for (Index = 0; Index < mPdbNameModHandleArraySize; Index++, Array++) {
if ((Array->PdbPointer != NULL) && (strcmp(Array->PdbPointer, ImageContext->PdbPointer) == 0)) {
//
// If you find a match return it and delete the entry
//
free (Array->PdbPointer);
Array->PdbPointer = NULL;
return Array->ModHandle;
}
}
return NULL;
}
EFI_STATUS
EFIAPI
SecNt32PeCoffGetImageInfo (
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This,
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
)
{
EFI_STATUS Status;
Status = PeCoffLoaderGetImageInfo (ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
switch (ImageContext->ImageType) {
case EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION:
ImageContext->ImageCodeMemoryType = EfiLoaderCode;
ImageContext->ImageDataMemoryType = EfiLoaderData;
break;
case EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
ImageContext->ImageCodeMemoryType = EfiBootServicesCode;
ImageContext->ImageDataMemoryType = EfiBootServicesData;
break;
case EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
case EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER:
ImageContext->ImageCodeMemoryType = EfiRuntimeServicesCode;
ImageContext->ImageDataMemoryType = EfiRuntimeServicesData;
break;
default:
ImageContext->ImageError = IMAGE_ERROR_INVALID_SUBSYSTEM;
return RETURN_UNSUPPORTED;
}
return Status;
}
EFI_STATUS
EFIAPI
SecNt32PeCoffLoadImage (
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This,
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
)
{
EFI_STATUS Status;
Status = PeCoffLoaderLoadImage (ImageContext);
return Status;
}
EFI_STATUS
EFIAPI
SecNt32PeCoffRelocateImage (
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This,
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
)
{
EFI_STATUS Status;
VOID *DllEntryPoint;
CHAR16 *DllFileName;
HMODULE Library;
UINTN Index;
Status = PeCoffLoaderRelocateImage (ImageContext);
if (EFI_ERROR (Status)) {
//
// We could not relocated the image in memory properly
//
return Status;
}
//
// If we load our own PE COFF images the Windows debugger can not source
// level debug our code. If a valid PDB pointer exists usw it to load
// the *.dll file as a library using Windows* APIs. This allows
// source level debug. The image is still loaded and reloaced
// in the Framework memory space like on a real system (by the code above),
// but the entry point points into the DLL loaded by the code bellow.
//
DllEntryPoint = NULL;
//
// Load the DLL if it's not an EBC image.
//
if ((ImageContext->PdbPointer != NULL) &&
(ImageContext->Machine != EFI_IMAGE_MACHINE_EBC)) {
//
// Convert filename from ASCII to Unicode
//
DllFileName = AsciiToUnicode (ImageContext->PdbPointer, &Index);
//
// Check that we have a valid filename
//
if (Index < 5 || DllFileName[Index - 4] != '.') {
free (DllFileName);
//
// Never return an error if PeCoffLoaderRelocateImage() succeeded.
// The image will run, but we just can't source level debug. If we
// return an error the image will not run.
//
return EFI_SUCCESS;
}
//
// Replace .PDB with .DLL on the filename
//
DllFileName[Index - 3] = 'D';
DllFileName[Index - 2] = 'L';
DllFileName[Index - 1] = 'L';
//
// Load the .DLL file into the user process's address space for source
// level debug
//
Library = LoadLibraryEx (DllFileName, NULL, DONT_RESOLVE_DLL_REFERENCES);
if (Library != NULL) {
//
// InitializeDriver is the entry point we put in all our EFI DLL's. The
// DONT_RESOLVE_DLL_REFERENCES argument to LoadLIbraryEx() supresses the
// normal DLL entry point of DllMain, and prevents other modules that are
// referenced in side the DllFileName from being loaded. There is no error
// checking as the we can point to the PE32 image loaded by Tiano. This
// step is only needed for source level debuging
//
DllEntryPoint = (VOID *) (UINTN) GetProcAddress (Library, "InitializeDriver");
}
if ((Library != NULL) && (DllEntryPoint != NULL)) {
AddModHandle (ImageContext, Library);
ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS) (UINTN) DllEntryPoint;
wprintf (L"LoadLibraryEx (%s,\n NULL, DONT_RESOLVE_DLL_REFERENCES)\n", DllFileName);
} else {
wprintf (L"WARNING: No source level debug %s. \n", DllFileName);
}
free (DllFileName);
}
//
// Never return an error if PeCoffLoaderRelocateImage() succeeded.
// The image will run, but we just can't source level debug. If we
// return an error the image will not run.
//
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
SecNt32PeCoffUnloadimage (
IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This,
IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
)
{
VOID *ModHandle;
ModHandle = RemoveModeHandle (ImageContext);
if (ModHandle != NULL) {
FreeLibrary (ModHandle);
}
return EFI_SUCCESS;
}
VOID
_ModuleEntryPoint (
VOID
)
{
}
EFI_STATUS
EFIAPI
SecTemporaryRamSupport (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
IN UINTN CopySize
)
{
//
// Migrate the whole temporary memory to permenent memory.
//
CopyMem (
(VOID*)(UINTN)PermanentMemoryBase,
(VOID*)(UINTN)TemporaryMemoryBase,
CopySize
);
//
// SecSwitchStack function must be invoked after the memory migration
// immediatly, also we need fixup the stack change caused by new call into
// permenent memory.
//
SecSwitchStack (
(UINT32) TemporaryMemoryBase,
(UINT32) PermanentMemoryBase
);
//
// We need *not* fix the return address because currently,
// The PeiCore is excuted in flash.
//
//
// Simulate to invalid CAR, terminate CAR
//
//ZeroMem ((VOID*)(UINTN)TemporaryMemoryBase, CopySize);
return EFI_SUCCESS;
}