blob: 613e1d2b9359ec66ed4708bc7aa8eaf22f484ad2 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
170 if (src_hi == dest_lo) {
171 OpRegCopy(dest_hi, src_hi);
172 OpRegCopy(dest_lo, src_lo);
173 } else {
174 OpRegCopy(dest_lo, src_lo);
175 OpRegCopy(dest_hi, src_hi);
176 }
177 }
178 }
179}
180
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700181void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800182 RegLocation rl_result;
183 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
184 RegLocation rl_dest = mir_graph_->GetDest(mir);
185 rl_src = LoadValue(rl_src, kCoreReg);
186
187 // The kMirOpSelect has two variants, one for constants and one for moves.
188 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
189
190 if (is_constant_case) {
191 int true_val = mir->dalvikInsn.vB;
192 int false_val = mir->dalvikInsn.vC;
193 rl_result = EvalLoc(rl_dest, kCoreReg, true);
194
195 /*
196 * 1) When the true case is zero and result_reg is not same as src_reg:
197 * xor result_reg, result_reg
198 * cmp $0, src_reg
199 * mov t1, $false_case
200 * cmovnz result_reg, t1
201 * 2) When the false case is zero and result_reg is not same as src_reg:
202 * xor result_reg, result_reg
203 * cmp $0, src_reg
204 * mov t1, $true_case
205 * cmovz result_reg, t1
206 * 3) All other cases (we do compare first to set eflags):
207 * cmp $0, src_reg
208 * mov result_reg, $true_case
209 * mov t1, $false_case
210 * cmovnz result_reg, t1
211 */
212 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
213 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
214 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
215 const bool catch_all_case = !(true_zero_case || false_zero_case);
216
217 if (true_zero_case || false_zero_case) {
218 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
219 }
220
221 if (true_zero_case || false_zero_case || catch_all_case) {
222 OpRegImm(kOpCmp, rl_src.low_reg, 0);
223 }
224
225 if (catch_all_case) {
226 OpRegImm(kOpMov, rl_result.low_reg, true_val);
227 }
228
229 if (true_zero_case || false_zero_case || catch_all_case) {
230 int immediateForTemp = false_zero_case ? true_val : false_val;
231 int temp1_reg = AllocTemp();
232 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
233
234 ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
235 OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
236
237 FreeTemp(temp1_reg);
238 }
239 } else {
240 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
241 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
242 rl_true = LoadValue(rl_true, kCoreReg);
243 rl_false = LoadValue(rl_false, kCoreReg);
244 rl_result = EvalLoc(rl_dest, kCoreReg, true);
245
246 /*
247 * 1) When true case is already in place:
248 * cmp $0, src_reg
249 * cmovnz result_reg, false_reg
250 * 2) When false case is already in place:
251 * cmp $0, src_reg
252 * cmovz result_reg, true_reg
253 * 3) When neither cases are in place:
254 * cmp $0, src_reg
255 * mov result_reg, true_reg
256 * cmovnz result_reg, false_reg
257 */
258
259 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
260 OpRegImm(kOpCmp, rl_src.low_reg, 0);
261
262 if (rl_result.low_reg == rl_true.low_reg) {
263 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
264 } else if (rl_result.low_reg == rl_false.low_reg) {
265 OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
266 } else {
267 OpRegCopy(rl_result.low_reg, rl_true.low_reg);
268 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
269 }
270 }
271
272 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700273}
274
275void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700276 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700277 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
278 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000279 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800280
281 if (rl_src1.is_const) {
282 std::swap(rl_src1, rl_src2);
283 ccode = FlipComparisonOrder(ccode);
284 }
285 if (rl_src2.is_const) {
286 // Do special compare/branch against simple const operand
287 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
288 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
289 return;
290 }
291
Brian Carlstrom7940e442013-07-12 13:46:57 -0700292 FlushAllRegs();
293 LockCallTemps(); // Prepare for explicit register usage
294 LoadValueDirectWideFixed(rl_src1, r0, r1);
295 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700296 // Swap operands and condition code to prevent use of zero flag.
297 if (ccode == kCondLe || ccode == kCondGt) {
298 // Compute (r3:r2) = (r3:r2) - (r1:r0)
299 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
300 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
301 } else {
302 // Compute (r1:r0) = (r1:r0) - (r3:r2)
303 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
304 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
305 }
306 switch (ccode) {
307 case kCondEq:
308 case kCondNe:
309 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
310 break;
311 case kCondLe:
312 ccode = kCondGe;
313 break;
314 case kCondGt:
315 ccode = kCondLt;
316 break;
317 case kCondLt:
318 case kCondGe:
319 break;
320 default:
321 LOG(FATAL) << "Unexpected ccode: " << ccode;
322 }
323 OpCondBranch(ccode, taken);
324}
325
Mark Mendell412d4f82013-12-18 13:32:36 -0800326void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
327 int64_t val, ConditionCode ccode) {
328 int32_t val_lo = Low32Bits(val);
329 int32_t val_hi = High32Bits(val);
330 LIR* taken = &block_label_list_[bb->taken];
331 LIR* not_taken = &block_label_list_[bb->fall_through];
332 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
333 int32_t low_reg = rl_src1.low_reg;
334 int32_t high_reg = rl_src1.high_reg;
335
336 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
337 int t_reg = AllocTemp();
338 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
339 FreeTemp(t_reg);
340 OpCondBranch(ccode, taken);
341 return;
342 }
343
344 OpRegImm(kOpCmp, high_reg, val_hi);
345 switch (ccode) {
346 case kCondEq:
347 case kCondNe:
348 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
349 break;
350 case kCondLt:
351 OpCondBranch(kCondLt, taken);
352 OpCondBranch(kCondGt, not_taken);
353 ccode = kCondUlt;
354 break;
355 case kCondLe:
356 OpCondBranch(kCondLt, taken);
357 OpCondBranch(kCondGt, not_taken);
358 ccode = kCondLs;
359 break;
360 case kCondGt:
361 OpCondBranch(kCondGt, taken);
362 OpCondBranch(kCondLt, not_taken);
363 ccode = kCondHi;
364 break;
365 case kCondGe:
366 OpCondBranch(kCondGt, taken);
367 OpCondBranch(kCondLt, not_taken);
368 ccode = kCondUge;
369 break;
370 default:
371 LOG(FATAL) << "Unexpected ccode: " << ccode;
372 }
373 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
374}
375
Mark Mendell2bf31e62014-01-23 12:13:40 -0800376void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
377 // It does not make sense to calculate magic and shift for zero divisor.
378 DCHECK_NE(divisor, 0);
379
380 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
381 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
382 * The magic number M and shift S can be calculated in the following way:
383 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
384 * where divisor(d) >=2.
385 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
386 * where divisor(d) <= -2.
387 * Thus nc can be calculated like:
388 * nc = 2^31 + 2^31 % d - 1, where d >= 2
389 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
390 *
391 * So the shift p is the smallest p satisfying
392 * 2^p > nc * (d - 2^p % d), where d >= 2
393 * 2^p > nc * (d + 2^p % d), where d <= -2.
394 *
395 * the magic number M is calcuated by
396 * M = (2^p + d - 2^p % d) / d, where d >= 2
397 * M = (2^p - d - 2^p % d) / d, where d <= -2.
398 *
399 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
400 * the shift number S.
401 */
402
403 int32_t p = 31;
404 const uint32_t two31 = 0x80000000U;
405
406 // Initialize the computations.
407 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
408 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
409 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
410 uint32_t quotient1 = two31 / abs_nc;
411 uint32_t remainder1 = two31 % abs_nc;
412 uint32_t quotient2 = two31 / abs_d;
413 uint32_t remainder2 = two31 % abs_d;
414
415 /*
416 * To avoid handling both positive and negative divisor, Hacker's Delight
417 * introduces a method to handle these 2 cases together to avoid duplication.
418 */
419 uint32_t delta;
420 do {
421 p++;
422 quotient1 = 2 * quotient1;
423 remainder1 = 2 * remainder1;
424 if (remainder1 >= abs_nc) {
425 quotient1++;
426 remainder1 = remainder1 - abs_nc;
427 }
428 quotient2 = 2 * quotient2;
429 remainder2 = 2 * remainder2;
430 if (remainder2 >= abs_d) {
431 quotient2++;
432 remainder2 = remainder2 - abs_d;
433 }
434 delta = abs_d - remainder2;
435 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
436
437 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
438 shift = p - 32;
439}
440
Brian Carlstrom7940e442013-07-12 13:46:57 -0700441RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700442 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700443 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
444 return rl_dest;
445}
446
Mark Mendell2bf31e62014-01-23 12:13:40 -0800447RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
448 int imm, bool is_div) {
449 // Use a multiply (and fixup) to perform an int div/rem by a constant.
450
451 // We have to use fixed registers, so flush all the temps.
452 FlushAllRegs();
453 LockCallTemps(); // Prepare for explicit register usage.
454
455 // Assume that the result will be in EDX.
456 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
457 r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
458
459 // handle 0x80000000 / -1 special case.
460 LIR *minint_branch = 0;
461 if (imm == -1) {
462 if (is_div) {
463 LoadValueDirectFixed(rl_src, r0);
464 OpRegImm(kOpCmp, r0, 0x80000000);
465 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
466
467 // for x != MIN_INT, x / -1 == -x.
468 NewLIR1(kX86Neg32R, r0);
469
470 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
471 // The target for cmp/jmp above.
472 minint_branch->target = NewLIR0(kPseudoTargetLabel);
473 // EAX already contains the right value (0x80000000),
474 branch_around->target = NewLIR0(kPseudoTargetLabel);
475 } else {
476 // x % -1 == 0.
477 LoadConstantNoClobber(r0, 0);
478 }
479 // For this case, return the result in EAX.
480 rl_result.low_reg = r0;
481 } else {
482 DCHECK(imm <= -2 || imm >= 2);
483 // Use H.S.Warren's Hacker's Delight Chapter 10 and
484 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
485 int magic, shift;
486 CalculateMagicAndShift(imm, magic, shift);
487
488 /*
489 * For imm >= 2,
490 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
491 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
492 * For imm <= -2,
493 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
494 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
495 * We implement this algorithm in the following way:
496 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
497 * 2. if imm > 0 and magic < 0, add numerator to EDX
498 * if imm < 0 and magic > 0, sub numerator from EDX
499 * 3. if S !=0, SAR S bits for EDX
500 * 4. add 1 to EDX if EDX < 0
501 * 5. Thus, EDX is the quotient
502 */
503
504 // Numerator into EAX.
505 int numerator_reg = -1;
506 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
507 // We will need the value later.
508 if (rl_src.location == kLocPhysReg) {
509 // We can use it directly.
510 DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
511 numerator_reg = rl_src.low_reg;
512 } else {
513 LoadValueDirectFixed(rl_src, r1);
514 numerator_reg = r1;
515 }
516 OpRegCopy(r0, numerator_reg);
517 } else {
518 // Only need this once. Just put it into EAX.
519 LoadValueDirectFixed(rl_src, r0);
520 }
521
522 // EDX = magic.
523 LoadConstantNoClobber(r2, magic);
524
525 // EDX:EAX = magic & dividend.
526 NewLIR1(kX86Imul32DaR, r2);
527
528 if (imm > 0 && magic < 0) {
529 // Add numerator to EDX.
530 DCHECK_NE(numerator_reg, -1);
531 NewLIR2(kX86Add32RR, r2, numerator_reg);
532 } else if (imm < 0 && magic > 0) {
533 DCHECK_NE(numerator_reg, -1);
534 NewLIR2(kX86Sub32RR, r2, numerator_reg);
535 }
536
537 // Do we need the shift?
538 if (shift != 0) {
539 // Shift EDX by 'shift' bits.
540 NewLIR2(kX86Sar32RI, r2, shift);
541 }
542
543 // Add 1 to EDX if EDX < 0.
544
545 // Move EDX to EAX.
546 OpRegCopy(r0, r2);
547
548 // Move sign bit to bit 0, zeroing the rest.
549 NewLIR2(kX86Shr32RI, r2, 31);
550
551 // EDX = EDX + EAX.
552 NewLIR2(kX86Add32RR, r2, r0);
553
554 // Quotient is in EDX.
555 if (!is_div) {
556 // We need to compute the remainder.
557 // Remainder is divisor - (quotient * imm).
558 DCHECK_NE(numerator_reg, -1);
559 OpRegCopy(r0, numerator_reg);
560
561 // EAX = numerator * imm.
562 OpRegRegImm(kOpMul, r2, r2, imm);
563
564 // EDX -= EAX.
565 NewLIR2(kX86Sub32RR, r0, r2);
566
567 // For this case, return the result in EAX.
568 rl_result.low_reg = r0;
569 }
570 }
571
572 return rl_result;
573}
574
Brian Carlstrom7940e442013-07-12 13:46:57 -0700575RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700576 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700577 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
578 return rl_dest;
579}
580
Mark Mendell2bf31e62014-01-23 12:13:40 -0800581RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
582 RegLocation rl_src2, bool is_div, bool check_zero) {
583 // We have to use fixed registers, so flush all the temps.
584 FlushAllRegs();
585 LockCallTemps(); // Prepare for explicit register usage.
586
587 // Load LHS into EAX.
588 LoadValueDirectFixed(rl_src1, r0);
589
590 // Load RHS into EBX.
591 LoadValueDirectFixed(rl_src2, r1);
592
593 // Copy LHS sign bit into EDX.
594 NewLIR0(kx86Cdq32Da);
595
596 if (check_zero) {
597 // Handle division by zero case.
598 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
599 }
600
601 // Have to catch 0x80000000/-1 case, or we will get an exception!
602 OpRegImm(kOpCmp, r1, -1);
603 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
604
605 // RHS is -1.
606 OpRegImm(kOpCmp, r0, 0x80000000);
607 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
608
609 // In 0x80000000/-1 case.
610 if (!is_div) {
611 // For DIV, EAX is already right. For REM, we need EDX 0.
612 LoadConstantNoClobber(r2, 0);
613 }
614 LIR* done = NewLIR1(kX86Jmp8, 0);
615
616 // Expected case.
617 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
618 minint_branch->target = minus_one_branch->target;
619 NewLIR1(kX86Idivmod32DaR, r1);
620 done->target = NewLIR0(kPseudoTargetLabel);
621
622 // Result is in EAX for div and EDX for rem.
623 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
624 r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
625 if (!is_div) {
626 rl_result.low_reg = r2;
627 }
628 return rl_result;
629}
630
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700631bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700632 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800633
634 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700635 RegLocation rl_src1 = info->args[0];
636 RegLocation rl_src2 = info->args[1];
637 rl_src1 = LoadValue(rl_src1, kCoreReg);
638 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800639
Brian Carlstrom7940e442013-07-12 13:46:57 -0700640 RegLocation rl_dest = InlineTarget(info);
641 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800642
643 /*
644 * If the result register is the same as the second element, then we need to be careful.
645 * The reason is that the first copy will inadvertently clobber the second element with
646 * the first one thus yielding the wrong result. Thus we do a swap in that case.
647 */
648 if (rl_result.low_reg == rl_src2.low_reg) {
649 std::swap(rl_src1, rl_src2);
650 }
651
652 // Pick the first integer as min/max.
653 OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
654
655 // If the integers are both in the same register, then there is nothing else to do
656 // because they are equal and we have already moved one into the result.
657 if (rl_src1.low_reg != rl_src2.low_reg) {
658 // It is possible we didn't pick correctly so do the actual comparison now.
659 OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
660
661 // Conditionally move the other integer into the destination register.
662 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
663 OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
664 }
665
Brian Carlstrom7940e442013-07-12 13:46:57 -0700666 StoreValue(rl_dest, rl_result);
667 return true;
668}
669
Vladimir Markoe508a202013-11-04 15:24:22 +0000670bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
671 RegLocation rl_src_address = info->args[0]; // long address
672 rl_src_address.wide = 0; // ignore high half in info->args[1]
673 RegLocation rl_dest = InlineTarget(info);
674 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
675 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
676 if (size == kLong) {
677 // Unaligned access is allowed on x86.
678 LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
679 StoreValueWide(rl_dest, rl_result);
680 } else {
681 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
682 // Unaligned access is allowed on x86.
683 LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
684 StoreValue(rl_dest, rl_result);
685 }
686 return true;
687}
688
689bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
690 RegLocation rl_src_address = info->args[0]; // long address
691 rl_src_address.wide = 0; // ignore high half in info->args[1]
692 RegLocation rl_src_value = info->args[2]; // [size] value
693 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
694 if (size == kLong) {
695 // Unaligned access is allowed on x86.
696 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
697 StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
698 } else {
699 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
700 // Unaligned access is allowed on x86.
701 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
702 StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
703 }
704 return true;
705}
706
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700707void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700708 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
709}
710
Ian Rogers468532e2013-08-05 10:56:33 -0700711void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
712 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700713}
714
Vladimir Marko1c282e22013-11-21 14:49:47 +0000715bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000716 DCHECK_EQ(cu_->instruction_set, kX86);
717 // Unused - RegLocation rl_src_unsafe = info->args[0];
718 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
719 RegLocation rl_src_offset = info->args[2]; // long low
720 rl_src_offset.wide = 0; // ignore high half in info->args[3]
721 RegLocation rl_src_expected = info->args[4]; // int, long or Object
722 // If is_long, high half is in info->args[5]
723 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
724 // If is_long, high half is in info->args[7]
725
726 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000727 FlushAllRegs();
728 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000729 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
730 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000731 NewLIR1(kX86Push32R, rDI);
732 MarkTemp(rDI);
733 LockTemp(rDI);
734 NewLIR1(kX86Push32R, rSI);
735 MarkTemp(rSI);
736 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000737 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
738 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
739 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000740 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
741 FreeTemp(rSI);
742 UnmarkTemp(rSI);
743 NewLIR1(kX86Pop32R, rSI);
744 FreeTemp(rDI);
745 UnmarkTemp(rDI);
746 NewLIR1(kX86Pop32R, rDI);
747 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000748 } else {
749 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
750 FlushReg(r0);
751 LockTemp(r0);
752
753 // Release store semantics, get the barrier out of the way. TODO: revisit
754 GenMemBarrier(kStoreLoad);
755
756 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
757 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
758
759 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
760 // Mark card for object assuming new value is stored.
761 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
762 MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
763 LockTemp(r0);
764 }
765
766 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
767 LoadValueDirect(rl_src_expected, r0);
768 NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
769
770 FreeTemp(r0);
771 }
772
773 // Convert ZF to boolean
774 RegLocation rl_dest = InlineTarget(info); // boolean place for result
775 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
776 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
777 NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
778 StoreValue(rl_dest, rl_result);
779 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700780}
781
782LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
783 LOG(FATAL) << "Unexpected use of OpPcRelLoad for x86";
784 return NULL;
785}
786
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700787LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700788 LOG(FATAL) << "Unexpected use of OpVldm for x86";
789 return NULL;
790}
791
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700792LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700793 LOG(FATAL) << "Unexpected use of OpVstm for x86";
794 return NULL;
795}
796
797void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
798 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700799 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700800 int t_reg = AllocTemp();
801 OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
802 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
803 FreeTemp(t_reg);
804 if (first_bit != 0) {
805 OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
806 }
807}
808
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700809void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800810 // We are not supposed to clobber either of the provided registers, so allocate
811 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700812 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800813
814 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700815 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800816
817 // In case of zero, throw ArithmeticException.
818 GenCheck(kCondEq, kThrowDivZero);
819
820 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700821 FreeTemp(t_reg);
822}
823
824// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700825LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700826 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700827 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
828}
829
830// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700831LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700832 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800833 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700834}
835
buzbee11b63d12013-08-27 07:34:17 -0700836bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700837 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700838 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
839 return false;
840}
841
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700842LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700843 LOG(FATAL) << "Unexpected use of OpIT in x86";
844 return NULL;
845}
846
Mark Mendell4708dcd2014-01-22 09:05:18 -0800847void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
848 switch (val) {
849 case 0:
850 NewLIR2(kX86Xor32RR, dest, dest);
851 break;
852 case 1:
853 OpRegCopy(dest, src);
854 break;
855 default:
856 OpRegRegImm(kOpMul, dest, src, val);
857 break;
858 }
859}
860
861void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
862 LIR *m;
863 switch (val) {
864 case 0:
865 NewLIR2(kX86Xor32RR, dest, dest);
866 break;
867 case 1:
868 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
869 break;
870 default:
871 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
872 displacement, val);
873 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
874 break;
875 }
876}
877
Mark Mendelle02d48f2014-01-15 11:19:23 -0800878void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700879 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800880 if (rl_src1.is_const) {
881 std::swap(rl_src1, rl_src2);
882 }
883 // Are we multiplying by a constant?
884 if (rl_src2.is_const) {
885 // Do special compare/branch against simple const operand
886 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
887 if (val == 0) {
888 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
889 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
890 OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
891 StoreValueWide(rl_dest, rl_result);
892 return;
893 } else if (val == 1) {
894 rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
895 StoreValueWide(rl_dest, rl_src1);
896 return;
897 } else if (val == 2) {
898 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
899 return;
900 } else if (IsPowerOfTwo(val)) {
901 int shift_amount = LowestSetBit(val);
902 if (!BadOverlap(rl_src1, rl_dest)) {
903 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
904 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
905 rl_src1, shift_amount);
906 StoreValueWide(rl_dest, rl_result);
907 return;
908 }
909 }
910
911 // Okay, just bite the bullet and do it.
912 int32_t val_lo = Low32Bits(val);
913 int32_t val_hi = High32Bits(val);
914 FlushAllRegs();
915 LockCallTemps(); // Prepare for explicit register usage.
916 rl_src1 = UpdateLocWide(rl_src1);
917 bool src1_in_reg = rl_src1.location == kLocPhysReg;
918 int displacement = SRegOffset(rl_src1.s_reg_low);
919
920 // ECX <- 1H * 2L
921 // EAX <- 1L * 2H
922 if (src1_in_reg) {
923 GenImulRegImm(r1, rl_src1.high_reg, val_lo);
924 GenImulRegImm(r0, rl_src1.low_reg, val_hi);
925 } else {
926 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
927 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
928 }
929
930 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
931 NewLIR2(kX86Add32RR, r1, r0);
932
933 // EAX <- 2L
934 LoadConstantNoClobber(r0, val_lo);
935
936 // EDX:EAX <- 2L * 1L (double precision)
937 if (src1_in_reg) {
938 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
939 } else {
940 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
941 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
942 true /* is_load */, true /* is_64bit */);
943 }
944
945 // EDX <- EDX + ECX (add high words)
946 NewLIR2(kX86Add32RR, r2, r1);
947
948 // Result is EDX:EAX
949 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
950 INVALID_SREG, INVALID_SREG};
951 StoreValueWide(rl_dest, rl_result);
952 return;
953 }
954
955 // Nope. Do it the hard way
956 FlushAllRegs();
957 LockCallTemps(); // Prepare for explicit register usage.
958 rl_src1 = UpdateLocWide(rl_src1);
959 rl_src2 = UpdateLocWide(rl_src2);
960
961 // At this point, the VRs are in their home locations.
962 bool src1_in_reg = rl_src1.location == kLocPhysReg;
963 bool src2_in_reg = rl_src2.location == kLocPhysReg;
964
965 // ECX <- 1H
966 if (src1_in_reg) {
967 NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
968 } else {
969 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
970 kWord, GetSRegHi(rl_src1.s_reg_low));
971 }
972
973 // EAX <- 2H
974 if (src2_in_reg) {
975 NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
976 } else {
977 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
978 kWord, GetSRegHi(rl_src2.s_reg_low));
979 }
980
981 // EAX <- EAX * 1L (2H * 1L)
982 if (src1_in_reg) {
983 NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
984 } else {
985 int displacement = SRegOffset(rl_src1.s_reg_low);
986 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
987 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
988 true /* is_load */, true /* is_64bit */);
989 }
990
991 // ECX <- ECX * 2L (1H * 2L)
992 if (src2_in_reg) {
993 NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
994 } else {
995 int displacement = SRegOffset(rl_src2.s_reg_low);
996 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
997 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
998 true /* is_load */, true /* is_64bit */);
999 }
1000
1001 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1002 NewLIR2(kX86Add32RR, r1, r0);
1003
1004 // EAX <- 2L
1005 if (src2_in_reg) {
1006 NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1007 } else {
1008 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1009 kWord, rl_src2.s_reg_low);
1010 }
1011
1012 // EDX:EAX <- 2L * 1L (double precision)
1013 if (src1_in_reg) {
1014 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1015 } else {
1016 int displacement = SRegOffset(rl_src1.s_reg_low);
1017 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1018 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1019 true /* is_load */, true /* is_64bit */);
1020 }
1021
1022 // EDX <- EDX + ECX (add high words)
1023 NewLIR2(kX86Add32RR, r2, r1);
1024
1025 // Result is EDX:EAX
1026 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1027 INVALID_SREG, INVALID_SREG};
1028 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001029}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001030
1031void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1032 Instruction::Code op) {
1033 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1034 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1035 if (rl_src.location == kLocPhysReg) {
1036 // Both operands are in registers.
1037 if (rl_dest.low_reg == rl_src.high_reg) {
1038 // The registers are the same, so we would clobber it before the use.
1039 int temp_reg = AllocTemp();
1040 OpRegCopy(temp_reg, rl_dest.low_reg);
1041 rl_src.high_reg = temp_reg;
1042 }
1043 NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1044
1045 x86op = GetOpcode(op, rl_dest, rl_src, true);
1046 NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1047 FreeTemp(rl_src.low_reg);
1048 FreeTemp(rl_src.high_reg);
1049 return;
1050 }
1051
1052 // RHS is in memory.
1053 DCHECK((rl_src.location == kLocDalvikFrame) ||
1054 (rl_src.location == kLocCompilerTemp));
1055 int rBase = TargetReg(kSp);
1056 int displacement = SRegOffset(rl_src.s_reg_low);
1057
1058 LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1059 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1060 true /* is_load */, true /* is64bit */);
1061 x86op = GetOpcode(op, rl_dest, rl_src, true);
1062 lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1063 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1064 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001065}
1066
Mark Mendelle02d48f2014-01-15 11:19:23 -08001067void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1068 rl_dest = UpdateLocWide(rl_dest);
1069 if (rl_dest.location == kLocPhysReg) {
1070 // Ensure we are in a register pair
1071 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1072
1073 rl_src = UpdateLocWide(rl_src);
1074 GenLongRegOrMemOp(rl_result, rl_src, op);
1075 StoreFinalValueWide(rl_dest, rl_result);
1076 return;
1077 }
1078
1079 // It wasn't in registers, so it better be in memory.
1080 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1081 (rl_dest.location == kLocCompilerTemp));
1082 rl_src = LoadValueWide(rl_src, kCoreReg);
1083
1084 // Operate directly into memory.
1085 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1086 int rBase = TargetReg(kSp);
1087 int displacement = SRegOffset(rl_dest.s_reg_low);
1088
1089 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1090 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1091 false /* is_load */, true /* is64bit */);
1092 x86op = GetOpcode(op, rl_dest, rl_src, true);
1093 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1094 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1095 false /* is_load */, true /* is64bit */);
1096 FreeTemp(rl_src.low_reg);
1097 FreeTemp(rl_src.high_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001098}
1099
Mark Mendelle02d48f2014-01-15 11:19:23 -08001100void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1101 RegLocation rl_src2, Instruction::Code op,
1102 bool is_commutative) {
1103 // Is this really a 2 operand operation?
1104 switch (op) {
1105 case Instruction::ADD_LONG_2ADDR:
1106 case Instruction::SUB_LONG_2ADDR:
1107 case Instruction::AND_LONG_2ADDR:
1108 case Instruction::OR_LONG_2ADDR:
1109 case Instruction::XOR_LONG_2ADDR:
1110 GenLongArith(rl_dest, rl_src2, op);
1111 return;
1112 default:
1113 break;
1114 }
1115
1116 if (rl_dest.location == kLocPhysReg) {
1117 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1118
1119 // We are about to clobber the LHS, so it needs to be a temp.
1120 rl_result = ForceTempWide(rl_result);
1121
1122 // Perform the operation using the RHS.
1123 rl_src2 = UpdateLocWide(rl_src2);
1124 GenLongRegOrMemOp(rl_result, rl_src2, op);
1125
1126 // And now record that the result is in the temp.
1127 StoreFinalValueWide(rl_dest, rl_result);
1128 return;
1129 }
1130
1131 // It wasn't in registers, so it better be in memory.
1132 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1133 (rl_dest.location == kLocCompilerTemp));
1134 rl_src1 = UpdateLocWide(rl_src1);
1135 rl_src2 = UpdateLocWide(rl_src2);
1136
1137 // Get one of the source operands into temporary register.
1138 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1139 if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1140 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1141 } else if (is_commutative) {
1142 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1143 // We need at least one of them to be a temporary.
1144 if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1145 rl_src1 = ForceTempWide(rl_src1);
1146 }
1147 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1148 } else {
1149 // Need LHS to be the temp.
1150 rl_src1 = ForceTempWide(rl_src1);
1151 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1152 }
1153
1154 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001155}
1156
Mark Mendelle02d48f2014-01-15 11:19:23 -08001157void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001158 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001159 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1160}
1161
1162void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1163 RegLocation rl_src1, RegLocation rl_src2) {
1164 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1165}
1166
1167void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1168 RegLocation rl_src1, RegLocation rl_src2) {
1169 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1170}
1171
1172void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1173 RegLocation rl_src1, RegLocation rl_src2) {
1174 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1175}
1176
1177void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1178 RegLocation rl_src1, RegLocation rl_src2) {
1179 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001180}
1181
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001182void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001183 rl_src = LoadValueWide(rl_src, kCoreReg);
1184 RegLocation rl_result = ForceTempWide(rl_src);
1185 if (rl_dest.low_reg == rl_src.high_reg) {
1186 // The registers are the same, so we would clobber it before the use.
1187 int temp_reg = AllocTemp();
1188 OpRegCopy(temp_reg, rl_result.low_reg);
1189 rl_result.high_reg = temp_reg;
1190 }
1191 OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow
1192 OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF
1193 OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001194 StoreValueWide(rl_dest, rl_result);
1195}
1196
Ian Rogers468532e2013-08-05 10:56:33 -07001197void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001198 X86OpCode opcode = kX86Bkpt;
1199 switch (op) {
1200 case kOpCmp: opcode = kX86Cmp32RT; break;
1201 case kOpMov: opcode = kX86Mov32RT; break;
1202 default:
1203 LOG(FATAL) << "Bad opcode: " << op;
1204 break;
1205 }
Ian Rogers468532e2013-08-05 10:56:33 -07001206 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001207}
1208
1209/*
1210 * Generate array load
1211 */
1212void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001213 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001214 RegisterClass reg_class = oat_reg_class_by_size(size);
1215 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001216 RegLocation rl_result;
1217 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001218
Mark Mendell343adb52013-12-18 06:02:17 -08001219 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001220 if (size == kLong || size == kDouble) {
1221 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1222 } else {
1223 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1224 }
1225
Mark Mendell343adb52013-12-18 06:02:17 -08001226 bool constant_index = rl_index.is_const;
1227 int32_t constant_index_value = 0;
1228 if (!constant_index) {
1229 rl_index = LoadValue(rl_index, kCoreReg);
1230 } else {
1231 constant_index_value = mir_graph_->ConstantValue(rl_index);
1232 // If index is constant, just fold it into the data offset
1233 data_offset += constant_index_value << scale;
1234 // treat as non array below
1235 rl_index.low_reg = INVALID_REG;
1236 }
1237
Brian Carlstrom7940e442013-07-12 13:46:57 -07001238 /* null object? */
1239 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1240
1241 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001242 if (constant_index) {
1243 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1244 constant_index_value, kThrowConstantArrayBounds);
1245 } else {
1246 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1247 len_offset, kThrowArrayBounds);
1248 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001249 }
Mark Mendell343adb52013-12-18 06:02:17 -08001250 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001251 if ((size == kLong) || (size == kDouble)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001252 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001253 rl_result.high_reg, size, INVALID_SREG);
1254 StoreValueWide(rl_dest, rl_result);
1255 } else {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001256 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1257 data_offset, rl_result.low_reg, INVALID_REG, size,
1258 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001259 StoreValue(rl_dest, rl_result);
1260 }
1261}
1262
1263/*
1264 * Generate array store
1265 *
1266 */
1267void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001268 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001269 RegisterClass reg_class = oat_reg_class_by_size(size);
1270 int len_offset = mirror::Array::LengthOffset().Int32Value();
1271 int data_offset;
1272
1273 if (size == kLong || size == kDouble) {
1274 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1275 } else {
1276 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1277 }
1278
1279 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001280 bool constant_index = rl_index.is_const;
1281 int32_t constant_index_value = 0;
1282 if (!constant_index) {
1283 rl_index = LoadValue(rl_index, kCoreReg);
1284 } else {
1285 // If index is constant, just fold it into the data offset
1286 constant_index_value = mir_graph_->ConstantValue(rl_index);
1287 data_offset += constant_index_value << scale;
1288 // treat as non array below
1289 rl_index.low_reg = INVALID_REG;
1290 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001291
1292 /* null object? */
1293 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1294
1295 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001296 if (constant_index) {
1297 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1298 constant_index_value, kThrowConstantArrayBounds);
1299 } else {
1300 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1301 len_offset, kThrowArrayBounds);
1302 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001303 }
1304 if ((size == kLong) || (size == kDouble)) {
1305 rl_src = LoadValueWide(rl_src, reg_class);
1306 } else {
1307 rl_src = LoadValue(rl_src, reg_class);
1308 }
1309 // If the src reg can't be byte accessed, move it to a temp first.
1310 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1311 int temp = AllocTemp();
1312 OpRegCopy(temp, rl_src.low_reg);
1313 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1314 INVALID_REG, size, INVALID_SREG);
1315 } else {
1316 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1317 rl_src.high_reg, size, INVALID_SREG);
1318 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001319 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001320 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001321 if (!constant_index) {
1322 FreeTemp(rl_index.low_reg);
1323 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001324 MarkGCCard(rl_src.low_reg, rl_array.low_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001325 }
1326}
1327
Mark Mendell4708dcd2014-01-22 09:05:18 -08001328RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1329 RegLocation rl_src, int shift_amount) {
1330 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1331 switch (opcode) {
1332 case Instruction::SHL_LONG:
1333 case Instruction::SHL_LONG_2ADDR:
1334 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1335 if (shift_amount == 32) {
1336 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1337 LoadConstant(rl_result.low_reg, 0);
1338 } else if (shift_amount > 31) {
1339 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1340 FreeTemp(rl_src.high_reg);
1341 NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1342 LoadConstant(rl_result.low_reg, 0);
1343 } else {
1344 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1345 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1346 NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1347 NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1348 }
1349 break;
1350 case Instruction::SHR_LONG:
1351 case Instruction::SHR_LONG_2ADDR:
1352 if (shift_amount == 32) {
1353 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1354 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1355 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1356 } else if (shift_amount > 31) {
1357 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1358 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1359 NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1360 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1361 } else {
1362 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1363 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1364 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1365 NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1366 }
1367 break;
1368 case Instruction::USHR_LONG:
1369 case Instruction::USHR_LONG_2ADDR:
1370 if (shift_amount == 32) {
1371 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1372 LoadConstant(rl_result.high_reg, 0);
1373 } else if (shift_amount > 31) {
1374 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1375 NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1376 LoadConstant(rl_result.high_reg, 0);
1377 } else {
1378 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1379 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1380 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1381 NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1382 }
1383 break;
1384 default:
1385 LOG(FATAL) << "Unexpected case";
1386 }
1387 return rl_result;
1388}
1389
Brian Carlstrom7940e442013-07-12 13:46:57 -07001390void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001391 RegLocation rl_src, RegLocation rl_shift) {
1392 // Per spec, we only care about low 6 bits of shift amount.
1393 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1394 if (shift_amount == 0) {
1395 rl_src = LoadValueWide(rl_src, kCoreReg);
1396 StoreValueWide(rl_dest, rl_src);
1397 return;
1398 } else if (shift_amount == 1 &&
1399 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1400 // Need to handle this here to avoid calling StoreValueWide twice.
1401 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1402 return;
1403 }
1404 if (BadOverlap(rl_src, rl_dest)) {
1405 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1406 return;
1407 }
1408 rl_src = LoadValueWide(rl_src, kCoreReg);
1409 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1410 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001411}
1412
1413void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001414 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001415 switch (opcode) {
1416 case Instruction::ADD_LONG:
1417 case Instruction::AND_LONG:
1418 case Instruction::OR_LONG:
1419 case Instruction::XOR_LONG:
1420 if (rl_src2.is_const) {
1421 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1422 } else {
1423 DCHECK(rl_src1.is_const);
1424 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1425 }
1426 break;
1427 case Instruction::SUB_LONG:
1428 case Instruction::SUB_LONG_2ADDR:
1429 if (rl_src2.is_const) {
1430 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1431 } else {
1432 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1433 }
1434 break;
1435 case Instruction::ADD_LONG_2ADDR:
1436 case Instruction::OR_LONG_2ADDR:
1437 case Instruction::XOR_LONG_2ADDR:
1438 case Instruction::AND_LONG_2ADDR:
1439 if (rl_src2.is_const) {
1440 GenLongImm(rl_dest, rl_src2, opcode);
1441 } else {
1442 DCHECK(rl_src1.is_const);
1443 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1444 }
1445 break;
1446 default:
1447 // Default - bail to non-const handler.
1448 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1449 break;
1450 }
1451}
1452
1453bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1454 switch (op) {
1455 case Instruction::AND_LONG_2ADDR:
1456 case Instruction::AND_LONG:
1457 return value == -1;
1458 case Instruction::OR_LONG:
1459 case Instruction::OR_LONG_2ADDR:
1460 case Instruction::XOR_LONG:
1461 case Instruction::XOR_LONG_2ADDR:
1462 return value == 0;
1463 default:
1464 return false;
1465 }
1466}
1467
1468X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1469 bool is_high_op) {
1470 bool rhs_in_mem = rhs.location != kLocPhysReg;
1471 bool dest_in_mem = dest.location != kLocPhysReg;
1472 DCHECK(!rhs_in_mem || !dest_in_mem);
1473 switch (op) {
1474 case Instruction::ADD_LONG:
1475 case Instruction::ADD_LONG_2ADDR:
1476 if (dest_in_mem) {
1477 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1478 } else if (rhs_in_mem) {
1479 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1480 }
1481 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1482 case Instruction::SUB_LONG:
1483 case Instruction::SUB_LONG_2ADDR:
1484 if (dest_in_mem) {
1485 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1486 } else if (rhs_in_mem) {
1487 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1488 }
1489 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1490 case Instruction::AND_LONG_2ADDR:
1491 case Instruction::AND_LONG:
1492 if (dest_in_mem) {
1493 return kX86And32MR;
1494 }
1495 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1496 case Instruction::OR_LONG:
1497 case Instruction::OR_LONG_2ADDR:
1498 if (dest_in_mem) {
1499 return kX86Or32MR;
1500 }
1501 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1502 case Instruction::XOR_LONG:
1503 case Instruction::XOR_LONG_2ADDR:
1504 if (dest_in_mem) {
1505 return kX86Xor32MR;
1506 }
1507 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1508 default:
1509 LOG(FATAL) << "Unexpected opcode: " << op;
1510 return kX86Add32RR;
1511 }
1512}
1513
1514X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1515 int32_t value) {
1516 bool in_mem = loc.location != kLocPhysReg;
1517 bool byte_imm = IS_SIMM8(value);
1518 DCHECK(in_mem || !IsFpReg(loc.low_reg));
1519 switch (op) {
1520 case Instruction::ADD_LONG:
1521 case Instruction::ADD_LONG_2ADDR:
1522 if (byte_imm) {
1523 if (in_mem) {
1524 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1525 }
1526 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1527 }
1528 if (in_mem) {
1529 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1530 }
1531 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1532 case Instruction::SUB_LONG:
1533 case Instruction::SUB_LONG_2ADDR:
1534 if (byte_imm) {
1535 if (in_mem) {
1536 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1537 }
1538 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1539 }
1540 if (in_mem) {
1541 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1542 }
1543 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1544 case Instruction::AND_LONG_2ADDR:
1545 case Instruction::AND_LONG:
1546 if (byte_imm) {
1547 return in_mem ? kX86And32MI8 : kX86And32RI8;
1548 }
1549 return in_mem ? kX86And32MI : kX86And32RI;
1550 case Instruction::OR_LONG:
1551 case Instruction::OR_LONG_2ADDR:
1552 if (byte_imm) {
1553 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1554 }
1555 return in_mem ? kX86Or32MI : kX86Or32RI;
1556 case Instruction::XOR_LONG:
1557 case Instruction::XOR_LONG_2ADDR:
1558 if (byte_imm) {
1559 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1560 }
1561 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1562 default:
1563 LOG(FATAL) << "Unexpected opcode: " << op;
1564 return kX86Add32MI;
1565 }
1566}
1567
1568void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1569 DCHECK(rl_src.is_const);
1570 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1571 int32_t val_lo = Low32Bits(val);
1572 int32_t val_hi = High32Bits(val);
1573 rl_dest = UpdateLocWide(rl_dest);
1574
1575 // Can we just do this into memory?
1576 if ((rl_dest.location == kLocDalvikFrame) ||
1577 (rl_dest.location == kLocCompilerTemp)) {
1578 int rBase = TargetReg(kSp);
1579 int displacement = SRegOffset(rl_dest.s_reg_low);
1580
1581 if (!IsNoOp(op, val_lo)) {
1582 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1583 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1584 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1585 false /* is_load */, true /* is64bit */);
1586 }
1587 if (!IsNoOp(op, val_hi)) {
1588 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1589 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1590 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1591 false /* is_load */, true /* is64bit */);
1592 }
1593 return;
1594 }
1595
1596 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1597 DCHECK_EQ(rl_result.location, kLocPhysReg);
1598 DCHECK(!IsFpReg(rl_result.low_reg));
1599
1600 if (!IsNoOp(op, val_lo)) {
1601 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1602 NewLIR2(x86op, rl_result.low_reg, val_lo);
1603 }
1604 if (!IsNoOp(op, val_hi)) {
1605 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1606 NewLIR2(x86op, rl_result.high_reg, val_hi);
1607 }
1608 StoreValueWide(rl_dest, rl_result);
1609}
1610
1611void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1612 RegLocation rl_src2, Instruction::Code op) {
1613 DCHECK(rl_src2.is_const);
1614 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1615 int32_t val_lo = Low32Bits(val);
1616 int32_t val_hi = High32Bits(val);
1617 rl_dest = UpdateLocWide(rl_dest);
1618 rl_src1 = UpdateLocWide(rl_src1);
1619
1620 // Can we do this directly into the destination registers?
1621 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1622 rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1623 !IsFpReg(rl_dest.low_reg)) {
1624 if (!IsNoOp(op, val_lo)) {
1625 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1626 NewLIR2(x86op, rl_dest.low_reg, val_lo);
1627 }
1628 if (!IsNoOp(op, val_hi)) {
1629 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1630 NewLIR2(x86op, rl_dest.high_reg, val_hi);
1631 }
1632 return;
1633 }
1634
1635 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1636 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1637
1638 // We need the values to be in a temporary
1639 RegLocation rl_result = ForceTempWide(rl_src1);
1640 if (!IsNoOp(op, val_lo)) {
1641 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1642 NewLIR2(x86op, rl_result.low_reg, val_lo);
1643 }
1644 if (!IsNoOp(op, val_hi)) {
1645 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1646 NewLIR2(x86op, rl_result.high_reg, val_hi);
1647 }
1648
1649 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001650}
1651
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001652// For final classes there are no sub-classes to check and so we can answer the instance-of
1653// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1654void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1655 RegLocation rl_dest, RegLocation rl_src) {
1656 RegLocation object = LoadValue(rl_src, kCoreReg);
1657 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1658 int result_reg = rl_result.low_reg;
1659
1660 // SETcc only works with EAX..EDX.
1661 if (result_reg == object.low_reg || result_reg >= 4) {
1662 result_reg = AllocTypedTemp(false, kCoreReg);
1663 DCHECK_LT(result_reg, 4);
1664 }
1665
1666 // Assume that there is no match.
1667 LoadConstant(result_reg, 0);
1668 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1669
1670 int check_class = AllocTypedTemp(false, kCoreReg);
1671
1672 // If Method* is already in a register, we can save a copy.
1673 RegLocation rl_method = mir_graph_->GetMethodLoc();
1674 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1675 (sizeof(mirror::Class*) * type_idx);
1676
1677 if (rl_method.location == kLocPhysReg) {
1678 if (use_declaring_class) {
1679 LoadWordDisp(rl_method.low_reg,
1680 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1681 check_class);
1682 } else {
1683 LoadWordDisp(rl_method.low_reg,
1684 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1685 check_class);
1686 LoadWordDisp(check_class, offset_of_type, check_class);
1687 }
1688 } else {
1689 LoadCurrMethodDirect(check_class);
1690 if (use_declaring_class) {
1691 LoadWordDisp(check_class,
1692 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1693 check_class);
1694 } else {
1695 LoadWordDisp(check_class,
1696 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1697 check_class);
1698 LoadWordDisp(check_class, offset_of_type, check_class);
1699 }
1700 }
1701
1702 // Compare the computed class to the class in the object.
1703 DCHECK_EQ(object.location, kLocPhysReg);
1704 OpRegMem(kOpCmp, check_class, object.low_reg,
1705 mirror::Object::ClassOffset().Int32Value());
1706
1707 // Set the low byte of the result to 0 or 1 from the compare condition code.
1708 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1709
1710 LIR* target = NewLIR0(kPseudoTargetLabel);
1711 null_branchover->target = target;
1712 FreeTemp(check_class);
1713 if (IsTemp(result_reg)) {
1714 OpRegCopy(rl_result.low_reg, result_reg);
1715 FreeTemp(result_reg);
1716 }
1717 StoreValue(rl_dest, rl_result);
1718}
1719
Mark Mendell6607d972014-02-10 06:54:18 -08001720void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1721 bool type_known_abstract, bool use_declaring_class,
1722 bool can_assume_type_is_in_dex_cache,
1723 uint32_t type_idx, RegLocation rl_dest,
1724 RegLocation rl_src) {
1725 FlushAllRegs();
1726 // May generate a call - use explicit registers.
1727 LockCallTemps();
1728 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1729 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1730 // Reference must end up in kArg0.
1731 if (needs_access_check) {
1732 // Check we have access to type_idx and if not throw IllegalAccessError,
1733 // Caller function returns Class* in kArg0.
1734 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1735 type_idx, true);
1736 OpRegCopy(class_reg, TargetReg(kRet0));
1737 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1738 } else if (use_declaring_class) {
1739 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1740 LoadWordDisp(TargetReg(kArg1),
1741 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1742 } else {
1743 // Load dex cache entry into class_reg (kArg2).
1744 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1745 LoadWordDisp(TargetReg(kArg1),
1746 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1747 int32_t offset_of_type =
1748 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1749 * type_idx);
1750 LoadWordDisp(class_reg, offset_of_type, class_reg);
1751 if (!can_assume_type_is_in_dex_cache) {
1752 // Need to test presence of type in dex cache at runtime.
1753 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1754 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1755 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1756 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1757 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1758 // Rejoin code paths
1759 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1760 hop_branch->target = hop_target;
1761 }
1762 }
1763 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1764 RegLocation rl_result = GetReturn(false);
1765
1766 // SETcc only works with EAX..EDX.
1767 DCHECK_LT(rl_result.low_reg, 4);
1768
1769 // Is the class NULL?
1770 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1771
1772 /* Load object->klass_. */
1773 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1774 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1775 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1776 LIR* branchover = nullptr;
1777 if (type_known_final) {
1778 // Ensure top 3 bytes of result are 0.
1779 LoadConstant(rl_result.low_reg, 0);
1780 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1781 // Set the low byte of the result to 0 or 1 from the compare condition code.
1782 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondEq);
1783 } else {
1784 if (!type_known_abstract) {
1785 LoadConstant(rl_result.low_reg, 1); // Assume result succeeds.
1786 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1787 }
1788 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1789 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1790 }
1791 // TODO: only clobber when type isn't final?
1792 ClobberCallerSave();
1793 /* Branch targets here. */
1794 LIR* target = NewLIR0(kPseudoTargetLabel);
1795 StoreValue(rl_dest, rl_result);
1796 branch1->target = target;
1797 if (branchover != nullptr) {
1798 branchover->target = target;
1799 }
1800}
1801
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001802void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1803 RegLocation rl_lhs, RegLocation rl_rhs) {
1804 OpKind op = kOpBkpt;
1805 bool is_div_rem = false;
1806 bool unary = false;
1807 bool shift_op = false;
1808 bool is_two_addr = false;
1809 RegLocation rl_result;
1810 switch (opcode) {
1811 case Instruction::NEG_INT:
1812 op = kOpNeg;
1813 unary = true;
1814 break;
1815 case Instruction::NOT_INT:
1816 op = kOpMvn;
1817 unary = true;
1818 break;
1819 case Instruction::ADD_INT_2ADDR:
1820 is_two_addr = true;
1821 // Fallthrough
1822 case Instruction::ADD_INT:
1823 op = kOpAdd;
1824 break;
1825 case Instruction::SUB_INT_2ADDR:
1826 is_two_addr = true;
1827 // Fallthrough
1828 case Instruction::SUB_INT:
1829 op = kOpSub;
1830 break;
1831 case Instruction::MUL_INT_2ADDR:
1832 is_two_addr = true;
1833 // Fallthrough
1834 case Instruction::MUL_INT:
1835 op = kOpMul;
1836 break;
1837 case Instruction::DIV_INT_2ADDR:
1838 is_two_addr = true;
1839 // Fallthrough
1840 case Instruction::DIV_INT:
1841 op = kOpDiv;
1842 is_div_rem = true;
1843 break;
1844 /* NOTE: returns in kArg1 */
1845 case Instruction::REM_INT_2ADDR:
1846 is_two_addr = true;
1847 // Fallthrough
1848 case Instruction::REM_INT:
1849 op = kOpRem;
1850 is_div_rem = true;
1851 break;
1852 case Instruction::AND_INT_2ADDR:
1853 is_two_addr = true;
1854 // Fallthrough
1855 case Instruction::AND_INT:
1856 op = kOpAnd;
1857 break;
1858 case Instruction::OR_INT_2ADDR:
1859 is_two_addr = true;
1860 // Fallthrough
1861 case Instruction::OR_INT:
1862 op = kOpOr;
1863 break;
1864 case Instruction::XOR_INT_2ADDR:
1865 is_two_addr = true;
1866 // Fallthrough
1867 case Instruction::XOR_INT:
1868 op = kOpXor;
1869 break;
1870 case Instruction::SHL_INT_2ADDR:
1871 is_two_addr = true;
1872 // Fallthrough
1873 case Instruction::SHL_INT:
1874 shift_op = true;
1875 op = kOpLsl;
1876 break;
1877 case Instruction::SHR_INT_2ADDR:
1878 is_two_addr = true;
1879 // Fallthrough
1880 case Instruction::SHR_INT:
1881 shift_op = true;
1882 op = kOpAsr;
1883 break;
1884 case Instruction::USHR_INT_2ADDR:
1885 is_two_addr = true;
1886 // Fallthrough
1887 case Instruction::USHR_INT:
1888 shift_op = true;
1889 op = kOpLsr;
1890 break;
1891 default:
1892 LOG(FATAL) << "Invalid word arith op: " << opcode;
1893 }
1894
1895 // Can we convert to a two address instruction?
1896 if (!is_two_addr &&
1897 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1898 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1899 is_two_addr = true;
1900 }
1901
1902 // Get the div/rem stuff out of the way.
1903 if (is_div_rem) {
1904 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1905 StoreValue(rl_dest, rl_result);
1906 return;
1907 }
1908
1909 if (unary) {
1910 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1911 rl_result = UpdateLoc(rl_dest);
1912 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1913 OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
1914 } else {
1915 if (shift_op) {
1916 // X86 doesn't require masking and must use ECX.
1917 int t_reg = TargetReg(kCount); // rCX
1918 LoadValueDirectFixed(rl_rhs, t_reg);
1919 if (is_two_addr) {
1920 // Can we do this directly into memory?
1921 rl_result = UpdateLoc(rl_dest);
1922 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1923 if (rl_result.location != kLocPhysReg) {
1924 // Okay, we can do this into memory
1925 OpMemReg(op, rl_result, t_reg);
1926 FreeTemp(t_reg);
1927 return;
1928 } else if (!IsFpReg(rl_result.low_reg)) {
1929 // Can do this directly into the result register
1930 OpRegReg(op, rl_result.low_reg, t_reg);
1931 FreeTemp(t_reg);
1932 StoreFinalValue(rl_dest, rl_result);
1933 return;
1934 }
1935 }
1936 // Three address form, or we can't do directly.
1937 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1938 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1939 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
1940 FreeTemp(t_reg);
1941 } else {
1942 // Multiply is 3 operand only (sort of).
1943 if (is_two_addr && op != kOpMul) {
1944 // Can we do this directly into memory?
1945 rl_result = UpdateLoc(rl_dest);
1946 if (rl_result.location == kLocPhysReg) {
1947 // Can we do this from memory directly?
1948 rl_rhs = UpdateLoc(rl_rhs);
1949 if (rl_rhs.location != kLocPhysReg) {
1950 OpRegMem(op, rl_result.low_reg, rl_rhs);
1951 StoreFinalValue(rl_dest, rl_result);
1952 return;
1953 } else if (!IsFpReg(rl_rhs.low_reg)) {
1954 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1955 StoreFinalValue(rl_dest, rl_result);
1956 return;
1957 }
1958 }
1959 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1960 if (rl_result.location != kLocPhysReg) {
1961 // Okay, we can do this into memory.
1962 OpMemReg(op, rl_result, rl_rhs.low_reg);
1963 return;
1964 } else if (!IsFpReg(rl_result.low_reg)) {
1965 // Can do this directly into the result register.
1966 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1967 StoreFinalValue(rl_dest, rl_result);
1968 return;
1969 } else {
1970 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1971 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1972 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
1973 }
1974 } else {
1975 // Try to use reg/memory instructions.
1976 rl_lhs = UpdateLoc(rl_lhs);
1977 rl_rhs = UpdateLoc(rl_rhs);
1978 // We can't optimize with FP registers.
1979 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
1980 // Something is difficult, so fall back to the standard case.
1981 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1982 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1983 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1984 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
1985 } else {
1986 // We can optimize by moving to result and using memory operands.
1987 if (rl_rhs.location != kLocPhysReg) {
1988 // Force LHS into result.
1989 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1990 LoadValueDirect(rl_lhs, rl_result.low_reg);
1991 OpRegMem(op, rl_result.low_reg, rl_rhs);
1992 } else if (rl_lhs.location != kLocPhysReg) {
1993 // RHS is in a register; LHS is in memory.
1994 if (op != kOpSub) {
1995 // Force RHS into result and operate on memory.
1996 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1997 OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
1998 OpRegMem(op, rl_result.low_reg, rl_lhs);
1999 } else {
2000 // Subtraction isn't commutative.
2001 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2002 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2003 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2004 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2005 }
2006 } else {
2007 // Both are in registers.
2008 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2009 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2010 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2011 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2012 }
2013 }
2014 }
2015 }
2016 }
2017 StoreValue(rl_dest, rl_result);
2018}
2019
2020bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2021 // If we have non-core registers, then we can't do good things.
2022 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
2023 return false;
2024 }
2025 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
2026 return false;
2027 }
2028
2029 // Everything will be fine :-).
2030 return true;
2031}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002032} // namespace art