blob: 66fdfcda5b034e3c14669acc81b766e78b2a58d1 [file] [log] [blame] [edit]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "execution_subgraph.h"
#include <algorithm>
#include <unordered_set>
#include "android-base/macros.h"
#include "base/arena_allocator.h"
#include "base/arena_bit_vector.h"
#include "base/globals.h"
#include "base/scoped_arena_allocator.h"
#include "nodes.h"
namespace art {
ExecutionSubgraph::ExecutionSubgraph(HGraph* graph, ScopedArenaAllocator* allocator)
: graph_(graph),
allocator_(allocator),
allowed_successors_(graph_->GetBlocks().size(),
~(std::bitset<kMaxFilterableSuccessors> {}),
allocator_->Adapter(kArenaAllocLSA)),
unreachable_blocks_(
allocator_, graph_->GetBlocks().size(), /*expandable=*/ false, kArenaAllocLSA),
valid_(true),
needs_prune_(false),
finalized_(false) {
if (valid_) {
DCHECK(std::all_of(graph->GetBlocks().begin(), graph->GetBlocks().end(), [](HBasicBlock* it) {
return it == nullptr || it->GetSuccessors().size() <= kMaxFilterableSuccessors;
}));
}
}
void ExecutionSubgraph::RemoveBlock(const HBasicBlock* to_remove) {
if (!valid_) {
return;
}
uint32_t id = to_remove->GetBlockId();
if (unreachable_blocks_.IsBitSet(id)) {
if (kIsDebugBuild) {
// This isn't really needed but it's good to have this so it functions as
// a DCHECK that we always call Prune after removing any block.
needs_prune_ = true;
}
return;
}
unreachable_blocks_.SetBit(id);
for (HBasicBlock* pred : to_remove->GetPredecessors()) {
std::bitset<kMaxFilterableSuccessors> allowed_successors {};
// ZipCount iterates over both the successors and the index of them at the same time.
for (auto [succ, i] : ZipCount(MakeIterationRange(pred->GetSuccessors()))) {
if (succ != to_remove) {
allowed_successors.set(i);
}
}
LimitBlockSuccessors(pred, allowed_successors);
}
}
// Removes sink nodes.
void ExecutionSubgraph::Prune() {
if (UNLIKELY(!valid_)) {
return;
}
needs_prune_ = false;
// This is the record of the edges that were both (1) explored and (2) reached
// the exit node.
{
// Allocator for temporary values.
ScopedArenaAllocator temporaries(graph_->GetArenaStack());
ScopedArenaVector<std::bitset<kMaxFilterableSuccessors>> results(
graph_->GetBlocks().size(), temporaries.Adapter(kArenaAllocLSA));
unreachable_blocks_.ClearAllBits();
// Fills up the 'results' map with what we need to add to update
// allowed_successors in order to prune sink nodes.
bool start_reaches_end = false;
// This is basically a DFS of the graph with some edges skipped.
{
const size_t num_blocks = graph_->GetBlocks().size();
constexpr ssize_t kUnvisitedSuccIdx = -1;
ArenaBitVector visiting(&temporaries, num_blocks, false, kArenaAllocLSA);
// How many of the successors of each block we have already examined. This
// has three states.
// (1) kUnvisitedSuccIdx: we have not examined any edges,
// (2) 0 <= val < # of successors: we have examined 'val' successors/are
// currently examining successors_[val],
// (3) kMaxFilterableSuccessors: We have examined all of the successors of
// the block (the 'result' is final).
ScopedArenaVector<ssize_t> last_succ_seen(
num_blocks, kUnvisitedSuccIdx, temporaries.Adapter(kArenaAllocLSA));
// A stack of which blocks we are visiting in this DFS traversal. Does not
// include the current-block. Used with last_succ_seen to figure out which
// bits to set if we find a path to the end/loop.
ScopedArenaVector<uint32_t> current_path(temporaries.Adapter(kArenaAllocLSA));
// Just ensure we have enough space. The allocator will be cleared shortly
// anyway so this is fast.
current_path.reserve(num_blocks);
// Current block we are examining. Modified only by 'push_block' and 'pop_block'
const HBasicBlock* cur_block = graph_->GetEntryBlock();
// Used to note a recur where we will start iterating on 'blk' and save
// where we are. We must 'continue' immediately after this.
auto push_block = [&](const HBasicBlock* blk) {
DCHECK(std::find(current_path.cbegin(), current_path.cend(), cur_block->GetBlockId()) ==
current_path.end());
if (kIsDebugBuild) {
std::for_each(current_path.cbegin(), current_path.cend(), [&](auto id) {
DCHECK_GT(last_succ_seen[id], kUnvisitedSuccIdx) << id;
DCHECK_LT(last_succ_seen[id], static_cast<ssize_t>(kMaxFilterableSuccessors)) << id;
});
}
current_path.push_back(cur_block->GetBlockId());
visiting.SetBit(cur_block->GetBlockId());
cur_block = blk;
};
// Used to note that we have fully explored a block and should return back
// up. Sets cur_block appropriately. We must 'continue' immediately after
// calling this.
auto pop_block = [&]() {
if (UNLIKELY(current_path.empty())) {
// Should only happen if entry-blocks successors are exhausted.
DCHECK_GE(last_succ_seen[graph_->GetEntryBlock()->GetBlockId()],
static_cast<ssize_t>(graph_->GetEntryBlock()->GetSuccessors().size()));
cur_block = nullptr;
} else {
const HBasicBlock* last = graph_->GetBlocks()[current_path.back()];
visiting.ClearBit(current_path.back());
current_path.pop_back();
cur_block = last;
}
};
// Mark the current path as a path to the end. This is in contrast to paths
// that end in (eg) removed blocks.
auto propagate_true = [&]() {
for (uint32_t id : current_path) {
DCHECK_GT(last_succ_seen[id], kUnvisitedSuccIdx);
DCHECK_LT(last_succ_seen[id], static_cast<ssize_t>(kMaxFilterableSuccessors));
results[id].set(last_succ_seen[id]);
}
};
ssize_t num_entry_succ = graph_->GetEntryBlock()->GetSuccessors().size();
// As long as the entry-block has not explored all successors we still have
// work to do.
const uint32_t entry_block_id = graph_->GetEntryBlock()->GetBlockId();
while (num_entry_succ > last_succ_seen[entry_block_id]) {
DCHECK(cur_block != nullptr);
uint32_t id = cur_block->GetBlockId();
DCHECK((current_path.empty() && cur_block == graph_->GetEntryBlock()) ||
current_path.front() == graph_->GetEntryBlock()->GetBlockId())
<< "current path size: " << current_path.size()
<< " cur_block id: " << cur_block->GetBlockId() << " entry id "
<< graph_->GetEntryBlock()->GetBlockId();
if (visiting.IsBitSet(id)) {
// TODO We should support infinite loops as well.
start_reaches_end = false;
break;
}
std::bitset<kMaxFilterableSuccessors>& result = results[id];
if (cur_block == graph_->GetExitBlock()) {
start_reaches_end = true;
propagate_true();
pop_block();
continue;
} else if (last_succ_seen[id] == kMaxFilterableSuccessors) {
// Already fully explored.
if (result.any()) {
propagate_true();
}
pop_block();
continue;
}
// NB This is a pointer. Modifications modify the last_succ_seen.
ssize_t* cur_succ = &last_succ_seen[id];
std::bitset<kMaxFilterableSuccessors> succ_bitmap = GetAllowedSuccessors(cur_block);
// Get next successor allowed.
while (++(*cur_succ) < static_cast<ssize_t>(kMaxFilterableSuccessors) &&
!succ_bitmap.test(*cur_succ)) {
DCHECK_GE(*cur_succ, 0);
}
if (*cur_succ >= static_cast<ssize_t>(cur_block->GetSuccessors().size())) {
// No more successors. Mark that we've checked everything. Later visits
// to this node can use the existing data.
DCHECK_LE(*cur_succ, static_cast<ssize_t>(kMaxFilterableSuccessors));
*cur_succ = kMaxFilterableSuccessors;
pop_block();
continue;
}
const HBasicBlock* nxt = cur_block->GetSuccessors()[*cur_succ];
DCHECK(nxt != nullptr) << "id: " << *cur_succ
<< " max: " << cur_block->GetSuccessors().size();
if (visiting.IsBitSet(nxt->GetBlockId())) {
// This is a loop. Mark it and continue on. Mark allowed-successor on
// this block's results as well.
result.set(*cur_succ);
propagate_true();
} else {
// Not a loop yet. Recur.
push_block(nxt);
}
}
}
// If we can't reach the end then there is no path through the graph without
// hitting excluded blocks
if (UNLIKELY(!start_reaches_end)) {
valid_ = false;
return;
}
// Mark blocks we didn't see in the ReachesEnd flood-fill
for (const HBasicBlock* blk : graph_->GetBlocks()) {
if (blk != nullptr &&
results[blk->GetBlockId()].none() &&
blk != graph_->GetExitBlock() &&
blk != graph_->GetEntryBlock()) {
// We never visited this block, must be unreachable.
unreachable_blocks_.SetBit(blk->GetBlockId());
}
}
// write the new data.
memcpy(allowed_successors_.data(),
results.data(),
results.size() * sizeof(std::bitset<kMaxFilterableSuccessors>));
}
RecalculateExcludedCohort();
}
void ExecutionSubgraph::RemoveConcavity() {
if (UNLIKELY(!valid_)) {
return;
}
DCHECK(!needs_prune_);
for (const HBasicBlock* blk : graph_->GetBlocks()) {
if (blk == nullptr || unreachable_blocks_.IsBitSet(blk->GetBlockId())) {
continue;
}
uint32_t blkid = blk->GetBlockId();
if (std::any_of(unreachable_blocks_.Indexes().begin(),
unreachable_blocks_.Indexes().end(),
[&](uint32_t skipped) { return graph_->PathBetween(skipped, blkid); }) &&
std::any_of(unreachable_blocks_.Indexes().begin(),
unreachable_blocks_.Indexes().end(),
[&](uint32_t skipped) { return graph_->PathBetween(blkid, skipped); })) {
RemoveBlock(blk);
}
}
Prune();
}
void ExecutionSubgraph::RecalculateExcludedCohort() {
DCHECK(!needs_prune_);
excluded_list_.emplace(allocator_->Adapter(kArenaAllocLSA));
ScopedArenaVector<ExcludedCohort>& res = excluded_list_.value();
// Make a copy of unreachable_blocks_;
ArenaBitVector unreachable(allocator_, graph_->GetBlocks().size(), false, kArenaAllocLSA);
unreachable.Copy(&unreachable_blocks_);
// Split cohorts with union-find
while (unreachable.IsAnyBitSet()) {
res.emplace_back(allocator_, graph_);
ExcludedCohort& cohort = res.back();
// We don't allocate except for the queue beyond here so create another arena to save memory.
ScopedArenaAllocator alloc(graph_->GetArenaStack());
ScopedArenaQueue<const HBasicBlock*> worklist(alloc.Adapter(kArenaAllocLSA));
// Select an arbitrary node
const HBasicBlock* first = graph_->GetBlocks()[unreachable.GetHighestBitSet()];
worklist.push(first);
do {
// Flood-fill both forwards and backwards.
const HBasicBlock* cur = worklist.front();
worklist.pop();
if (!unreachable.IsBitSet(cur->GetBlockId())) {
// Already visited or reachable somewhere else.
continue;
}
unreachable.ClearBit(cur->GetBlockId());
cohort.blocks_.SetBit(cur->GetBlockId());
// don't bother filtering here, it's done next go-around
for (const HBasicBlock* pred : cur->GetPredecessors()) {
worklist.push(pred);
}
for (const HBasicBlock* succ : cur->GetSuccessors()) {
worklist.push(succ);
}
} while (!worklist.empty());
}
// Figure out entry & exit nodes.
for (ExcludedCohort& cohort : res) {
DCHECK(cohort.blocks_.IsAnyBitSet());
auto is_external = [&](const HBasicBlock* ext) -> bool {
return !cohort.blocks_.IsBitSet(ext->GetBlockId());
};
for (const HBasicBlock* blk : cohort.Blocks()) {
const auto& preds = blk->GetPredecessors();
const auto& succs = blk->GetSuccessors();
if (std::any_of(preds.cbegin(), preds.cend(), is_external)) {
cohort.entry_blocks_.SetBit(blk->GetBlockId());
}
if (std::any_of(succs.cbegin(), succs.cend(), is_external)) {
cohort.exit_blocks_.SetBit(blk->GetBlockId());
}
}
}
}
std::ostream& operator<<(std::ostream& os, const ExecutionSubgraph::ExcludedCohort& ex) {
ex.Dump(os);
return os;
}
void ExecutionSubgraph::ExcludedCohort::Dump(std::ostream& os) const {
auto dump = [&](BitVecBlockRange arr) {
os << "[";
bool first = true;
for (const HBasicBlock* b : arr) {
if (!first) {
os << ", ";
}
first = false;
os << b->GetBlockId();
}
os << "]";
};
auto dump_blocks = [&]() {
os << "[";
bool first = true;
for (const HBasicBlock* b : Blocks()) {
if (!entry_blocks_.IsBitSet(b->GetBlockId()) && !exit_blocks_.IsBitSet(b->GetBlockId())) {
if (!first) {
os << ", ";
}
first = false;
os << b->GetBlockId();
}
}
os << "]";
};
os << "{ entry: ";
dump(EntryBlocks());
os << ", interior: ";
dump_blocks();
os << ", exit: ";
dump(ExitBlocks());
os << "}";
}
} // namespace art