| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "instrumentation.h" |
| |
| #include <functional> |
| #include <optional> |
| #include <sstream> |
| |
| #include <android-base/logging.h> |
| |
| #include "arch/context.h" |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/atomic.h" |
| #include "base/callee_save_type.h" |
| #include "class_linker.h" |
| #include "debugger.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_file_types.h" |
| #include "dex/dex_instruction-inl.h" |
| #include "entrypoints/quick/quick_alloc_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/runtime_asm_entrypoints.h" |
| #include "gc_root-inl.h" |
| #include "interpreter/interpreter.h" |
| #include "interpreter/interpreter_common.h" |
| #include "jit/jit.h" |
| #include "jit/jit_code_cache.h" |
| #include "jvalue-inl.h" |
| #include "jvalue.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/dex_cache.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "nterp_helpers.h" |
| #include "nth_caller_visitor.h" |
| #include "oat_file_manager.h" |
| #include "oat_quick_method_header.h" |
| #include "runtime-inl.h" |
| #include "thread.h" |
| #include "thread_list.h" |
| |
| namespace art { |
| namespace instrumentation { |
| |
| constexpr bool kVerboseInstrumentation = false; |
| |
| void InstrumentationListener::MethodExited( |
| Thread* thread, |
| ArtMethod* method, |
| OptionalFrame frame, |
| MutableHandle<mirror::Object>& return_value) { |
| DCHECK_EQ(method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetReturnTypePrimitive(), |
| Primitive::kPrimNot); |
| const void* original_ret = return_value.Get(); |
| JValue v; |
| v.SetL(return_value.Get()); |
| MethodExited(thread, method, frame, v); |
| DCHECK(original_ret == v.GetL()) << "Return value changed"; |
| } |
| |
| void InstrumentationListener::FieldWritten(Thread* thread, |
| Handle<mirror::Object> this_object, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| ArtField* field, |
| Handle<mirror::Object> field_value) { |
| DCHECK(!field->IsPrimitiveType()); |
| JValue v; |
| v.SetL(field_value.Get()); |
| FieldWritten(thread, this_object, method, dex_pc, field, v); |
| } |
| |
| // Instrumentation works on non-inlined frames by updating returned PCs |
| // of compiled frames. |
| static constexpr StackVisitor::StackWalkKind kInstrumentationStackWalk = |
| StackVisitor::StackWalkKind::kSkipInlinedFrames; |
| |
| class InstallStubsClassVisitor : public ClassVisitor { |
| public: |
| explicit InstallStubsClassVisitor(Instrumentation* instrumentation) |
| : instrumentation_(instrumentation) {} |
| |
| bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) { |
| instrumentation_->InstallStubsForClass(klass.Ptr()); |
| return true; // we visit all classes. |
| } |
| |
| private: |
| Instrumentation* const instrumentation_; |
| }; |
| |
| InstrumentationStackPopper::InstrumentationStackPopper(Thread* self) |
| : self_(self), |
| instrumentation_(Runtime::Current()->GetInstrumentation()), |
| pop_until_(0u) {} |
| |
| InstrumentationStackPopper::~InstrumentationStackPopper() { |
| std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* stack = |
| self_->GetInstrumentationStack(); |
| for (auto i = stack->begin(); i != stack->end() && i->first <= pop_until_;) { |
| i = stack->erase(i); |
| } |
| } |
| |
| bool InstrumentationStackPopper::PopFramesTo(uintptr_t stack_pointer, |
| MutableHandle<mirror::Throwable>& exception) { |
| std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* stack = |
| self_->GetInstrumentationStack(); |
| DCHECK(!self_->IsExceptionPending()); |
| if (!instrumentation_->HasMethodUnwindListeners()) { |
| pop_until_ = stack_pointer; |
| return true; |
| } |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Popping frames for exception " << exception->Dump(); |
| } |
| // The instrumentation events expect the exception to be set. |
| self_->SetException(exception.Get()); |
| bool new_exception_thrown = false; |
| auto i = stack->upper_bound(pop_until_); |
| |
| // Now pop all frames until reaching stack_pointer, or a new exception is |
| // thrown. Note that `stack_pointer` doesn't need to be a return PC address |
| // (in fact the exception handling code passes the start of the frame where |
| // the catch handler is). |
| for (; i != stack->end() && i->first <= stack_pointer; i++) { |
| const InstrumentationStackFrame& frame = i->second; |
| ArtMethod* method = frame.method_; |
| // Notify listeners of method unwind. |
| // TODO: improve the dex_pc information here. |
| uint32_t dex_pc = dex::kDexNoIndex; |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Popping for unwind " << method->PrettyMethod(); |
| } |
| if (!method->IsRuntimeMethod() && !frame.interpreter_entry_) { |
| instrumentation_->MethodUnwindEvent(self_, frame.this_object_, method, dex_pc); |
| new_exception_thrown = self_->GetException() != exception.Get(); |
| if (new_exception_thrown) { |
| pop_until_ = i->first; |
| break; |
| } |
| } |
| } |
| if (!new_exception_thrown) { |
| pop_until_ = stack_pointer; |
| } |
| exception.Assign(self_->GetException()); |
| self_->ClearException(); |
| if (kVerboseInstrumentation && new_exception_thrown) { |
| LOG(INFO) << "Did partial pop of frames due to new exception"; |
| } |
| return !new_exception_thrown; |
| } |
| |
| Instrumentation::Instrumentation() |
| : current_force_deopt_id_(0), |
| instrumentation_stubs_installed_(false), |
| instrumentation_level_(InstrumentationLevel::kInstrumentNothing), |
| forced_interpret_only_(false), |
| have_method_entry_listeners_(false), |
| have_method_exit_listeners_(false), |
| have_method_unwind_listeners_(false), |
| have_dex_pc_listeners_(false), |
| have_field_read_listeners_(false), |
| have_field_write_listeners_(false), |
| have_exception_thrown_listeners_(false), |
| have_watched_frame_pop_listeners_(false), |
| have_branch_listeners_(false), |
| have_exception_handled_listeners_(false), |
| deoptimized_methods_lock_(new ReaderWriterMutex("deoptimized methods lock", |
| kGenericBottomLock)), |
| quick_alloc_entry_points_instrumentation_counter_(0), |
| alloc_entrypoints_instrumented_(false) { |
| } |
| |
| void Instrumentation::InstallStubsForClass(ObjPtr<mirror::Class> klass) { |
| if (!klass->IsResolved()) { |
| // We need the class to be resolved to install/uninstall stubs. Otherwise its methods |
| // could not be initialized or linked with regards to class inheritance. |
| } else if (klass->IsErroneousResolved()) { |
| // We can't execute code in a erroneous class: do nothing. |
| } else { |
| for (ArtMethod& method : klass->GetMethods(kRuntimePointerSize)) { |
| InstallStubsForMethod(&method); |
| } |
| } |
| } |
| |
| static bool CanHandleInitializationCheck(const void* code) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| return class_linker->IsQuickResolutionStub(code) || |
| class_linker->IsQuickToInterpreterBridge(code) || |
| class_linker->IsQuickGenericJniStub(code) || |
| (code == GetQuickInstrumentationEntryPoint()); |
| } |
| |
| static bool IsProxyInit(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Annoyingly this can be called before we have actually initialized WellKnownClasses so therefore |
| // we also need to check this based on the declaring-class descriptor. The check is valid because |
| // Proxy only has a single constructor. |
| ArtMethod* well_known_proxy_init = jni::DecodeArtMethod( |
| WellKnownClasses::java_lang_reflect_Proxy_init); |
| if (well_known_proxy_init == method) { |
| return true; |
| } |
| |
| if (well_known_proxy_init != nullptr) { |
| return false; |
| } |
| |
| return method->IsConstructor() && !method->IsStatic() && |
| method->GetDeclaringClass()->DescriptorEquals("Ljava/lang/reflect/Proxy;"); |
| } |
| |
| static void UpdateEntryPoints(ArtMethod* method, const void* quick_code) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (kIsDebugBuild) { |
| if (NeedsClinitCheckBeforeCall(method) && |
| !method->GetDeclaringClass()->IsVisiblyInitialized()) { |
| CHECK(CanHandleInitializationCheck(quick_code)); |
| } |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| if (jit != nullptr && jit->GetCodeCache()->ContainsPc(quick_code)) { |
| // Ensure we always have the thumb entrypoint for JIT on arm32. |
| if (kRuntimeISA == InstructionSet::kArm) { |
| CHECK_EQ(reinterpret_cast<uintptr_t>(quick_code) & 1, 1u); |
| } |
| } |
| if (IsProxyInit(method)) { |
| CHECK_NE(quick_code, GetQuickInstrumentationEntryPoint()); |
| } |
| } |
| // If the method is from a boot image, don't dirty it if the entrypoint |
| // doesn't change. |
| if (method->GetEntryPointFromQuickCompiledCode() != quick_code) { |
| method->SetEntryPointFromQuickCompiledCode(quick_code); |
| } |
| } |
| |
| bool Instrumentation::CodeNeedsEntryExitStub(const void* code, ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Proxy.init should never have entry/exit stubs. |
| if (IsProxyInit(method)) { |
| return false; |
| } |
| |
| // In some tests runtime isn't setup fully and hence the entry points could |
| // be nullptr. |
| if (code == nullptr) { |
| return true; |
| } |
| |
| // Code running in the interpreter doesn't need entry/exit stubs. |
| if (Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(code)) { |
| return false; |
| } |
| |
| // When jiting code for debuggable apps we generate the code to call method |
| // entry / exit hooks when required. Hence it is not required to update |
| // to instrumentation entry point for JITed code in debuggable mode. |
| if (!Runtime::Current()->IsJavaDebuggable()) { |
| return true; |
| } |
| |
| // Native functions can have JITed entry points but we don't include support |
| // for calling entry / exit hooks directly from the JITed code for native |
| // functions. So we still have to install entry exit stubs for such cases. |
| if (method->IsNative()) { |
| return true; |
| } |
| |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| if (jit != nullptr && jit->GetCodeCache()->ContainsPc(code)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool Instrumentation::InterpretOnly(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (method->IsNative()) { |
| return false; |
| } |
| return InterpretOnly() || |
| IsDeoptimized(method) || |
| Runtime::Current()->GetRuntimeCallbacks()->IsMethodBeingInspected(method); |
| } |
| |
| static bool CanUseAotCode(ArtMethod* method, const void* quick_code) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (quick_code == nullptr) { |
| return false; |
| } |
| if (method->IsNative()) { |
| // AOT code for native methods can always be used. |
| return true; |
| } |
| |
| Runtime* runtime = Runtime::Current(); |
| // For simplicity, we never use AOT code for debuggable. |
| if (runtime->IsJavaDebuggable()) { |
| return false; |
| } |
| |
| if (runtime->IsNativeDebuggable()) { |
| DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse()); |
| // If we are doing native debugging, ignore application's AOT code, |
| // since we want to JIT it (at first use) with extra stackmaps for native |
| // debugging. We keep however all AOT code from the boot image, |
| // since the JIT-at-first-use is blocking and would result in non-negligible |
| // startup performance impact. |
| return runtime->GetHeap()->IsInBootImageOatFile(quick_code); |
| } |
| |
| return true; |
| } |
| |
| static bool CanUseNterp(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return interpreter::CanRuntimeUseNterp() && |
| CanMethodUseNterp(method) && |
| method->GetDeclaringClass()->IsVerified(); |
| } |
| |
| static const void* GetOptimizedCodeFor(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(!Runtime::Current()->GetInstrumentation()->InterpretOnly(method)); |
| CHECK(method->IsInvokable()) << method->PrettyMethod(); |
| if (method->IsProxyMethod()) { |
| return GetQuickProxyInvokeHandler(); |
| } |
| |
| // In debuggable mode, we can only use AOT code for native methods. |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const void* aot_code = method->GetOatMethodQuickCode(class_linker->GetImagePointerSize()); |
| if (CanUseAotCode(method, aot_code)) { |
| return aot_code; |
| } |
| |
| // If the method has been precompiled, there can be a JIT version. |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| if (jit != nullptr) { |
| const void* code = jit->GetCodeCache()->GetSavedEntryPointOfPreCompiledMethod(method); |
| if (code != nullptr) { |
| return code; |
| } |
| } |
| |
| // We need to check if the class has been verified for setting up nterp, as |
| // the verifier could punt the method to the switch interpreter in case we |
| // need to do lock counting. |
| if (CanUseNterp(method)) { |
| return interpreter::GetNterpEntryPoint(); |
| } |
| |
| return method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge(); |
| } |
| |
| void Instrumentation::InitializeMethodsCode(ArtMethod* method, const void* aot_code) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Use instrumentation entrypoints if instrumentation is installed. |
| if (UNLIKELY(EntryExitStubsInstalled()) && !IsProxyInit(method)) { |
| if (!method->IsNative() && InterpretOnly(method)) { |
| UpdateEntryPoints(method, GetQuickToInterpreterBridge()); |
| } else { |
| UpdateEntryPoints(method, GetQuickInstrumentationEntryPoint()); |
| } |
| return; |
| } |
| |
| if (UNLIKELY(IsForcedInterpretOnly() || IsDeoptimized(method))) { |
| UpdateEntryPoints( |
| method, method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge()); |
| return; |
| } |
| |
| // Special case if we need an initialization check. |
| if (NeedsClinitCheckBeforeCall(method) && !method->GetDeclaringClass()->IsVisiblyInitialized()) { |
| // If we have code but the method needs a class initialization check before calling |
| // that code, install the resolution stub that will perform the check. |
| // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines |
| // after initializing class (see ClassLinker::InitializeClass method). |
| // Note: this mimics the logic in image_writer.cc that installs the resolution |
| // stub only if we have compiled code or we can execute nterp, and the method needs a class |
| // initialization check. |
| if (aot_code != nullptr || method->IsNative() || CanUseNterp(method)) { |
| UpdateEntryPoints(method, GetQuickResolutionStub()); |
| } else { |
| UpdateEntryPoints(method, GetQuickToInterpreterBridge()); |
| } |
| return; |
| } |
| |
| // Use the provided AOT code if possible. |
| if (CanUseAotCode(method, aot_code)) { |
| UpdateEntryPoints(method, aot_code); |
| return; |
| } |
| |
| // We check if the class is verified as we need the slow interpreter for lock verification. |
| // If the class is not verified, This will be updated in |
| // ClassLinker::UpdateClassAfterVerification. |
| if (CanUseNterp(method)) { |
| UpdateEntryPoints(method, interpreter::GetNterpEntryPoint()); |
| return; |
| } |
| |
| // Use default entrypoints. |
| UpdateEntryPoints( |
| method, method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge()); |
| } |
| |
| void Instrumentation::InstallStubsForMethod(ArtMethod* method) { |
| if (!method->IsInvokable() || method->IsProxyMethod()) { |
| // Do not change stubs for these methods. |
| return; |
| } |
| // Don't stub Proxy.<init>. Note that the Proxy class itself is not a proxy class. |
| // TODO We should remove the need for this since it means we cannot always correctly detect calls |
| // to Proxy.<init> |
| if (IsProxyInit(method)) { |
| return; |
| } |
| |
| // If the instrumentation needs to go through the interpreter, just update the |
| // entrypoint to interpreter. |
| if (InterpretOnly(method)) { |
| UpdateEntryPoints(method, GetQuickToInterpreterBridge()); |
| return; |
| } |
| |
| if (EntryExitStubsInstalled()) { |
| // Install the instrumentation entry point if needed. |
| if (CodeNeedsEntryExitStub(method->GetEntryPointFromQuickCompiledCode(), method)) { |
| UpdateEntryPoints(method, GetQuickInstrumentationEntryPoint()); |
| } |
| return; |
| } |
| |
| // We're being asked to restore the entrypoints after instrumentation. |
| CHECK_EQ(instrumentation_level_, InstrumentationLevel::kInstrumentNothing); |
| // We need to have the resolution stub still if the class is not initialized. |
| if (NeedsClinitCheckBeforeCall(method) && !method->GetDeclaringClass()->IsVisiblyInitialized()) { |
| UpdateEntryPoints(method, GetQuickResolutionStub()); |
| return; |
| } |
| UpdateEntryPoints(method, GetOptimizedCodeFor(method)); |
| } |
| |
| // Places the instrumentation exit pc as the return PC for every quick frame. This also allows |
| // deoptimization of quick frames to interpreter frames. When force_deopt is |
| // true the frames have to be deoptimized. If the frame has a deoptimization |
| // stack slot (all Jited frames), it is set to true to indicate this. For frames |
| // that do not have this slot, the force_deopt_id on the InstrumentationStack is |
| // used to check if the frame needs to be deoptimized. When force_deopt is false |
| // we just instrument the stack for method entry / exit hooks. |
| // Since we may already have done this previously, we need to push new instrumentation frame before |
| // existing instrumentation frames. |
| void InstrumentationInstallStack(Thread* thread, void* arg, bool deopt_all_frames) |
| REQUIRES(Locks::mutator_lock_) { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| struct InstallStackVisitor final : public StackVisitor { |
| InstallStackVisitor(Thread* thread_in, |
| Context* context, |
| uintptr_t instrumentation_exit_pc, |
| uint64_t force_deopt_id, |
| bool deopt_all_frames) |
| : StackVisitor(thread_in, context, kInstrumentationStackWalk), |
| instrumentation_stack_(thread_in->GetInstrumentationStack()), |
| instrumentation_exit_pc_(instrumentation_exit_pc), |
| reached_existing_instrumentation_frames_(false), |
| force_deopt_id_(force_deopt_id), |
| deopt_all_frames_(deopt_all_frames) {} |
| |
| bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* m = GetMethod(); |
| if (m == nullptr) { |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << " Skipping upcall. Frame " << GetFrameId(); |
| } |
| return true; // Ignore upcalls. |
| } |
| if (GetCurrentQuickFrame() == nullptr) { |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Pushing shadow frame method " << m->PrettyMethod(); |
| } |
| stack_methods_.push_back(m); |
| return true; // Continue. |
| } |
| uintptr_t return_pc = GetReturnPc(); |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << " Installing exit stub in " << DescribeLocation(); |
| } |
| if (return_pc == instrumentation_exit_pc_) { |
| auto it = instrumentation_stack_->find(GetReturnPcAddr()); |
| CHECK(it != instrumentation_stack_->end()); |
| const InstrumentationStackFrame& frame = it->second; |
| if (m->IsRuntimeMethod()) { |
| if (frame.interpreter_entry_) { |
| return true; |
| } |
| } |
| |
| // We've reached a frame which has already been installed with instrumentation exit stub. |
| // We should have already installed instrumentation or be interpreter on previous frames. |
| reached_existing_instrumentation_frames_ = true; |
| |
| // Trampolines get replaced with their actual method in the stack, |
| // so don't do the check below for runtime methods. |
| if (!frame.method_->IsRuntimeMethod()) { |
| CHECK_EQ(m->GetNonObsoleteMethod(), frame.method_->GetNonObsoleteMethod()) |
| << "Expected " << ArtMethod::PrettyMethod(m) |
| << ", Found " << ArtMethod::PrettyMethod(frame.method_); |
| } |
| return_pc = frame.return_pc_; |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Ignoring already instrumented " << frame.Dump(); |
| } |
| } else { |
| // If it is a JITed frame then just set the deopt bit if required |
| // otherwise continue |
| const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); |
| if (method_header != nullptr && method_header->HasShouldDeoptimizeFlag()) { |
| if (deopt_all_frames_) { |
| SetShouldDeoptimizeFlag(DeoptimizeFlagValue::kDebug); |
| } |
| return true; |
| } |
| CHECK_NE(return_pc, 0U); |
| if (UNLIKELY(reached_existing_instrumentation_frames_ && !m->IsRuntimeMethod())) { |
| // We already saw an existing instrumentation frame so this should be a runtime-method |
| // inserted by the interpreter or runtime. |
| std::string thread_name; |
| GetThread()->GetThreadName(thread_name); |
| LOG(FATAL) << "While walking " << thread_name << " found unexpected non-runtime method" |
| << " without instrumentation exit return or interpreter frame." |
| << " method is " << GetMethod()->PrettyMethod() |
| << " return_pc is " << std::hex << return_pc; |
| UNREACHABLE(); |
| } |
| if (m->IsRuntimeMethod()) { |
| size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes(); |
| ArtMethod** caller_frame = reinterpret_cast<ArtMethod**>( |
| reinterpret_cast<uint8_t*>(GetCurrentQuickFrame()) + frame_size); |
| if (*caller_frame != nullptr && (*caller_frame)->IsNative()) { |
| // Do not install instrumentation exit on return to JNI stubs. |
| return true; |
| } |
| } |
| InstrumentationStackFrame instrumentation_frame( |
| m->IsRuntimeMethod() ? nullptr : GetThisObject().Ptr(), |
| m, |
| return_pc, |
| false, |
| force_deopt_id_); |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Pushing frame " << instrumentation_frame.Dump(); |
| } |
| |
| if (!m->IsRuntimeMethod()) { |
| // Runtime methods don't need to run method entry callbacks. |
| stack_methods_.push_back(m); |
| } |
| instrumentation_stack_->insert({GetReturnPcAddr(), instrumentation_frame}); |
| SetReturnPc(instrumentation_exit_pc_); |
| } |
| return true; // Continue. |
| } |
| std::map<uintptr_t, InstrumentationStackFrame>* const instrumentation_stack_; |
| std::vector<ArtMethod*> stack_methods_; |
| const uintptr_t instrumentation_exit_pc_; |
| bool reached_existing_instrumentation_frames_; |
| uint64_t force_deopt_id_; |
| bool deopt_all_frames_; |
| }; |
| if (kVerboseInstrumentation) { |
| std::string thread_name; |
| thread->GetThreadName(thread_name); |
| LOG(INFO) << "Installing exit stubs in " << thread_name; |
| } |
| |
| Instrumentation* instrumentation = reinterpret_cast<Instrumentation*>(arg); |
| std::unique_ptr<Context> context(Context::Create()); |
| uintptr_t instrumentation_exit_pc = reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()); |
| InstallStackVisitor visitor(thread, |
| context.get(), |
| instrumentation_exit_pc, |
| instrumentation->current_force_deopt_id_, |
| deopt_all_frames); |
| visitor.WalkStack(true); |
| |
| if (instrumentation->ShouldNotifyMethodEnterExitEvents()) { |
| // Create method enter events for all methods currently on the thread's stack. We only do this |
| // if we haven't already processed the method enter events. |
| for (auto smi = visitor.stack_methods_.rbegin(); smi != visitor.stack_methods_.rend(); smi++) { |
| instrumentation->MethodEnterEvent(thread, *smi); |
| } |
| } |
| thread->VerifyStack(); |
| } |
| |
| void Instrumentation::InstrumentThreadStack(Thread* thread, bool force_deopt) { |
| instrumentation_stubs_installed_ = true; |
| InstrumentationInstallStack(thread, this, force_deopt); |
| } |
| |
| // Removes the instrumentation exit pc as the return PC for every quick frame. |
| static void InstrumentationRestoreStack(Thread* thread, void* arg) |
| REQUIRES(Locks::mutator_lock_) { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| |
| struct RestoreStackVisitor final : public StackVisitor { |
| RestoreStackVisitor(Thread* thread_in, uintptr_t instrumentation_exit_pc, |
| Instrumentation* instrumentation) |
| : StackVisitor(thread_in, nullptr, kInstrumentationStackWalk), |
| thread_(thread_in), |
| instrumentation_exit_pc_(instrumentation_exit_pc), |
| instrumentation_(instrumentation), |
| instrumentation_stack_(thread_in->GetInstrumentationStack()), |
| frames_removed_(0) {} |
| |
| bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (instrumentation_stack_->size() == 0) { |
| return false; // Stop. |
| } |
| ArtMethod* m = GetMethod(); |
| if (GetCurrentQuickFrame() == nullptr) { |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << " Ignoring a shadow frame. Frame " << GetFrameId() |
| << " Method=" << ArtMethod::PrettyMethod(m); |
| } |
| return true; // Ignore shadow frames. |
| } |
| if (m == nullptr) { |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << " Skipping upcall. Frame " << GetFrameId(); |
| } |
| return true; // Ignore upcalls. |
| } |
| auto it = instrumentation_stack_->find(GetReturnPcAddr()); |
| if (it != instrumentation_stack_->end()) { |
| const InstrumentationStackFrame& instrumentation_frame = it->second; |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << " Removing exit stub in " << DescribeLocation(); |
| } |
| if (instrumentation_frame.interpreter_entry_) { |
| CHECK(m == Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs)); |
| } else { |
| CHECK_EQ(m->GetNonObsoleteMethod(), |
| instrumentation_frame.method_->GetNonObsoleteMethod()) |
| << ArtMethod::PrettyMethod(m) |
| << " and " << instrumentation_frame.method_->GetNonObsoleteMethod()->PrettyMethod(); |
| } |
| SetReturnPc(instrumentation_frame.return_pc_); |
| if (instrumentation_->ShouldNotifyMethodEnterExitEvents() && |
| !m->IsRuntimeMethod()) { |
| // Create the method exit events. As the methods didn't really exit the result is 0. |
| // We only do this if no debugger is attached to prevent from posting events twice. |
| JValue val; |
| instrumentation_->MethodExitEvent(thread_, m, OptionalFrame{}, val); |
| } |
| frames_removed_++; |
| } else { |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << " No exit stub in " << DescribeLocation(); |
| } |
| } |
| return true; // Continue. |
| } |
| Thread* const thread_; |
| const uintptr_t instrumentation_exit_pc_; |
| Instrumentation* const instrumentation_; |
| std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* const instrumentation_stack_; |
| size_t frames_removed_; |
| }; |
| if (kVerboseInstrumentation) { |
| std::string thread_name; |
| thread->GetThreadName(thread_name); |
| LOG(INFO) << "Removing exit stubs in " << thread_name; |
| } |
| std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* stack = |
| thread->GetInstrumentationStack(); |
| if (stack->size() > 0) { |
| Instrumentation* instrumentation = reinterpret_cast<Instrumentation*>(arg); |
| uintptr_t instrumentation_exit_pc = |
| reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()); |
| RestoreStackVisitor visitor(thread, instrumentation_exit_pc, instrumentation); |
| visitor.WalkStack(true); |
| CHECK_EQ(visitor.frames_removed_, stack->size()); |
| stack->clear(); |
| } |
| } |
| |
| void Instrumentation::DeoptimizeAllThreadFrames() { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| ThreadList* tl = Runtime::Current()->GetThreadList(); |
| tl->ForEach([&](Thread* t) { |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| InstrumentThreadStack(t, /* deopt_all_frames= */ true); |
| }); |
| current_force_deopt_id_++; |
| } |
| |
| static bool HasEvent(Instrumentation::InstrumentationEvent expected, uint32_t events) { |
| return (events & expected) != 0; |
| } |
| |
| static void PotentiallyAddListenerTo(Instrumentation::InstrumentationEvent event, |
| uint32_t events, |
| std::list<InstrumentationListener*>& list, |
| InstrumentationListener* listener, |
| bool* has_listener) |
| REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| if (!HasEvent(event, events)) { |
| return; |
| } |
| // If there is a free slot in the list, we insert the listener in that slot. |
| // Otherwise we add it to the end of the list. |
| auto it = std::find(list.begin(), list.end(), nullptr); |
| if (it != list.end()) { |
| *it = listener; |
| } else { |
| list.push_back(listener); |
| } |
| *has_listener = true; |
| } |
| |
| void Instrumentation::AddListener(InstrumentationListener* listener, uint32_t events) { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| PotentiallyAddListenerTo(kMethodEntered, |
| events, |
| method_entry_listeners_, |
| listener, |
| &have_method_entry_listeners_); |
| PotentiallyAddListenerTo(kMethodExited, |
| events, |
| method_exit_listeners_, |
| listener, |
| &have_method_exit_listeners_); |
| PotentiallyAddListenerTo(kMethodUnwind, |
| events, |
| method_unwind_listeners_, |
| listener, |
| &have_method_unwind_listeners_); |
| PotentiallyAddListenerTo(kBranch, |
| events, |
| branch_listeners_, |
| listener, |
| &have_branch_listeners_); |
| PotentiallyAddListenerTo(kDexPcMoved, |
| events, |
| dex_pc_listeners_, |
| listener, |
| &have_dex_pc_listeners_); |
| PotentiallyAddListenerTo(kFieldRead, |
| events, |
| field_read_listeners_, |
| listener, |
| &have_field_read_listeners_); |
| PotentiallyAddListenerTo(kFieldWritten, |
| events, |
| field_write_listeners_, |
| listener, |
| &have_field_write_listeners_); |
| PotentiallyAddListenerTo(kExceptionThrown, |
| events, |
| exception_thrown_listeners_, |
| listener, |
| &have_exception_thrown_listeners_); |
| PotentiallyAddListenerTo(kWatchedFramePop, |
| events, |
| watched_frame_pop_listeners_, |
| listener, |
| &have_watched_frame_pop_listeners_); |
| PotentiallyAddListenerTo(kExceptionHandled, |
| events, |
| exception_handled_listeners_, |
| listener, |
| &have_exception_handled_listeners_); |
| } |
| |
| static void PotentiallyRemoveListenerFrom(Instrumentation::InstrumentationEvent event, |
| uint32_t events, |
| std::list<InstrumentationListener*>& list, |
| InstrumentationListener* listener, |
| bool* has_listener) |
| REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| if (!HasEvent(event, events)) { |
| return; |
| } |
| auto it = std::find(list.begin(), list.end(), listener); |
| if (it != list.end()) { |
| // Just update the entry, do not remove from the list. Removing entries in the list |
| // is unsafe when mutators are iterating over it. |
| *it = nullptr; |
| } |
| |
| // Check if the list contains any non-null listener, and update 'has_listener'. |
| for (InstrumentationListener* l : list) { |
| if (l != nullptr) { |
| *has_listener = true; |
| return; |
| } |
| } |
| *has_listener = false; |
| } |
| |
| void Instrumentation::RemoveListener(InstrumentationListener* listener, uint32_t events) { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| PotentiallyRemoveListenerFrom(kMethodEntered, |
| events, |
| method_entry_listeners_, |
| listener, |
| &have_method_entry_listeners_); |
| PotentiallyRemoveListenerFrom(kMethodExited, |
| events, |
| method_exit_listeners_, |
| listener, |
| &have_method_exit_listeners_); |
| PotentiallyRemoveListenerFrom(kMethodUnwind, |
| events, |
| method_unwind_listeners_, |
| listener, |
| &have_method_unwind_listeners_); |
| PotentiallyRemoveListenerFrom(kBranch, |
| events, |
| branch_listeners_, |
| listener, |
| &have_branch_listeners_); |
| PotentiallyRemoveListenerFrom(kDexPcMoved, |
| events, |
| dex_pc_listeners_, |
| listener, |
| &have_dex_pc_listeners_); |
| PotentiallyRemoveListenerFrom(kFieldRead, |
| events, |
| field_read_listeners_, |
| listener, |
| &have_field_read_listeners_); |
| PotentiallyRemoveListenerFrom(kFieldWritten, |
| events, |
| field_write_listeners_, |
| listener, |
| &have_field_write_listeners_); |
| PotentiallyRemoveListenerFrom(kExceptionThrown, |
| events, |
| exception_thrown_listeners_, |
| listener, |
| &have_exception_thrown_listeners_); |
| PotentiallyRemoveListenerFrom(kWatchedFramePop, |
| events, |
| watched_frame_pop_listeners_, |
| listener, |
| &have_watched_frame_pop_listeners_); |
| PotentiallyRemoveListenerFrom(kExceptionHandled, |
| events, |
| exception_handled_listeners_, |
| listener, |
| &have_exception_handled_listeners_); |
| } |
| |
| Instrumentation::InstrumentationLevel Instrumentation::GetCurrentInstrumentationLevel() const { |
| return instrumentation_level_; |
| } |
| |
| bool Instrumentation::RequiresInstrumentationInstallation(InstrumentationLevel new_level) const { |
| // We need to reinstall instrumentation if we go to a different level. |
| return GetCurrentInstrumentationLevel() != new_level; |
| } |
| |
| void Instrumentation::ConfigureStubs(const char* key, InstrumentationLevel desired_level) { |
| // Store the instrumentation level for this key or remove it. |
| if (desired_level == InstrumentationLevel::kInstrumentNothing) { |
| // The client no longer needs instrumentation. |
| requested_instrumentation_levels_.erase(key); |
| } else { |
| // The client needs instrumentation. |
| requested_instrumentation_levels_.Overwrite(key, desired_level); |
| } |
| |
| UpdateStubs(); |
| } |
| |
| void Instrumentation::UpdateInstrumentationLevel(InstrumentationLevel requested_level) { |
| instrumentation_level_ = requested_level; |
| } |
| |
| void Instrumentation::MaybeRestoreInstrumentationStack() { |
| // Restore stack only if there is no method currently deoptimized. |
| if (!IsDeoptimizedMethodsEmpty()) { |
| return; |
| } |
| |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| bool no_remaining_deopts = true; |
| // Check that there are no other forced deoptimizations. Do it here so we only need to lock |
| // thread_list_lock once. |
| // The compiler gets confused on the thread annotations, so use |
| // NO_THREAD_SAFETY_ANALYSIS. Note that we hold the mutator lock |
| // exclusively at this point. |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| Runtime::Current()->GetThreadList()->ForEach([&](Thread* t) NO_THREAD_SAFETY_ANALYSIS { |
| no_remaining_deopts = |
| no_remaining_deopts && |
| !t->IsForceInterpreter() && |
| !t->HasDebuggerShadowFrames() && |
| std::all_of(t->GetInstrumentationStack()->cbegin(), |
| t->GetInstrumentationStack()->cend(), |
| [&](const auto& frame) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return frame.second.force_deopt_id_ == current_force_deopt_id_; |
| }); |
| }); |
| if (no_remaining_deopts) { |
| Runtime::Current()->GetThreadList()->ForEach(InstrumentationRestoreStack, this); |
| // Only do this after restoring, as walking the stack when restoring will see |
| // the instrumentation exit pc. |
| instrumentation_stubs_installed_ = false; |
| } |
| } |
| |
| void Instrumentation::UpdateStubs() { |
| // Look for the highest required instrumentation level. |
| InstrumentationLevel requested_level = InstrumentationLevel::kInstrumentNothing; |
| for (const auto& v : requested_instrumentation_levels_) { |
| requested_level = std::max(requested_level, v.second); |
| } |
| |
| if (!RequiresInstrumentationInstallation(requested_level)) { |
| // We're already set. |
| return; |
| } |
| Thread* const self = Thread::Current(); |
| Runtime* runtime = Runtime::Current(); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| Locks::thread_list_lock_->AssertNotHeld(self); |
| UpdateInstrumentationLevel(requested_level); |
| if (requested_level > InstrumentationLevel::kInstrumentNothing) { |
| InstallStubsClassVisitor visitor(this); |
| runtime->GetClassLinker()->VisitClasses(&visitor); |
| instrumentation_stubs_installed_ = true; |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { |
| InstrumentThreadStack(thread, /* deopt_all_frames= */ false); |
| } |
| } else { |
| InstallStubsClassVisitor visitor(this); |
| runtime->GetClassLinker()->VisitClasses(&visitor); |
| MaybeRestoreInstrumentationStack(); |
| } |
| } |
| |
| static void ResetQuickAllocEntryPointsForThread(Thread* thread, void* arg ATTRIBUTE_UNUSED) { |
| thread->ResetQuickAllocEntryPointsForThread(); |
| } |
| |
| void Instrumentation::SetEntrypointsInstrumented(bool instrumented) { |
| Thread* self = Thread::Current(); |
| Runtime* runtime = Runtime::Current(); |
| Locks::mutator_lock_->AssertNotHeld(self); |
| Locks::instrument_entrypoints_lock_->AssertHeld(self); |
| if (runtime->IsStarted()) { |
| ScopedSuspendAll ssa(__FUNCTION__); |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| SetQuickAllocEntryPointsInstrumented(instrumented); |
| ResetQuickAllocEntryPoints(); |
| alloc_entrypoints_instrumented_ = instrumented; |
| } else { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| SetQuickAllocEntryPointsInstrumented(instrumented); |
| |
| // Note: ResetQuickAllocEntryPoints only works when the runtime is started. Manually run the |
| // update for just this thread. |
| // Note: self may be null. One of those paths is setting instrumentation in the Heap |
| // constructor for gcstress mode. |
| if (self != nullptr) { |
| ResetQuickAllocEntryPointsForThread(self, nullptr); |
| } |
| |
| alloc_entrypoints_instrumented_ = instrumented; |
| } |
| } |
| |
| void Instrumentation::InstrumentQuickAllocEntryPoints() { |
| MutexLock mu(Thread::Current(), *Locks::instrument_entrypoints_lock_); |
| InstrumentQuickAllocEntryPointsLocked(); |
| } |
| |
| void Instrumentation::UninstrumentQuickAllocEntryPoints() { |
| MutexLock mu(Thread::Current(), *Locks::instrument_entrypoints_lock_); |
| UninstrumentQuickAllocEntryPointsLocked(); |
| } |
| |
| void Instrumentation::InstrumentQuickAllocEntryPointsLocked() { |
| Locks::instrument_entrypoints_lock_->AssertHeld(Thread::Current()); |
| if (quick_alloc_entry_points_instrumentation_counter_ == 0) { |
| SetEntrypointsInstrumented(true); |
| } |
| ++quick_alloc_entry_points_instrumentation_counter_; |
| } |
| |
| void Instrumentation::UninstrumentQuickAllocEntryPointsLocked() { |
| Locks::instrument_entrypoints_lock_->AssertHeld(Thread::Current()); |
| CHECK_GT(quick_alloc_entry_points_instrumentation_counter_, 0U); |
| --quick_alloc_entry_points_instrumentation_counter_; |
| if (quick_alloc_entry_points_instrumentation_counter_ == 0) { |
| SetEntrypointsInstrumented(false); |
| } |
| } |
| |
| void Instrumentation::ResetQuickAllocEntryPoints() { |
| Runtime* runtime = Runtime::Current(); |
| if (runtime->IsStarted()) { |
| MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); |
| runtime->GetThreadList()->ForEach(ResetQuickAllocEntryPointsForThread, nullptr); |
| } |
| } |
| |
| std::string Instrumentation::EntryPointString(const void* code) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| if (class_linker->IsQuickToInterpreterBridge(code)) { |
| return "interpreter"; |
| } else if (class_linker->IsQuickResolutionStub(code)) { |
| return "resolution"; |
| } else if (code == GetQuickInstrumentationEntryPoint()) { |
| return "instrumentation"; |
| } else if (jit != nullptr && jit->GetCodeCache()->ContainsPc(code)) { |
| return "jit"; |
| } else if (code == GetInvokeObsoleteMethodStub()) { |
| return "obsolete"; |
| } else if (code == interpreter::GetNterpEntryPoint()) { |
| return "nterp"; |
| } else if (class_linker->IsQuickGenericJniStub(code)) { |
| return "generic jni"; |
| } else if (Runtime::Current()->GetOatFileManager().ContainsPc(code)) { |
| return "oat"; |
| } |
| return "unknown"; |
| } |
| |
| void Instrumentation::UpdateMethodsCodeImpl(ArtMethod* method, const void* new_code) { |
| if (!AreExitStubsInstalled()) { |
| // Fast path: no instrumentation. |
| DCHECK(!IsDeoptimized(method)); |
| UpdateEntryPoints(method, new_code); |
| return; |
| } |
| |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| if (class_linker->IsQuickToInterpreterBridge(new_code)) { |
| // It's always OK to update to the interpreter. |
| UpdateEntryPoints(method, new_code); |
| return; |
| } |
| |
| if (IsDeoptimized(method)) { |
| DCHECK(class_linker->IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode())) |
| << EntryPointString(method->GetEntryPointFromQuickCompiledCode()); |
| // Don't update, stay deoptimized. |
| return; |
| } |
| |
| if (EntryExitStubsInstalled() && CodeNeedsEntryExitStub(new_code, method)) { |
| DCHECK(method->GetEntryPointFromQuickCompiledCode() == GetQuickInstrumentationEntryPoint() || |
| class_linker->IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode())) |
| << EntryPointString(method->GetEntryPointFromQuickCompiledCode()) |
| << " " << method->PrettyMethod(); |
| // If the code we want to update the method with still needs entry/exit stub, just skip. |
| return; |
| } |
| |
| // At this point, we can update as asked. |
| UpdateEntryPoints(method, new_code); |
| } |
| |
| void Instrumentation::UpdateNativeMethodsCodeToJitCode(ArtMethod* method, const void* new_code) { |
| // We don't do any read barrier on `method`'s declaring class in this code, as the JIT might |
| // enter here on a soon-to-be deleted ArtMethod. Updating the entrypoint is OK though, as |
| // the ArtMethod is still in memory. |
| if (EntryExitStubsInstalled()) { |
| // If stubs are installed don't update. |
| return; |
| } |
| UpdateEntryPoints(method, new_code); |
| } |
| |
| void Instrumentation::UpdateMethodsCode(ArtMethod* method, const void* new_code) { |
| DCHECK(method->GetDeclaringClass()->IsResolved()); |
| UpdateMethodsCodeImpl(method, new_code); |
| } |
| |
| bool Instrumentation::AddDeoptimizedMethod(ArtMethod* method) { |
| if (IsDeoptimizedMethod(method)) { |
| // Already in the map. Return. |
| return false; |
| } |
| // Not found. Add it. |
| deoptimized_methods_.insert(method); |
| return true; |
| } |
| |
| bool Instrumentation::IsDeoptimizedMethod(ArtMethod* method) { |
| return deoptimized_methods_.find(method) != deoptimized_methods_.end(); |
| } |
| |
| ArtMethod* Instrumentation::BeginDeoptimizedMethod() { |
| if (deoptimized_methods_.empty()) { |
| // Empty. |
| return nullptr; |
| } |
| return *deoptimized_methods_.begin(); |
| } |
| |
| bool Instrumentation::RemoveDeoptimizedMethod(ArtMethod* method) { |
| auto it = deoptimized_methods_.find(method); |
| if (it == deoptimized_methods_.end()) { |
| return false; |
| } |
| deoptimized_methods_.erase(it); |
| return true; |
| } |
| |
| bool Instrumentation::IsDeoptimizedMethodsEmptyLocked() const { |
| return deoptimized_methods_.empty(); |
| } |
| |
| void Instrumentation::Deoptimize(ArtMethod* method) { |
| CHECK(!method->IsNative()); |
| CHECK(!method->IsProxyMethod()); |
| CHECK(method->IsInvokable()); |
| |
| Thread* self = Thread::Current(); |
| { |
| WriterMutexLock mu(self, *GetDeoptimizedMethodsLock()); |
| bool has_not_been_deoptimized = AddDeoptimizedMethod(method); |
| CHECK(has_not_been_deoptimized) << "Method " << ArtMethod::PrettyMethod(method) |
| << " is already deoptimized"; |
| } |
| if (!InterpreterStubsInstalled()) { |
| UpdateEntryPoints(method, GetQuickToInterpreterBridge()); |
| |
| // Install instrumentation exit stub and instrumentation frames. We may already have installed |
| // these previously so it will only cover the newly created frames. |
| instrumentation_stubs_installed_ = true; |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { |
| // This isn't a strong deopt. We deopt this method if it is still in the |
| // deopt methods list. If by the time we hit this frame we no longer need |
| // a deopt it is safe to continue. So we don't mark the frame. |
| InstrumentThreadStack(thread, /* deopt_all_frames= */ false); |
| } |
| } |
| } |
| |
| void Instrumentation::Undeoptimize(ArtMethod* method) { |
| CHECK(!method->IsNative()); |
| CHECK(!method->IsProxyMethod()); |
| CHECK(method->IsInvokable()); |
| |
| Thread* self = Thread::Current(); |
| { |
| WriterMutexLock mu(self, *GetDeoptimizedMethodsLock()); |
| bool found_and_erased = RemoveDeoptimizedMethod(method); |
| CHECK(found_and_erased) << "Method " << ArtMethod::PrettyMethod(method) |
| << " is not deoptimized"; |
| } |
| |
| // If interpreter stubs are still needed nothing to do. |
| if (InterpreterStubsInstalled()) { |
| return; |
| } |
| |
| // We are not using interpreter stubs for deoptimization. Restore the code of the method. |
| // We still retain interpreter bridge if we need it for other reasons. |
| if (InterpretOnly(method)) { |
| UpdateEntryPoints(method, GetQuickToInterpreterBridge()); |
| } else if (NeedsClinitCheckBeforeCall(method) && |
| !method->GetDeclaringClass()->IsVisiblyInitialized()) { |
| UpdateEntryPoints(method, GetQuickResolutionStub()); |
| } else { |
| UpdateEntryPoints(method, GetMaybeInstrumentedCodeForInvoke(method)); |
| } |
| |
| // If there is no deoptimized method left, we can restore the stack of each thread. |
| if (!EntryExitStubsInstalled()) { |
| MaybeRestoreInstrumentationStack(); |
| } |
| } |
| |
| bool Instrumentation::IsDeoptimizedMethodsEmpty() const { |
| ReaderMutexLock mu(Thread::Current(), *GetDeoptimizedMethodsLock()); |
| return deoptimized_methods_.empty(); |
| } |
| |
| bool Instrumentation::IsDeoptimized(ArtMethod* method) { |
| DCHECK(method != nullptr); |
| ReaderMutexLock mu(Thread::Current(), *GetDeoptimizedMethodsLock()); |
| return IsDeoptimizedMethod(method); |
| } |
| |
| |
| void Instrumentation::DisableDeoptimization(const char* key) { |
| // Remove any instrumentation support added for deoptimization. |
| ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing); |
| // Undeoptimized selected methods. |
| while (true) { |
| ArtMethod* method; |
| { |
| ReaderMutexLock mu(Thread::Current(), *GetDeoptimizedMethodsLock()); |
| if (IsDeoptimizedMethodsEmptyLocked()) { |
| break; |
| } |
| method = BeginDeoptimizedMethod(); |
| CHECK(method != nullptr); |
| } |
| Undeoptimize(method); |
| } |
| } |
| |
| // Indicates if instrumentation should notify method enter/exit events to the listeners. |
| bool Instrumentation::ShouldNotifyMethodEnterExitEvents() const { |
| if (!HasMethodEntryListeners() && !HasMethodExitListeners()) { |
| return false; |
| } |
| return !InterpreterStubsInstalled(); |
| } |
| |
| void Instrumentation::DeoptimizeEverything(const char* key) { |
| ConfigureStubs(key, InstrumentationLevel::kInstrumentWithInterpreter); |
| } |
| |
| void Instrumentation::UndeoptimizeEverything(const char* key) { |
| CHECK(InterpreterStubsInstalled()); |
| ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing); |
| } |
| |
| void Instrumentation::EnableMethodTracing(const char* key, bool needs_interpreter) { |
| InstrumentationLevel level; |
| if (needs_interpreter) { |
| level = InstrumentationLevel::kInstrumentWithInterpreter; |
| } else { |
| level = InstrumentationLevel::kInstrumentWithInstrumentationStubs; |
| } |
| ConfigureStubs(key, level); |
| } |
| |
| void Instrumentation::DisableMethodTracing(const char* key) { |
| ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing); |
| } |
| |
| const void* Instrumentation::GetCodeForInvoke(ArtMethod* method) { |
| // This is called by instrumentation and resolution trampolines |
| // and that should never be getting proxy methods. |
| DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const void* code = method->GetEntryPointFromQuickCompiledCodePtrSize(kRuntimePointerSize); |
| // If we don't have the instrumentation, the resolution stub, or the |
| // interpreter as entrypoint, just return the current entrypoint, assuming |
| // it's the most optimized. |
| if (code != GetQuickInstrumentationEntryPoint() && |
| !class_linker->IsQuickResolutionStub(code) && |
| !class_linker->IsQuickToInterpreterBridge(code)) { |
| return code; |
| } |
| |
| if (InterpretOnly(method)) { |
| // If we're forced into interpreter just use it. |
| return GetQuickToInterpreterBridge(); |
| } |
| |
| return GetOptimizedCodeFor(method); |
| } |
| |
| const void* Instrumentation::GetMaybeInstrumentedCodeForInvoke(ArtMethod* method) { |
| // This is called by resolution trampolines and that should never be getting proxy methods. |
| DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); |
| const void* code = GetCodeForInvoke(method); |
| if (EntryExitStubsInstalled() && CodeNeedsEntryExitStub(code, method)) { |
| return GetQuickInstrumentationEntryPoint(); |
| } |
| return code; |
| } |
| |
| void Instrumentation::MethodEnterEventImpl(Thread* thread, ArtMethod* method) const { |
| DCHECK(!method->IsRuntimeMethod()); |
| if (HasMethodEntryListeners()) { |
| for (InstrumentationListener* listener : method_entry_listeners_) { |
| if (listener != nullptr) { |
| listener->MethodEntered(thread, method); |
| } |
| } |
| } |
| } |
| |
| template <> |
| void Instrumentation::MethodExitEventImpl(Thread* thread, |
| ArtMethod* method, |
| OptionalFrame frame, |
| MutableHandle<mirror::Object>& return_value) const { |
| if (HasMethodExitListeners()) { |
| for (InstrumentationListener* listener : method_exit_listeners_) { |
| if (listener != nullptr) { |
| listener->MethodExited(thread, method, frame, return_value); |
| } |
| } |
| } |
| } |
| |
| template<> void Instrumentation::MethodExitEventImpl(Thread* thread, |
| ArtMethod* method, |
| OptionalFrame frame, |
| JValue& return_value) const { |
| if (HasMethodExitListeners()) { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| if (method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetReturnTypePrimitive() != |
| Primitive::kPrimNot) { |
| for (InstrumentationListener* listener : method_exit_listeners_) { |
| if (listener != nullptr) { |
| listener->MethodExited(thread, method, frame, return_value); |
| } |
| } |
| } else { |
| MutableHandle<mirror::Object> ret(hs.NewHandle(return_value.GetL())); |
| MethodExitEventImpl(thread, method, frame, ret); |
| return_value.SetL(ret.Get()); |
| } |
| } |
| } |
| |
| void Instrumentation::MethodUnwindEvent(Thread* thread, |
| ObjPtr<mirror::Object> this_object, |
| ArtMethod* method, |
| uint32_t dex_pc) const { |
| if (HasMethodUnwindListeners()) { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> thiz(hs.NewHandle(this_object)); |
| for (InstrumentationListener* listener : method_unwind_listeners_) { |
| if (listener != nullptr) { |
| listener->MethodUnwind(thread, thiz, method, dex_pc); |
| } |
| } |
| } |
| } |
| |
| void Instrumentation::DexPcMovedEventImpl(Thread* thread, |
| ObjPtr<mirror::Object> this_object, |
| ArtMethod* method, |
| uint32_t dex_pc) const { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> thiz(hs.NewHandle(this_object)); |
| for (InstrumentationListener* listener : dex_pc_listeners_) { |
| if (listener != nullptr) { |
| listener->DexPcMoved(thread, thiz, method, dex_pc); |
| } |
| } |
| } |
| |
| void Instrumentation::BranchImpl(Thread* thread, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| int32_t offset) const { |
| for (InstrumentationListener* listener : branch_listeners_) { |
| if (listener != nullptr) { |
| listener->Branch(thread, method, dex_pc, offset); |
| } |
| } |
| } |
| |
| void Instrumentation::WatchedFramePopImpl(Thread* thread, const ShadowFrame& frame) const { |
| for (InstrumentationListener* listener : watched_frame_pop_listeners_) { |
| if (listener != nullptr) { |
| listener->WatchedFramePop(thread, frame); |
| } |
| } |
| } |
| |
| void Instrumentation::FieldReadEventImpl(Thread* thread, |
| ObjPtr<mirror::Object> this_object, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| ArtField* field) const { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> thiz(hs.NewHandle(this_object)); |
| for (InstrumentationListener* listener : field_read_listeners_) { |
| if (listener != nullptr) { |
| listener->FieldRead(thread, thiz, method, dex_pc, field); |
| } |
| } |
| } |
| |
| void Instrumentation::FieldWriteEventImpl(Thread* thread, |
| ObjPtr<mirror::Object> this_object, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| ArtField* field, |
| const JValue& field_value) const { |
| Thread* self = Thread::Current(); |
| StackHandleScope<2> hs(self); |
| Handle<mirror::Object> thiz(hs.NewHandle(this_object)); |
| if (field->IsPrimitiveType()) { |
| for (InstrumentationListener* listener : field_write_listeners_) { |
| if (listener != nullptr) { |
| listener->FieldWritten(thread, thiz, method, dex_pc, field, field_value); |
| } |
| } |
| } else { |
| Handle<mirror::Object> val(hs.NewHandle(field_value.GetL())); |
| for (InstrumentationListener* listener : field_write_listeners_) { |
| if (listener != nullptr) { |
| listener->FieldWritten(thread, thiz, method, dex_pc, field, val); |
| } |
| } |
| } |
| } |
| |
| void Instrumentation::ExceptionThrownEvent(Thread* thread, |
| ObjPtr<mirror::Throwable> exception_object) const { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Throwable> h_exception(hs.NewHandle(exception_object)); |
| if (HasExceptionThrownListeners()) { |
| DCHECK_EQ(thread->GetException(), h_exception.Get()); |
| thread->ClearException(); |
| for (InstrumentationListener* listener : exception_thrown_listeners_) { |
| if (listener != nullptr) { |
| listener->ExceptionThrown(thread, h_exception); |
| } |
| } |
| // See b/65049545 for discussion about this behavior. |
| thread->AssertNoPendingException(); |
| thread->SetException(h_exception.Get()); |
| } |
| } |
| |
| void Instrumentation::ExceptionHandledEvent(Thread* thread, |
| ObjPtr<mirror::Throwable> exception_object) const { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Throwable> h_exception(hs.NewHandle(exception_object)); |
| if (HasExceptionHandledListeners()) { |
| // We should have cleared the exception so that callers can detect a new one. |
| DCHECK(thread->GetException() == nullptr); |
| for (InstrumentationListener* listener : exception_handled_listeners_) { |
| if (listener != nullptr) { |
| listener->ExceptionHandled(thread, h_exception); |
| } |
| } |
| } |
| } |
| |
| void Instrumentation::PushInstrumentationStackFrame(Thread* self, |
| ObjPtr<mirror::Object> this_object, |
| ArtMethod* method, |
| uintptr_t stack_ptr, |
| uintptr_t lr, |
| bool interpreter_entry) { |
| DCHECK(!self->IsExceptionPending()); |
| std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* stack = |
| self->GetInstrumentationStack(); |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Entering " << ArtMethod::PrettyMethod(method) << " from PC " |
| << reinterpret_cast<void*>(lr); |
| } |
| |
| // We send the enter event before pushing the instrumentation frame to make cleanup easier. If the |
| // event causes an exception we can simply send the unwind event and return. |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> h_this(hs.NewHandle(this_object)); |
| if (!interpreter_entry) { |
| MethodEnterEvent(self, method); |
| if (self->IsExceptionPending()) { |
| MethodUnwindEvent(self, h_this.Get(), method, 0); |
| return; |
| } |
| } |
| |
| // We have a callee-save frame meaning this value is guaranteed to never be 0. |
| DCHECK(!self->IsExceptionPending()); |
| |
| instrumentation::InstrumentationStackFrame instrumentation_frame( |
| h_this.Get(), method, lr, interpreter_entry, current_force_deopt_id_); |
| stack->insert({stack_ptr, instrumentation_frame}); |
| } |
| |
| DeoptimizationMethodType Instrumentation::GetDeoptimizationMethodType(ArtMethod* method) { |
| if (method->IsRuntimeMethod()) { |
| // Certain methods have strict requirement on whether the dex instruction |
| // should be re-executed upon deoptimization. |
| if (method == Runtime::Current()->GetCalleeSaveMethod( |
| CalleeSaveType::kSaveEverythingForClinit)) { |
| return DeoptimizationMethodType::kKeepDexPc; |
| } |
| if (method == Runtime::Current()->GetCalleeSaveMethod( |
| CalleeSaveType::kSaveEverythingForSuspendCheck)) { |
| return DeoptimizationMethodType::kKeepDexPc; |
| } |
| } |
| return DeoptimizationMethodType::kDefault; |
| } |
| |
| // Try to get the shorty of a runtime method if it's an invocation stub. |
| static char GetRuntimeMethodShorty(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) { |
| char shorty = 'V'; |
| StackVisitor::WalkStack( |
| [&shorty](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* m = stack_visitor->GetMethod(); |
| if (m == nullptr || m->IsRuntimeMethod()) { |
| return true; |
| } |
| // The first Java method. |
| if (m->IsNative()) { |
| // Use JNI method's shorty for the jni stub. |
| shorty = m->GetShorty()[0]; |
| } else if (m->IsProxyMethod()) { |
| // Proxy method just invokes its proxied method via |
| // art_quick_proxy_invoke_handler. |
| shorty = m->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty()[0]; |
| } else { |
| const Instruction& instr = m->DexInstructions().InstructionAt(stack_visitor->GetDexPc()); |
| if (instr.IsInvoke()) { |
| uint16_t method_index = static_cast<uint16_t>(instr.VRegB()); |
| const DexFile* dex_file = m->GetDexFile(); |
| if (interpreter::IsStringInit(dex_file, method_index)) { |
| // Invoking string init constructor is turned into invoking |
| // StringFactory.newStringFromChars() which returns a string. |
| shorty = 'L'; |
| } else { |
| shorty = dex_file->GetMethodShorty(method_index)[0]; |
| } |
| |
| } else { |
| // It could be that a non-invoke opcode invokes a stub, which in turn |
| // invokes Java code. In such cases, we should never expect a return |
| // value from the stub. |
| } |
| } |
| // Stop stack walking since we've seen a Java frame. |
| return false; |
| }, |
| thread, |
| /* context= */ nullptr, |
| art::StackVisitor::StackWalkKind::kIncludeInlinedFrames); |
| return shorty; |
| } |
| |
| JValue Instrumentation::GetReturnValue( |
| Thread* self, ArtMethod* method, bool* is_ref, uint64_t* gpr_result, uint64_t* fpr_result) { |
| uint32_t length; |
| const PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); |
| char return_shorty; |
| |
| // Runtime method does not call into MethodExitEvent() so there should not be |
| // suspension point below. |
| ScopedAssertNoThreadSuspension ants(__FUNCTION__, method->IsRuntimeMethod()); |
| if (method->IsRuntimeMethod()) { |
| Runtime* runtime = Runtime::Current(); |
| if (method != runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit) && |
| method != runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck)) { |
| // If the caller is at an invocation point and the runtime method is not |
| // for clinit, we need to pass return results to the caller. |
| // We need the correct shorty to decide whether we need to pass the return |
| // result for deoptimization below. |
| return_shorty = GetRuntimeMethodShorty(self); |
| } else { |
| // Some runtime methods such as allocations, unresolved field getters, etc. |
| // have return value. We don't need to set return_value since MethodExitEvent() |
| // below isn't called for runtime methods. Deoptimization doesn't need the |
| // value either since the dex instruction will be re-executed by the |
| // interpreter, except these two cases: |
| // (1) For an invoke, which is handled above to get the correct shorty. |
| // (2) For MONITOR_ENTER/EXIT, which cannot be re-executed since it's not |
| // idempotent. However there is no return value for it anyway. |
| return_shorty = 'V'; |
| } |
| } else { |
| return_shorty = method->GetInterfaceMethodIfProxy(pointer_size)->GetShorty(&length)[0]; |
| } |
| |
| *is_ref = return_shorty == '[' || return_shorty == 'L'; |
| JValue return_value; |
| if (return_shorty == 'V') { |
| return_value.SetJ(0); |
| } else if (return_shorty == 'F' || return_shorty == 'D') { |
| return_value.SetJ(*fpr_result); |
| } else { |
| return_value.SetJ(*gpr_result); |
| } |
| return return_value; |
| } |
| |
| bool Instrumentation::ShouldDeoptimizeMethod(Thread* self, const NthCallerVisitor& visitor) { |
| bool should_deoptimize_frame = false; |
| const OatQuickMethodHeader* header = visitor.GetCurrentOatQuickMethodHeader(); |
| if (header != nullptr && header->HasShouldDeoptimizeFlag()) { |
| uint8_t should_deopt_flag = visitor.GetShouldDeoptimizeFlag(); |
| // DeoptimizeFlag could be set for debugging or for CHA invalidations. |
| // Deoptimize here only if it was requested for debugging. CHA |
| // invalidations are handled in the JITed code. |
| if ((should_deopt_flag & static_cast<uint8_t>(DeoptimizeFlagValue::kDebug)) != 0) { |
| should_deoptimize_frame = true; |
| } |
| } |
| return (visitor.caller != nullptr) && |
| (InterpreterStubsInstalled() || IsDeoptimized(visitor.caller) || |
| self->IsForceInterpreter() || |
| // NB Since structurally obsolete compiled methods might have the offsets of |
| // methods/fields compiled in we need to go back to interpreter whenever we hit |
| // them. |
| visitor.caller->GetDeclaringClass()->IsObsoleteObject() || |
| Dbg::IsForcedInterpreterNeededForUpcall(self, visitor.caller) || |
| should_deoptimize_frame); |
| } |
| |
| TwoWordReturn Instrumentation::PopInstrumentationStackFrame(Thread* self, |
| uintptr_t* return_pc_addr, |
| uint64_t* gpr_result, |
| uint64_t* fpr_result) { |
| DCHECK(gpr_result != nullptr); |
| DCHECK(fpr_result != nullptr); |
| // Do the pop. |
| std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* stack = |
| self->GetInstrumentationStack(); |
| CHECK_GT(stack->size(), 0U); |
| auto it = stack->find(reinterpret_cast<uintptr_t>(return_pc_addr)); |
| CHECK(it != stack->end()); |
| InstrumentationStackFrame instrumentation_frame = it->second; |
| stack->erase(it); |
| |
| // Set return PC and check the consistency of the stack. |
| // We don't cache the return pc value in a local as it may change after |
| // sending a method exit event. |
| *return_pc_addr = instrumentation_frame.return_pc_; |
| self->VerifyStack(); |
| |
| ArtMethod* method = instrumentation_frame.method_; |
| |
| bool is_ref; |
| JValue return_value = GetReturnValue(self, method, &is_ref, gpr_result, fpr_result); |
| StackHandleScope<1> hs(self); |
| MutableHandle<mirror::Object> res(hs.NewHandle<mirror::Object>(nullptr)); |
| if (is_ref) { |
| // Take a handle to the return value so we won't lose it if we suspend. |
| // FIXME: The `is_ref` is often guessed wrong, so even object aligment |
| // assertion would fail for some tests. See b/204766614 . |
| // DCHECK_ALIGNED(return_value.GetL(), kObjectAlignment); |
| res.Assign(return_value.GetL()); |
| } |
| if (!method->IsRuntimeMethod() && !instrumentation_frame.interpreter_entry_) { |
| // Note that sending the event may change the contents of *return_pc_addr. |
| MethodExitEvent(self, instrumentation_frame.method_, OptionalFrame{}, return_value); |
| } |
| |
| // Deoptimize if the caller needs to continue execution in the interpreter. Do nothing if we get |
| // back to an upcall. |
| NthCallerVisitor visitor(self, 1, true); |
| visitor.WalkStack(true); |
| // Check if we forced all threads to deoptimize in the time between this frame being created and |
| // now. |
| bool should_deoptimize_frame = instrumentation_frame.force_deopt_id_ != current_force_deopt_id_; |
| bool deoptimize = ShouldDeoptimizeMethod(self, visitor) || should_deoptimize_frame; |
| |
| if (is_ref) { |
| // Restore the return value if it's a reference since it might have moved. |
| *reinterpret_cast<mirror::Object**>(gpr_result) = res.Get(); |
| } |
| if (deoptimize && Runtime::Current()->IsAsyncDeoptimizeable(*return_pc_addr)) { |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Deoptimizing " |
| << visitor.caller->PrettyMethod() |
| << " by returning from " |
| << method->PrettyMethod() |
| << " with result " |
| << std::hex << return_value.GetJ() << std::dec |
| << " in " |
| << *self; |
| } |
| DeoptimizationMethodType deopt_method_type = GetDeoptimizationMethodType(method); |
| self->PushDeoptimizationContext(return_value, |
| is_ref, |
| /* exception= */ nullptr, |
| /* from_code= */ false, |
| deopt_method_type); |
| return GetTwoWordSuccessValue(*return_pc_addr, |
| reinterpret_cast<uintptr_t>(GetQuickDeoptimizationEntryPoint())); |
| } else { |
| if (deoptimize && !Runtime::Current()->IsAsyncDeoptimizeable(*return_pc_addr)) { |
| VLOG(deopt) << "Got a deoptimization request on un-deoptimizable " << method->PrettyMethod() |
| << " at PC " << reinterpret_cast<void*>(*return_pc_addr); |
| } |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Returning from " << method->PrettyMethod() |
| << " to PC " << reinterpret_cast<void*>(*return_pc_addr); |
| } |
| return GetTwoWordSuccessValue(0, *return_pc_addr); |
| } |
| } |
| |
| uintptr_t Instrumentation::PopFramesForDeoptimization(Thread* self, uintptr_t pop_until) const { |
| std::map<uintptr_t, instrumentation::InstrumentationStackFrame>* stack = |
| self->GetInstrumentationStack(); |
| // Pop all instrumentation frames below `pop_until`. |
| uintptr_t return_pc = 0u; |
| for (auto i = stack->begin(); i != stack->end() && i->first <= pop_until;) { |
| auto e = i; |
| ++i; |
| if (kVerboseInstrumentation) { |
| LOG(INFO) << "Popping for deoptimization " << e->second.method_->PrettyMethod(); |
| } |
| return_pc = e->second.return_pc_; |
| stack->erase(e); |
| } |
| return return_pc; |
| } |
| |
| std::string InstrumentationStackFrame::Dump() const { |
| std::ostringstream os; |
| os << ArtMethod::PrettyMethod(method_) << ":" |
| << reinterpret_cast<void*>(return_pc_) << " this=" << reinterpret_cast<void*>(this_object_) |
| << " force_deopt_id=" << force_deopt_id_; |
| return os.str(); |
| } |
| |
| } // namespace instrumentation |
| } // namespace art |