blob: 58b0d077864196d3fc4e2c07b000401f5e6da9ca [file] [log] [blame] [edit]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "leb128.h"
#include "gtest/gtest.h"
#include "histogram-inl.h"
#include "time_utils.h"
namespace art {
struct DecodeUnsignedLeb128TestCase {
uint32_t decoded;
uint8_t leb128_data[5];
};
static DecodeUnsignedLeb128TestCase uleb128_tests[] = {
{0, {0, 0, 0, 0, 0}},
{1, {1, 0, 0, 0, 0}},
{0x7F, {0x7F, 0, 0, 0, 0}},
{0x80, {0x80, 1, 0, 0, 0}},
{0x81, {0x81, 1, 0, 0, 0}},
{0xFF, {0xFF, 1, 0, 0, 0}},
{0x4000, {0x80, 0x80, 1, 0, 0}},
{0x4001, {0x81, 0x80, 1, 0, 0}},
{0x4081, {0x81, 0x81, 1, 0, 0}},
{0x0FFFFFFF, {0xFF, 0xFF, 0xFF, 0x7F, 0}},
{0xFFFFFFFF, {0xFF, 0xFF, 0xFF, 0xFF, 0xF}},
};
struct DecodeSignedLeb128TestCase {
int32_t decoded;
uint8_t leb128_data[5];
};
static DecodeSignedLeb128TestCase sleb128_tests[] = {
{0, {0, 0, 0, 0, 0}},
{1, {1, 0, 0, 0, 0}},
{0x3F, {0x3F, 0, 0, 0, 0}},
{0x40, {0xC0, 0 /* sign bit */, 0, 0, 0}},
{0x41, {0xC1, 0 /* sign bit */, 0, 0, 0}},
{0x80, {0x80, 1, 0, 0, 0}},
{0xFF, {0xFF, 1, 0, 0, 0}},
{0x1FFF, {0xFF, 0x3F, 0, 0, 0}},
{0x2000, {0x80, 0xC0, 0 /* sign bit */, 0, 0}},
{0x2001, {0x81, 0xC0, 0 /* sign bit */, 0, 0}},
{0x2081, {0x81, 0xC1, 0 /* sign bit */, 0, 0}},
{0x4000, {0x80, 0x80, 1, 0, 0}},
{0x0FFFFF, {0xFF, 0xFF, 0x3F, 0, 0}},
{0x100000, {0x80, 0x80, 0xC0, 0 /* sign bit */, 0}},
{0x100001, {0x81, 0x80, 0xC0, 0 /* sign bit */, 0}},
{0x100081, {0x81, 0x81, 0xC0, 0 /* sign bit */, 0}},
{0x104081, {0x81, 0x81, 0xC1, 0 /* sign bit */, 0}},
{0x200000, {0x80, 0x80, 0x80, 1, 0}},
{0x7FFFFFF, {0xFF, 0xFF, 0xFF, 0x3F, 0}},
{0x8000000, {0x80, 0x80, 0x80, 0xC0, 0 /* sign bit */}},
{0x8000001, {0x81, 0x80, 0x80, 0xC0, 0 /* sign bit */}},
{0x8000081, {0x81, 0x81, 0x80, 0xC0, 0 /* sign bit */}},
{0x8004081, {0x81, 0x81, 0x81, 0xC0, 0 /* sign bit */}},
{0x8204081, {0x81, 0x81, 0x81, 0xC1, 0 /* sign bit */}},
{0x0FFFFFFF, {0xFF, 0xFF, 0xFF, 0xFF, 0 /* sign bit */}},
{0x10000000, {0x80, 0x80, 0x80, 0x80, 1}},
{0x7FFFFFFF, {0xFF, 0xFF, 0xFF, 0xFF, 0x7}},
{-1, {0x7F, 0, 0, 0, 0}},
{-2, {0x7E, 0, 0, 0, 0}},
{-0x3F, {0x41, 0, 0, 0, 0}},
{-0x40, {0x40, 0, 0, 0, 0}},
{-0x41, {0xBF, 0x7F, 0, 0, 0}},
{-0x80, {0x80, 0x7F, 0, 0, 0}},
{-0x81, {0xFF, 0x7E, 0, 0, 0}},
{-0x00002000, {0x80, 0x40, 0, 0, 0}},
{-0x00002001, {0xFF, 0xBF, 0x7F, 0, 0}},
{-0x00100000, {0x80, 0x80, 0x40, 0, 0}},
{-0x00100001, {0xFF, 0xFF, 0xBF, 0x7F, 0}},
{-0x08000000, {0x80, 0x80, 0x80, 0x40, 0}},
{-0x08000001, {0xFF, 0xFF, 0xFF, 0xBF, 0x7F}},
{-0x20000000, {0x80, 0x80, 0x80, 0x80, 0x7E}},
{static_cast<int32_t>(0x80000000), {0x80, 0x80, 0x80, 0x80, 0x78}},
};
TEST(Leb128Test, UnsignedSinglesVector) {
// Test individual encodings.
for (size_t i = 0; i < arraysize(uleb128_tests); ++i) {
Leb128EncodingVector<> builder;
builder.PushBackUnsigned(uleb128_tests[i].decoded);
EXPECT_EQ(UnsignedLeb128Size(uleb128_tests[i].decoded), builder.GetData().size());
const uint8_t* data_ptr = &uleb128_tests[i].leb128_data[0];
const uint8_t* encoded_data_ptr = &builder.GetData()[0];
for (size_t j = 0; j < 5; ++j) {
if (j < builder.GetData().size()) {
EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j;
} else {
EXPECT_EQ(data_ptr[j], 0U) << " i = " << i << " j = " << j;
}
}
EXPECT_EQ(DecodeUnsignedLeb128(&data_ptr), uleb128_tests[i].decoded) << " i = " << i;
}
}
TEST(Leb128Test, UnsignedSingles) {
// Test individual encodings.
for (size_t i = 0; i < arraysize(uleb128_tests); ++i) {
uint8_t encoded_data[5];
uint8_t* end = EncodeUnsignedLeb128(encoded_data, uleb128_tests[i].decoded);
size_t data_size = static_cast<size_t>(end - encoded_data);
EXPECT_EQ(UnsignedLeb128Size(uleb128_tests[i].decoded), data_size);
const uint8_t* data_ptr = &uleb128_tests[i].leb128_data[0];
for (size_t j = 0; j < 5; ++j) {
if (j < data_size) {
EXPECT_EQ(data_ptr[j], encoded_data[j]) << " i = " << i << " j = " << j;
} else {
EXPECT_EQ(data_ptr[j], 0U) << " i = " << i << " j = " << j;
}
}
EXPECT_EQ(DecodeUnsignedLeb128(&data_ptr), uleb128_tests[i].decoded) << " i = " << i;
}
}
TEST(Leb128Test, UnsignedStreamVector) {
// Encode a number of entries.
Leb128EncodingVector<> builder;
for (size_t i = 0; i < arraysize(uleb128_tests); ++i) {
builder.PushBackUnsigned(uleb128_tests[i].decoded);
}
const uint8_t* encoded_data_ptr = &builder.GetData()[0];
for (size_t i = 0; i < arraysize(uleb128_tests); ++i) {
const uint8_t* data_ptr = &uleb128_tests[i].leb128_data[0];
for (size_t j = 0; j < UnsignedLeb128Size(uleb128_tests[i].decoded); ++j) {
EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j;
}
for (size_t j = UnsignedLeb128Size(uleb128_tests[i].decoded); j < 5; ++j) {
EXPECT_EQ(data_ptr[j], 0) << " i = " << i << " j = " << j;
}
EXPECT_EQ(DecodeUnsignedLeb128(&encoded_data_ptr), uleb128_tests[i].decoded) << " i = " << i;
}
EXPECT_EQ(builder.GetData().size(),
static_cast<size_t>(encoded_data_ptr - &builder.GetData()[0]));
}
TEST(Leb128Test, UnsignedStream) {
// Encode a number of entries.
uint8_t encoded_data[5 * arraysize(uleb128_tests)];
uint8_t* end = encoded_data;
for (size_t i = 0; i < arraysize(uleb128_tests); ++i) {
end = EncodeUnsignedLeb128(end, uleb128_tests[i].decoded);
}
size_t data_size = static_cast<size_t>(end - encoded_data);
const uint8_t* encoded_data_ptr = encoded_data;
for (size_t i = 0; i < arraysize(uleb128_tests); ++i) {
const uint8_t* data_ptr = &uleb128_tests[i].leb128_data[0];
for (size_t j = 0; j < UnsignedLeb128Size(uleb128_tests[i].decoded); ++j) {
EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j;
}
for (size_t j = UnsignedLeb128Size(uleb128_tests[i].decoded); j < 5; ++j) {
EXPECT_EQ(data_ptr[j], 0) << " i = " << i << " j = " << j;
}
EXPECT_EQ(DecodeUnsignedLeb128(&encoded_data_ptr), uleb128_tests[i].decoded) << " i = " << i;
}
EXPECT_EQ(data_size, static_cast<size_t>(encoded_data_ptr - encoded_data));
}
TEST(Leb128Test, SignedSinglesVector) {
// Test individual encodings.
for (size_t i = 0; i < arraysize(sleb128_tests); ++i) {
Leb128EncodingVector<> builder;
builder.PushBackSigned(sleb128_tests[i].decoded);
EXPECT_EQ(SignedLeb128Size(sleb128_tests[i].decoded), builder.GetData().size());
const uint8_t* data_ptr = &sleb128_tests[i].leb128_data[0];
const uint8_t* encoded_data_ptr = &builder.GetData()[0];
for (size_t j = 0; j < 5; ++j) {
if (j < builder.GetData().size()) {
EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j;
} else {
EXPECT_EQ(data_ptr[j], 0U) << " i = " << i << " j = " << j;
}
}
EXPECT_EQ(DecodeSignedLeb128(&data_ptr), sleb128_tests[i].decoded) << " i = " << i;
}
}
TEST(Leb128Test, SignedSingles) {
// Test individual encodings.
for (size_t i = 0; i < arraysize(sleb128_tests); ++i) {
uint8_t encoded_data[5];
uint8_t* end = EncodeSignedLeb128(encoded_data, sleb128_tests[i].decoded);
size_t data_size = static_cast<size_t>(end - encoded_data);
EXPECT_EQ(SignedLeb128Size(sleb128_tests[i].decoded), data_size);
const uint8_t* data_ptr = &sleb128_tests[i].leb128_data[0];
for (size_t j = 0; j < 5; ++j) {
if (j < data_size) {
EXPECT_EQ(data_ptr[j], encoded_data[j]) << " i = " << i << " j = " << j;
} else {
EXPECT_EQ(data_ptr[j], 0U) << " i = " << i << " j = " << j;
}
}
EXPECT_EQ(DecodeSignedLeb128(&data_ptr), sleb128_tests[i].decoded) << " i = " << i;
}
}
TEST(Leb128Test, SignedStreamVector) {
// Encode a number of entries.
Leb128EncodingVector<> builder;
for (size_t i = 0; i < arraysize(sleb128_tests); ++i) {
builder.PushBackSigned(sleb128_tests[i].decoded);
}
const uint8_t* encoded_data_ptr = &builder.GetData()[0];
for (size_t i = 0; i < arraysize(sleb128_tests); ++i) {
const uint8_t* data_ptr = &sleb128_tests[i].leb128_data[0];
for (size_t j = 0; j < SignedLeb128Size(sleb128_tests[i].decoded); ++j) {
EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j;
}
for (size_t j = SignedLeb128Size(sleb128_tests[i].decoded); j < 5; ++j) {
EXPECT_EQ(data_ptr[j], 0) << " i = " << i << " j = " << j;
}
EXPECT_EQ(DecodeSignedLeb128(&encoded_data_ptr), sleb128_tests[i].decoded) << " i = " << i;
}
EXPECT_EQ(builder.GetData().size(),
static_cast<size_t>(encoded_data_ptr - &builder.GetData()[0]));
}
TEST(Leb128Test, SignedStream) {
// Encode a number of entries.
uint8_t encoded_data[5 * arraysize(sleb128_tests)];
uint8_t* end = encoded_data;
for (size_t i = 0; i < arraysize(sleb128_tests); ++i) {
end = EncodeSignedLeb128(end, sleb128_tests[i].decoded);
}
size_t data_size = static_cast<size_t>(end - encoded_data);
const uint8_t* encoded_data_ptr = encoded_data;
for (size_t i = 0; i < arraysize(sleb128_tests); ++i) {
const uint8_t* data_ptr = &sleb128_tests[i].leb128_data[0];
for (size_t j = 0; j < SignedLeb128Size(sleb128_tests[i].decoded); ++j) {
EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j;
}
for (size_t j = SignedLeb128Size(sleb128_tests[i].decoded); j < 5; ++j) {
EXPECT_EQ(data_ptr[j], 0) << " i = " << i << " j = " << j;
}
EXPECT_EQ(DecodeSignedLeb128(&encoded_data_ptr), sleb128_tests[i].decoded) << " i = " << i;
}
EXPECT_EQ(data_size, static_cast<size_t>(encoded_data_ptr - encoded_data));
}
TEST(Leb128Test, UnsignedUpdate) {
for (size_t i = 0; i < arraysize(uleb128_tests); ++i) {
for (size_t j = 0; j < arraysize(uleb128_tests); ++j) {
uint32_t old_value = uleb128_tests[i].decoded;
uint32_t new_value = uleb128_tests[j].decoded;
// We can only make the encoded value smaller.
if (new_value <= old_value) {
uint8_t encoded_data[5];
uint8_t* old_end = EncodeUnsignedLeb128(encoded_data, old_value);
UpdateUnsignedLeb128(encoded_data, new_value);
const uint8_t* new_end = encoded_data;
EXPECT_EQ(DecodeUnsignedLeb128(&new_end), new_value);
// Even if the new value needs fewer bytes, we should fill the space.
EXPECT_EQ(new_end, old_end);
}
}
}
}
TEST(Leb128Test, Speed) {
std::unique_ptr<Histogram<uint64_t>> enc_hist(new Histogram<uint64_t>("Leb128EncodeSpeedTest", 5));
std::unique_ptr<Histogram<uint64_t>> dec_hist(new Histogram<uint64_t>("Leb128DecodeSpeedTest", 5));
Leb128EncodingVector<> builder;
// Push back 1024 chunks of 1024 values measuring encoding speed.
uint64_t last_time = NanoTime();
for (size_t i = 0; i < 1024; i++) {
for (size_t j = 0; j < 1024; j++) {
builder.PushBackUnsigned((i * 1024) + j);
}
uint64_t cur_time = NanoTime();
enc_hist->AddValue(cur_time - last_time);
last_time = cur_time;
}
// Verify encoding and measure decode speed.
const uint8_t* encoded_data_ptr = &builder.GetData()[0];
last_time = NanoTime();
for (size_t i = 0; i < 1024; i++) {
for (size_t j = 0; j < 1024; j++) {
EXPECT_EQ(DecodeUnsignedLeb128(&encoded_data_ptr), (i * 1024) + j);
}
uint64_t cur_time = NanoTime();
dec_hist->AddValue(cur_time - last_time);
last_time = cur_time;
}
Histogram<uint64_t>::CumulativeData enc_data;
enc_hist->CreateHistogram(&enc_data);
enc_hist->PrintConfidenceIntervals(std::cout, 0.99, enc_data);
Histogram<uint64_t>::CumulativeData dec_data;
dec_hist->CreateHistogram(&dec_data);
dec_hist->PrintConfidenceIntervals(std::cout, 0.99, dec_data);
}
} // namespace art