blob: c88f5896244a18c66478225d428ec3dd5bb36b5a [file] [log] [blame] [edit]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_CASTS_H_
#define ART_LIBARTBASE_BASE_CASTS_H_
#include <stdint.h>
#include <string.h>
#include <limits>
#include <type_traits>
#include <android-base/logging.h>
#include "stl_util_identity.h"
namespace art {
// Use implicit_cast as a safe version of static_cast or const_cast
// for upcasting in the type hierarchy (i.e. casting a pointer to Foo
// to a pointer to SuperclassOfFoo or casting a pointer to Foo to
// a const pointer to Foo).
// When you use implicit_cast, the compiler checks that the cast is safe.
// Such explicit implicit_casts are necessary in surprisingly many
// situations where C++ demands an exact type match instead of an
// argument type convertible to a target type.
//
// The From type can be inferred, so the preferred syntax for using
// implicit_cast is the same as for static_cast etc.:
//
// implicit_cast<ToType>(expr)
//
// implicit_cast would have been part of the C++ standard library,
// but the proposal was submitted too late. It will probably make
// its way into the language in the future.
template<typename To, typename From>
inline To implicit_cast(From const &f) {
return f;
}
// When you upcast (that is, cast a pointer from type Foo to type
// SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts
// always succeed. When you downcast (that is, cast a pointer from
// type Foo to type SubclassOfFoo), static_cast<> isn't safe, because
// how do you know the pointer is really of type SubclassOfFoo? It
// could be a bare Foo, or of type DifferentSubclassOfFoo. Thus,
// when you downcast, you should use this macro. In debug mode, we
// use dynamic_cast<> to double-check the downcast is legal (we die
// if it's not). In normal mode, we do the efficient static_cast<>
// instead. Thus, it's important to test in debug mode to make sure
// the cast is legal!
// This is the only place in the code we should use dynamic_cast<>.
// In particular, you SHOULDN'T be using dynamic_cast<> in order to
// do RTTI (eg code like this:
// if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo);
// if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo);
// You should design the code some other way not to need this.
template<typename To, typename From> // use like this: down_cast<T*>(foo);
inline To down_cast(From* f) { // so we only accept pointers
static_assert(std::is_base_of_v<From, std::remove_pointer_t<To>>,
"down_cast unsafe as To is not a subtype of From");
return static_cast<To>(f);
}
template<typename To, typename From> // use like this: down_cast<T&>(foo);
inline To down_cast(From& f) { // so we only accept references
static_assert(std::is_base_of_v<From, std::remove_reference_t<To>>,
"down_cast unsafe as To is not a subtype of From");
return static_cast<To>(f);
}
template <class Dest, class Source>
inline Dest bit_cast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
static_assert(sizeof(Dest) == sizeof(Source), "sizes should be equal");
Dest dest;
memcpy(&dest, &source, sizeof(dest));
return dest;
}
// A version of static_cast that DCHECKs that the value can be precisely represented
// when converting to Dest.
template <typename Dest, typename Source>
constexpr Dest dchecked_integral_cast(Source source) {
DCHECK(
// Check that the value is within the lower limit of Dest.
(static_cast<intmax_t>(std::numeric_limits<Dest>::min()) <=
static_cast<intmax_t>(std::numeric_limits<Source>::min()) ||
source >= static_cast<Source>(std::numeric_limits<Dest>::min())) &&
// Check that the value is within the upper limit of Dest.
(static_cast<uintmax_t>(std::numeric_limits<Dest>::max()) >=
static_cast<uintmax_t>(std::numeric_limits<Source>::max()) ||
source <= static_cast<Source>(std::numeric_limits<Dest>::max())))
<< "dchecked_integral_cast failed for " << source
<< " (would be " << static_cast<Dest>(source) << ")";
return static_cast<Dest>(source);
}
// A version of dchecked_integral_cast casting between an integral type and an enum type.
// When casting to an enum type, the cast does not check if the value corresponds to an enumerator.
// When casting from an enum type, the target type can be omitted and the enum's underlying type
// shall be used.
template <typename Dest, typename Source>
constexpr
std::enable_if_t<!std::is_enum_v<Source>, Dest> enum_cast(Source value) {
return static_cast<Dest>(dchecked_integral_cast<std::underlying_type_t<Dest>>(value));
}
template <typename Dest = void, typename Source>
constexpr
typename std::enable_if_t<std::is_enum_v<Source>,
std::conditional_t<std::is_same_v<Dest, void>,
std::underlying_type<Source>,
Identity<Dest>>>::type
enum_cast(Source value) {
using return_type = typename std::conditional_t<std::is_same_v<Dest, void>,
std::underlying_type<Source>,
Identity<Dest>>::type;
return dchecked_integral_cast<return_type>(
static_cast<std::underlying_type_t<Source>>(value));
}
// A version of reinterpret_cast<>() between pointers and int64_t/uint64_t
// that goes through uintptr_t to avoid treating the pointer as "signed."
template <typename Dest, typename Source>
inline Dest reinterpret_cast64(Source source) {
// This is the overload for casting from int64_t/uint64_t to a pointer.
static_assert(std::is_same_v<Source, int64_t> || std::is_same_v<Source, uint64_t>,
"Source must be int64_t or uint64_t.");
static_assert(std::is_pointer_v<Dest>, "Dest must be a pointer.");
// Check that we don't lose any non-0 bits here.
DCHECK_EQ(static_cast<Source>(static_cast<uintptr_t>(source)), source);
return reinterpret_cast<Dest>(static_cast<uintptr_t>(source));
}
template <typename Dest, typename Source>
inline Dest reinterpret_cast64(Source* ptr) {
// This is the overload for casting from a pointer to int64_t/uint64_t.
static_assert(std::is_same_v<Dest, int64_t> || std::is_same_v<Dest, uint64_t>,
"Dest must be int64_t or uint64_t.");
static_assert(sizeof(uintptr_t) <= sizeof(Dest), "Expecting at most 64-bit pointers.");
return static_cast<Dest>(reinterpret_cast<uintptr_t>(ptr));
}
// A version of reinterpret_cast<>() between pointers and int32_t/uint32_t that enforces
// zero-extension and checks that the values are converted without loss of precision.
template <typename Dest, typename Source>
inline Dest reinterpret_cast32(Source source) {
// This is the overload for casting from int32_t/uint32_t to a pointer.
static_assert(std::is_same_v<Source, int32_t> || std::is_same_v<Source, uint32_t>,
"Source must be int32_t or uint32_t.");
static_assert(std::is_pointer_v<Dest>, "Dest must be a pointer.");
// Check that we don't lose any non-0 bits here.
static_assert(sizeof(uintptr_t) >= sizeof(Source), "Expecting at least 32-bit pointers.");
return reinterpret_cast<Dest>(static_cast<uintptr_t>(static_cast<uint32_t>(source)));
}
template <typename Dest, typename Source>
inline Dest reinterpret_cast32(Source* ptr) {
// This is the overload for casting from a pointer to int32_t/uint32_t.
static_assert(std::is_same_v<Dest, int32_t> || std::is_same_v<Dest, uint32_t>,
"Dest must be int32_t or uint32_t.");
static_assert(sizeof(uintptr_t) >= sizeof(Dest), "Expecting at least 32-bit pointers.");
return static_cast<Dest>(dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(ptr)));
}
} // namespace art
#endif // ART_LIBARTBASE_BASE_CASTS_H_