blob: 9aa0353345d783b697e8d1207a9568e8b007f88a [file] [log] [blame] [edit]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <memory>
#include <string>
#include <string_view>
#include <vector>
#include "android-base/stringprintf.h"
#include "base/logging.h" // For InitLogging.
#include "base/string_view_cpp20.h"
#include "dexlayout.h"
#include "dex/dex_file.h"
#include "dex_ir.h"
#include "dex_ir_builder.h"
#ifdef ART_TARGET_ANDROID
#include <meminfo/pageacct.h>
#include <meminfo/procmeminfo.h>
#endif
#include "vdex_file.h"
namespace art {
using android::base::StringPrintf;
#ifdef ART_TARGET_ANDROID
using android::meminfo::ProcMemInfo;
using android::meminfo::Vma;
#endif
static bool g_verbose = false;
// The width needed to print a file page offset (32-bit).
static constexpr int kPageCountWidth =
static_cast<int>(std::numeric_limits<uint32_t>::digits10);
// Display the sections.
static constexpr char kSectionHeader[] = "Section name";
struct DexSectionInfo {
public:
std::string name;
char letter;
};
static const std::map<uint16_t, DexSectionInfo> kDexSectionInfoMap = {
{ DexFile::kDexTypeHeaderItem, { "Header", 'H' } },
{ DexFile::kDexTypeStringIdItem, { "StringId", 'S' } },
{ DexFile::kDexTypeTypeIdItem, { "TypeId", 'T' } },
{ DexFile::kDexTypeProtoIdItem, { "ProtoId", 'P' } },
{ DexFile::kDexTypeFieldIdItem, { "FieldId", 'F' } },
{ DexFile::kDexTypeMethodIdItem, { "MethodId", 'M' } },
{ DexFile::kDexTypeClassDefItem, { "ClassDef", 'C' } },
{ DexFile::kDexTypeCallSiteIdItem, { "CallSiteId", 'z' } },
{ DexFile::kDexTypeMethodHandleItem, { "MethodHandle", 'Z' } },
{ DexFile::kDexTypeMapList, { "TypeMap", 'L' } },
{ DexFile::kDexTypeTypeList, { "TypeList", 't' } },
{ DexFile::kDexTypeAnnotationSetRefList, { "AnnotationSetReferenceItem", '1' } },
{ DexFile::kDexTypeAnnotationSetItem, { "AnnotationSetItem", '2' } },
{ DexFile::kDexTypeClassDataItem, { "ClassData", 'c' } },
{ DexFile::kDexTypeCodeItem, { "CodeItem", 'X' } },
{ DexFile::kDexTypeStringDataItem, { "StringData", 's' } },
{ DexFile::kDexTypeDebugInfoItem, { "DebugInfo", 'D' } },
{ DexFile::kDexTypeAnnotationItem, { "AnnotationItem", '3' } },
{ DexFile::kDexTypeEncodedArrayItem, { "EncodedArrayItem", 'E' } },
{ DexFile::kDexTypeAnnotationsDirectoryItem, { "AnnotationsDirectoryItem", '4' } }
};
class PageCount {
public:
PageCount() {
for (auto it = kDexSectionInfoMap.begin(); it != kDexSectionInfoMap.end(); ++it) {
map_[it->first] = 0;
}
}
void Increment(uint16_t type) {
map_[type]++;
}
size_t Get(uint16_t type) const {
auto it = map_.find(type);
DCHECK(it != map_.end());
return it->second;
}
private:
std::map<uint16_t, size_t> map_;
DISALLOW_COPY_AND_ASSIGN(PageCount);
};
class Printer {
public:
Printer() : section_header_width_(ComputeHeaderWidth()) {
}
void PrintHeader() const {
std::cout << StringPrintf("%-*s %*s %*s %% of %% of",
section_header_width_,
kSectionHeader,
kPageCountWidth,
"resident",
kPageCountWidth,
"total"
)
<< std::endl;
std::cout << StringPrintf("%-*s %*s %*s sect. total",
section_header_width_,
"",
kPageCountWidth,
"pages",
kPageCountWidth,
"pages")
<< std::endl;
}
void PrintOne(const char* name,
size_t resident,
size_t mapped,
double percent_of_section,
double percent_of_total) const {
// 6.2 is sufficient to print 0-100% with two decimal places of accuracy.
std::cout << StringPrintf("%-*s %*zd %*zd %6.2f %6.2f",
section_header_width_,
name,
kPageCountWidth,
resident,
kPageCountWidth,
mapped,
percent_of_section,
percent_of_total)
<< std::endl;
}
void PrintSkipLine() const { std::cout << std::endl; }
// Computes the width of the section header column in the table (for fixed formatting).
static int ComputeHeaderWidth() {
int header_width = 0;
for (const auto& pair : kDexSectionInfoMap) {
const DexSectionInfo& section_info = pair.second;
header_width = std::max(header_width, static_cast<int>(section_info.name.length()));
}
return header_width;
}
private:
const int section_header_width_;
};
static void PrintLetterKey() {
std::cout << "L pagetype" << std::endl;
for (const auto& pair : kDexSectionInfoMap) {
const DexSectionInfo& section_info = pair.second;
std::cout << section_info.letter << " " << section_info.name.c_str() << std::endl;
}
std::cout << "* (Executable page resident)" << std::endl;
std::cout << ". (Mapped page not resident)" << std::endl;
}
#ifdef ART_TARGET_ANDROID
static char PageTypeChar(uint16_t type) {
if (kDexSectionInfoMap.find(type) == kDexSectionInfoMap.end()) {
return '-';
}
return kDexSectionInfoMap.find(type)->second.letter;
}
static uint16_t FindSectionTypeForPage(size_t page,
const std::vector<dex_ir::DexFileSection>& sections) {
for (const auto& section : sections) {
size_t first_page_of_section = section.offset / kPageSize;
// Only consider non-empty sections.
if (section.size == 0) {
continue;
}
// Attribute the page to the highest-offset section that starts before the page.
if (first_page_of_section <= page) {
return section.type;
}
}
// If there's no non-zero sized section with an offset below offset we're looking for, it
// must be the header.
return DexFile::kDexTypeHeaderItem;
}
static void ProcessPageMap(const std::vector<uint64_t>& pagemap,
size_t start,
size_t end,
const std::vector<dex_ir::DexFileSection>& sections,
PageCount* page_counts) {
static constexpr size_t kLineLength = 32;
for (size_t page = start; page < end; ++page) {
char type_char = '.';
if (::android::meminfo::page_present(pagemap[page])) {
const size_t dex_page_offset = page - start;
uint16_t type = FindSectionTypeForPage(dex_page_offset, sections);
page_counts->Increment(type);
type_char = PageTypeChar(type);
}
if (g_verbose) {
std::cout << type_char;
if ((page - start) % kLineLength == kLineLength - 1) {
std::cout << std::endl;
}
}
}
if (g_verbose) {
if ((end - start) % kLineLength != 0) {
std::cout << std::endl;
}
}
}
static void DisplayDexStatistics(size_t start,
size_t end,
const PageCount& resident_pages,
const std::vector<dex_ir::DexFileSection>& sections,
Printer* printer) {
// Compute the total possible sizes for sections.
PageCount mapped_pages;
DCHECK_GE(end, start);
size_t total_mapped_pages = end - start;
if (total_mapped_pages == 0) {
return;
}
for (size_t page = start; page < end; ++page) {
const size_t dex_page_offset = page - start;
mapped_pages.Increment(FindSectionTypeForPage(dex_page_offset, sections));
}
size_t total_resident_pages = 0;
printer->PrintHeader();
for (size_t i = sections.size(); i > 0; --i) {
const dex_ir::DexFileSection& section = sections[i - 1];
const uint16_t type = section.type;
const DexSectionInfo& section_info = kDexSectionInfoMap.find(type)->second;
size_t pages_resident = resident_pages.Get(type);
double percent_resident = 0;
if (mapped_pages.Get(type) > 0) {
percent_resident = 100.0 * pages_resident / mapped_pages.Get(type);
}
printer->PrintOne(section_info.name.c_str(),
pages_resident,
mapped_pages.Get(type),
percent_resident,
100.0 * pages_resident / total_mapped_pages);
total_resident_pages += pages_resident;
}
double percent_of_total = 100.0 * total_resident_pages / total_mapped_pages;
printer->PrintOne("GRAND TOTAL",
total_resident_pages,
total_mapped_pages,
percent_of_total,
percent_of_total);
printer->PrintSkipLine();
}
static void ProcessOneDexMapping(const std::vector<uint64_t>& pagemap,
uint64_t map_start,
const DexFile* dex_file,
uint64_t vdex_start,
Printer* printer) {
uint64_t dex_file_start = reinterpret_cast<uint64_t>(dex_file->Begin());
size_t dex_file_size = dex_file->Size();
if (dex_file_start < vdex_start) {
std::cerr << "Dex file start offset for "
<< dex_file->GetLocation().c_str()
<< " is incorrect: map start "
<< StringPrintf("%" PRIx64 " > dex start %" PRIx64 "\n", map_start, dex_file_start)
<< std::endl;
return;
}
uint64_t start_page = (dex_file_start - vdex_start) / kPageSize;
uint64_t start_address = start_page * kPageSize;
uint64_t end_page = RoundUp(start_address + dex_file_size, kPageSize) / kPageSize;
std::cout << "DEX "
<< dex_file->GetLocation().c_str()
<< StringPrintf(": %" PRIx64 "-%" PRIx64,
map_start + start_page * kPageSize,
map_start + end_page * kPageSize)
<< std::endl;
// Build a list of the dex file section types, sorted from highest offset to lowest.
std::vector<dex_ir::DexFileSection> sections;
{
Options options;
std::unique_ptr<dex_ir::Header> header(dex_ir::DexIrBuilder(*dex_file,
/*eagerly_assign_offsets=*/ true,
options));
sections = dex_ir::GetSortedDexFileSections(header.get(),
dex_ir::SortDirection::kSortDescending);
}
PageCount section_resident_pages;
ProcessPageMap(pagemap, start_page, end_page, sections, &section_resident_pages);
DisplayDexStatistics(start_page, end_page, section_resident_pages, sections, printer);
}
static bool IsVdexFileMapping(const std::string& mapped_name) {
// Confirm that the map is from a vdex file.
static const char* suffixes[] = { ".vdex" };
for (const char* suffix : suffixes) {
size_t match_loc = mapped_name.find(suffix);
if (match_loc != std::string::npos && mapped_name.length() == match_loc + strlen(suffix)) {
return true;
}
}
return false;
}
static bool DisplayMappingIfFromVdexFile(ProcMemInfo& proc, const Vma& vma, Printer* printer) {
std::string vdex_name = vma.name;
// Extract all the dex files from the vdex file.
std::string error_msg;
std::unique_ptr<VdexFile> vdex(VdexFile::Open(vdex_name,
/*writable=*/ false,
/*low_4gb=*/ false,
&error_msg /*out*/));
if (vdex == nullptr) {
std::cerr << "Could not open vdex file "
<< vdex_name
<< ": error "
<< error_msg
<< std::endl;
return false;
}
std::vector<std::unique_ptr<const DexFile>> dex_files;
if (!vdex->OpenAllDexFiles(&dex_files, &error_msg)) {
std::cerr << "Dex files could not be opened for "
<< vdex_name
<< ": error "
<< error_msg
<< std::endl;
return false;
}
// Open the page mapping (one uint64_t per page) for the entire vdex mapping.
std::vector<uint64_t> pagemap;
if (!proc.PageMap(vma, &pagemap)) {
std::cerr << "Error creating pagemap." << std::endl;
return false;
}
// Process the dex files.
std::cout << "MAPPING "
<< vma.name
<< StringPrintf(": %" PRIx64 "-%" PRIx64, vma.start, vma.end)
<< std::endl;
for (const auto& dex_file : dex_files) {
ProcessOneDexMapping(pagemap,
vma.start,
dex_file.get(),
reinterpret_cast<uint64_t>(vdex->Begin()),
printer);
}
return true;
}
static void ProcessOneOatMapping(const std::vector<uint64_t>& pagemap,
Printer* printer) {
static constexpr size_t kLineLength = 32;
size_t resident_page_count = 0;
for (size_t page = 0; page < pagemap.size(); ++page) {
char type_char = '.';
if (::android::meminfo::page_present(pagemap[page])) {
++resident_page_count;
type_char = '*';
}
if (g_verbose) {
std::cout << type_char;
if (page % kLineLength == kLineLength - 1) {
std::cout << std::endl;
}
}
}
if (g_verbose) {
if (pagemap.size() % kLineLength != 0) {
std::cout << std::endl;
}
}
double percent_of_total = 100.0 * resident_page_count / pagemap.size();
printer->PrintHeader();
printer->PrintOne("EXECUTABLE", resident_page_count, pagemap.size(), percent_of_total, percent_of_total);
printer->PrintSkipLine();
}
static bool IsOatFileMapping(const std::string& mapped_name) {
// Confirm that the map is from an oat file.
static const char* suffixes[] = { ".odex", ".oat" };
for (const char* suffix : suffixes) {
size_t match_loc = mapped_name.find(suffix);
if (match_loc != std::string::npos && mapped_name.length() == match_loc + strlen(suffix)) {
return true;
}
}
return false;
}
static bool DisplayMappingIfFromOatFile(ProcMemInfo& proc, const Vma& vma, Printer* printer) {
// Open the page mapping (one uint64_t per page) for the entire vdex mapping.
std::vector<uint64_t> pagemap;
if (!proc.PageMap(vma, &pagemap) != 0) {
std::cerr << "Error creating pagemap." << std::endl;
return false;
}
// Process the dex files.
std::cout << "MAPPING "
<< vma.name
<< StringPrintf(": %" PRIx64 "-%" PRIx64, vma.start, vma.end)
<< std::endl;
ProcessOneOatMapping(pagemap, printer);
return true;
}
static bool FilterByNameContains(const std::string& mapped_file_name,
const std::vector<std::string>& name_filters) {
// If no filters were set, everything matches.
if (name_filters.empty()) {
return true;
}
for (const auto& name_contains : name_filters) {
if (mapped_file_name.find(name_contains) != std::string::npos) {
return true;
}
}
return false;
}
#endif
static void Usage(const char* cmd) {
std::cout << "Usage: " << cmd << " [options] pid" << std::endl
<< " --contains=<string>: Display sections containing string." << std::endl
<< " --help: Shows this message." << std::endl
<< " --verbose: Makes displays verbose." << std::endl;
PrintLetterKey();
}
NO_RETURN static void Abort(const char* msg) {
std::cerr << msg;
exit(1);
}
static int DexDiagMain(int argc, char* argv[]) {
if (argc < 2) {
Usage(argv[0]);
return EXIT_FAILURE;
}
std::vector<std::string> name_filters;
// TODO: add option to track usage by class name, etc.
for (int i = 1; i < argc - 1; ++i) {
const std::string_view option(argv[i]);
if (option == "--help") {
Usage(argv[0]);
return EXIT_SUCCESS;
} else if (option == "--verbose") {
g_verbose = true;
} else if (StartsWith(option, "--contains=")) {
std::string contains(option.substr(strlen("--contains=")));
name_filters.push_back(contains);
} else {
Usage(argv[0]);
return EXIT_FAILURE;
}
}
// Art specific set up.
InitLogging(argv, Abort);
MemMap::Init();
#ifdef ART_TARGET_ANDROID
pid_t pid;
char* endptr;
pid = (pid_t)strtol(argv[argc - 1], &endptr, 10);
if (*endptr != '\0' || kill(pid, 0) != 0) {
std::cerr << StringPrintf("Invalid PID \"%s\".\n", argv[argc - 1]) << std::endl;
return EXIT_FAILURE;
}
// get libmeminfo process information.
ProcMemInfo proc(pid);
// Get the set of mappings by the specified process.
// Do not get the map usage stats, they are never used and it can take
// a long time to get this data.
const std::vector<Vma>& maps = proc.MapsWithoutUsageStats();
if (maps.empty()) {
std::cerr << "Error listing maps." << std::endl;
return EXIT_FAILURE;
}
bool match_found = false;
// Process the mappings that are due to vdex or oat files.
Printer printer;
for (auto& vma : maps) {
std::string mapped_file_name = vma.name;
// Filter by name contains options (if any).
if (!FilterByNameContains(mapped_file_name, name_filters)) {
continue;
}
if (IsVdexFileMapping(mapped_file_name)) {
if (!DisplayMappingIfFromVdexFile(proc, vma, &printer)) {
return EXIT_FAILURE;
}
match_found = true;
} else if (IsOatFileMapping(mapped_file_name)) {
if (!DisplayMappingIfFromOatFile(proc, vma, &printer)) {
return EXIT_FAILURE;
}
match_found = true;
}
}
if (!match_found) {
std::cerr << "No relevant memory maps were found." << std::endl;
return EXIT_FAILURE;
}
#endif
return EXIT_SUCCESS;
}
} // namespace art
int main(int argc, char* argv[]) {
return art::DexDiagMain(argc, argv);
}