blob: 135cbd70cf80e3634f9c160eb661bce9b71be6fa [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_lang.h"
#include "intrinsic_helper.h"
#include "atomic.h"
#include "inferred_reg_category_map.h"
#include "object.h" // FIXME: include this in oat_compilation_unit.h
#include "oat_compilation_unit.h"
#include "stl_util.h"
#include "stringprintf.h"
#include "verifier/method_verifier.h"
#include <llvm/Analysis/Passes.h>
#include <llvm/Analysis/Verifier.h>
#include <llvm/BasicBlock.h>
#include <llvm/Function.h>
#include <llvm/Module.h>
#include <llvm/PassManager.h>
#include <llvm/Support/InstIterator.h>
#include <llvm/Transforms/Scalar.h>
namespace art {
namespace greenland {
//----------------------------------------------------------------------------
// DexLang::Context
//----------------------------------------------------------------------------
DexLang::Context::Context()
: context_(), module_(NULL), ref_count_(1), mem_usage_(0) {
module_ = new llvm::Module("art", context_);
// Initialize the contents of an empty module
// Type of "JavaObject"
llvm::StructType::create(context_, "JavaObject");
// Type of "Method"
llvm::StructType::create(context_, "Method");
// Type of "Thread"
llvm::StructType::create(context_, "Thread");
// Initalize the DexLang intrinsics
intrinsic_helper_ = new IntrinsicHelper(context_, *module_);
return;
}
DexLang::Context::~Context() {
delete intrinsic_helper_;
return;
}
DexLang::Context& DexLang::Context::IncRef() {
android_atomic_inc(&ref_count_);
return *this;
}
void DexLang::Context::DecRef() {
int32_t old_ref_count = android_atomic_dec(&ref_count_);
if (old_ref_count <= 1) {
delete this;
}
return;
}
void DexLang::Context::AddMemUsageApproximation(size_t usage) {
android_atomic_add(static_cast<int32_t>(usage), &mem_usage_);
return;
}
//----------------------------------------------------------------------------
// Constructor, Destructor and APIs
//----------------------------------------------------------------------------
DexLang::DexLang(DexLang::Context& context, Compiler& compiler,
OatCompilationUnit& cunit)
: dex_lang_ctx_(context.IncRef()), compiler_(compiler), cunit_(cunit),
dex_file_(cunit.GetDexFile()), code_item_(cunit.GetCodeItem()),
dex_cache_(cunit.GetDexCache()),
context_(context.GetLLVMContext()), module_(context.GetOutputModule()),
intrinsic_helper_(context.GetIntrinsicHelper()),
irb_(context.GetLLVMContext(), context.GetOutputModule(),
context.GetIntrinsicHelper()),
func_(NULL), reg_alloc_bb_(NULL), arg_reg_init_bb_(NULL),
basic_blocks_(cunit.GetCodeItem()->insns_size_in_code_units_),
retval_(NULL), retval_jty_(kVoid),
landing_pads_bb_(cunit.GetCodeItem()->tries_size_, NULL),
exception_unwind_bb_(NULL), cur_try_item_offset(-1),
require_shadow_frame(false), num_shadow_frame_entries_(0) {
if (cunit.GetCodeItem()->tries_size_ > 0) {
cur_try_item_offset = 0;
}
return;
}
DexLang::~DexLang() {
dex_lang_ctx_.DecRef();
return;
}
llvm::Function* DexLang::Build() {
if (!CreateFunction() ||
!EmitPrologue() ||
!EmitInstructions() ||
!EmitPrologueAllcaShadowFrame() ||
!EmitPrologueLinkBasicBlocks() ||
!PrettyLayoutExceptionBasicBlocks() ||
!VerifyFunction() ||
!OptimizeFunction() ||
!RemoveRedundantPendingExceptionChecks()) {
return NULL;
}
// NOTE: From statistic, the bitcode size is 4.5 times bigger than the
// Dex file. Besides, we have to convert the code unit into bytes.
// Thus, we got our magic number 9.
dex_lang_ctx_.AddMemUsageApproximation(
code_item_->insns_size_in_code_units_ * 900);
return func_;
}
llvm::Value* DexLang::AllocateDalvikReg(JType jty, unsigned reg_idx) {
RegCategory cat = GetRegCategoryFromJType(jty);
llvm::Type* type = irb_.GetJType(jty, kAccurate);
DCHECK_NE(type, static_cast<llvm::Type*>(NULL));
std::string reg_name;
switch (cat) {
case kRegCat1nr: {
reg_name = StringPrintf("r%u", reg_idx);
break;
}
case kRegCat2: {
reg_name = StringPrintf("w%u", reg_idx);
break;
}
case kRegObject: {
reg_name = StringPrintf("p%u", reg_idx);
break;
}
default: {
LOG(FATAL) << "Unknown register category for allocation: " << cat;
}
}
// Save current IR builder insert point
DCHECK(reg_alloc_bb_ != NULL);
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(reg_alloc_bb_);
// Alloca
llvm::Value* reg_addr = irb_.CreateAlloca(type, 0, reg_name);
// Restore IRBuilder insert point
irb_.restoreIP(irb_ip_original);
DCHECK_NE(reg_addr, static_cast<llvm::Value*>(NULL));
return reg_addr;
}
//----------------------------------------------------------------------------
// Basic Block Helper Functions
//----------------------------------------------------------------------------
llvm::BasicBlock* DexLang::GetBasicBlock(unsigned dex_pc) {
DCHECK(dex_pc < code_item_->insns_size_in_code_units_);
llvm::BasicBlock* basic_block = basic_blocks_[dex_pc];
if (!basic_block) {
basic_block = CreateBasicBlockWithDexPC(dex_pc);
basic_blocks_[dex_pc] = basic_block;
}
return basic_block;
}
llvm::BasicBlock* DexLang::CreateBasicBlockWithDexPC(unsigned dex_pc,
const char* postfix) {
std::string name;
if (postfix) {
StringAppendF(&name, "B%04x.%s", dex_pc, postfix);
} else {
StringAppendF(&name, "B%04x", dex_pc);
}
return llvm::BasicBlock::Create(context_, name, func_);
}
llvm::BasicBlock* DexLang::GetNextBasicBlock(unsigned dex_pc) {
const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc);
return GetBasicBlock(dex_pc + insn->SizeInCodeUnits());
}
//----------------------------------------------------------------------------
// Exception Handling
//----------------------------------------------------------------------------
int32_t DexLang::GetTryItemOffset(unsigned dex_pc) {
if (cur_try_item_offset >= 0) {
// Search over the try item.
do {
const DexFile::TryItem* ti =
DexFile::GetTryItems(*code_item_, cur_try_item_offset);
if (dex_pc < ti->start_addr_) {
return -1;
}
if (dex_pc < (ti->start_addr_ + ti->insn_count_)) {
return cur_try_item_offset;
}
cur_try_item_offset++;
} while (cur_try_item_offset < code_item_->tries_size_);
// Search to the end of try items and Cannot find any try item corresponding
// to the dex_pc.
cur_try_item_offset = -1;
}
return cur_try_item_offset;
}
llvm::BasicBlock* DexLang::GetLandingPadBasicBlock(unsigned dex_pc) {
// Find the try item for this address in this method
int32_t ti_offset = GetTryItemOffset(dex_pc);
if (ti_offset == -1) {
return NULL; // No landing pad is available for this address.
}
// Check for the existing landing pad basic block
DCHECK_GT(landing_pads_bb_.size(), static_cast<size_t>(ti_offset));
llvm::BasicBlock* block_lpad = landing_pads_bb_[ti_offset];
if (block_lpad != NULL) {
// We have generated landing pad for this try item already. Return the
// same basic block.
return block_lpad;
}
// Get try item from code item
const DexFile::TryItem* ti = DexFile::GetTryItems(*code_item_, ti_offset);
std::string lpadname;
#ifndef NDEBUG
StringAppendF(&lpadname, "lpad%d_%04x_to_%04x",
ti_offset, ti->start_addr_, ti->handler_off_);
#endif
// Create landing pad basic block
block_lpad = llvm::BasicBlock::Create(context_, lpadname, func_);
// Change IRBuilder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(block_lpad);
// Find catch block with matching type
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
// Find catch block with matching type
llvm::Value* ti_offset_value = irb_.getInt32(ti_offset);
llvm::Value* catch_handler_index_value =
EmitInvokeIntrinsic2(dex_pc, IntrinsicHelper::FindCatchBlock,
method_object_addr, ti_offset_value);
// Switch instruction (Go to unwind basic block by default)
llvm::SwitchInst* sw =
irb_.CreateSwitch(catch_handler_index_value, GetUnwindBasicBlock());
// Cases with matched catch block
CatchHandlerIterator iter(*code_item_, ti->start_addr_);
for (uint32_t c = 0; iter.HasNext(); iter.Next(), ++c) {
sw->addCase(irb_.getInt32(c), GetBasicBlock(iter.GetHandlerAddress()));
}
// Restore the orignal insert point for IRBuilder
irb_.restoreIP(irb_ip_original);
// Cache this landing pad
landing_pads_bb_[ti_offset] = block_lpad;
return block_lpad;
}
llvm::BasicBlock* DexLang::GetUnwindBasicBlock() {
// Check the existing unwinding baisc block block
if (exception_unwind_bb_ != NULL) {
return exception_unwind_bb_;
}
// Create new basic block for unwinding
exception_unwind_bb_ =
llvm::BasicBlock::Create(context_, "exception_unwind", func_);
// Change IRBuilder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(exception_unwind_bb_);
// Pop the shadow frame
EmitPopShadowFrame();
// Emit the code to return default value (zero) for the given return type.
char ret_shorty = cunit_.GetShorty()[0];
if (ret_shorty == 'V') {
irb_.CreateRetVoid();
} else {
irb_.CreateRet(irb_.GetJZero(ret_shorty));
}
// Restore the orignal insert point for IRBuilder
irb_.restoreIP(irb_ip_original);
return exception_unwind_bb_;
}
void DexLang::EmitBranchExceptionLandingPad(unsigned dex_pc) {
if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) {
irb_.CreateBr(lpad);
} else {
irb_.CreateBr(GetUnwindBasicBlock());
}
}
void DexLang::EmitGuard_DivZeroException(unsigned dex_pc,
llvm::Value* denominator,
JType op_jty) {
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
llvm::Constant* zero = irb_.GetJZero(op_jty);
llvm::Value* equal_zero = irb_.CreateICmpEQ(denominator, zero);
llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "div0");
llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(equal_zero, block_exception, block_continue);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
EmitInvokeIntrinsic(dex_pc, IntrinsicHelper::ThrowDivZeroException);
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
}
void DexLang::EmitGuard_NullPointerException(unsigned dex_pc,
llvm::Value* object) {
llvm::Value* equal_null = irb_.CreateICmpEQ(object, irb_.GetJNull());
llvm::BasicBlock* block_exception =
CreateBasicBlockWithDexPC(dex_pc, "nullp");
llvm::BasicBlock* block_continue =
CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(equal_null, block_exception, block_continue);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
EmitInvokeIntrinsic(dex_pc, IntrinsicHelper::ThrowNullPointerException,
irb_.getInt32(dex_pc));
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
}
void
DexLang::EmitGuard_ArrayIndexOutOfBoundsException(unsigned dex_pc,
llvm::Value* array,
llvm::Value* index) {
llvm::Value* array_len = EmitLoadArrayLength(array);
llvm::Value* cmp = irb_.CreateICmpUGE(index, array_len);
llvm::BasicBlock* block_exception =
CreateBasicBlockWithDexPC(dex_pc, "overflow");
llvm::BasicBlock* block_continue =
CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(cmp, block_exception, block_continue);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
EmitInvokeIntrinsic2(dex_pc, IntrinsicHelper::ThrowIndexOutOfBounds,
index, array_len);
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
return;
}
void DexLang::EmitGuard_ArrayException(unsigned dex_pc,
llvm::Value* array, llvm::Value* index) {
EmitGuard_NullPointerException(dex_pc, array);
EmitGuard_ArrayIndexOutOfBoundsException(dex_pc, array, index);
}
void DexLang::EmitGuard_ExceptionLandingPad(unsigned dex_pc) {
llvm::Value* exception_pending =
EmitInvokeIntrinsic(dex_pc, IntrinsicHelper::IsExceptionPending);
llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont");
if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) {
irb_.CreateCondBr(exception_pending, lpad, block_cont);
} else {
irb_.CreateCondBr(exception_pending, GetUnwindBasicBlock(), block_cont);
}
irb_.SetInsertPoint(block_cont);
}
//----------------------------------------------------------------------------
// Garbage Collection Safe Point
//----------------------------------------------------------------------------
void DexLang::EmitGuard_GarbageCollectionSuspend() {
llvm::Value* thread_object_addr = EmitGetCurrentThread();
EmitInvokeIntrinsicNoThrow(IntrinsicHelper::TestSuspend, thread_object_addr);
return;
}
//----------------------------------------------------------------------------
// Shadow Frame
//----------------------------------------------------------------------------
void DexLang::EmitUpdateDexPC(unsigned dex_pc) {
require_shadow_frame = true;
EmitInvokeIntrinsicNoThrow(IntrinsicHelper::UpdateDexPC,
irb_.getInt32(dex_pc));
return;
}
void DexLang::EmitPopShadowFrame() {
EmitInvokeIntrinsicNoThrow(IntrinsicHelper::PopShadowFrame);
return;
}
unsigned DexLang::AllocShadowFrameEntry(unsigned reg_idx) {
return num_shadow_frame_entries_++;
}
//----------------------------------------------------------------------------
// Code Generation
//----------------------------------------------------------------------------
bool DexLang::CreateFunction() {
std::string func_name(PrettyMethod(cunit_.GetDexMethodIndex(), *dex_file_,
/* with_signature */false));
llvm::FunctionType* func_type = GetFunctionType();
if (func_type == NULL) {
return false;
}
func_ = llvm::Function::Create(func_type, llvm::Function::ExternalLinkage,
func_name, &module_);
llvm::Function::arg_iterator arg_iter(func_->arg_begin());
llvm::Function::arg_iterator arg_end(func_->arg_end());
arg_iter->setName("method");
++arg_iter;
if (!cunit_.IsStatic()) {
DCHECK_NE(arg_iter, arg_end);
arg_iter->setName("this");
++arg_iter;
}
for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) {
arg_iter->setName(StringPrintf("a%u", i));
}
return true;
}
llvm::FunctionType* DexLang::GetFunctionType() {
uint32_t shorty_size;
const char* shorty = cunit_.GetShorty(&shorty_size);
CHECK_GE(shorty_size, 1u);
// Get return type
llvm::Type* ret_type = irb_.GetJType(shorty[0], kAccurate);
// Get argument type
std::vector<llvm::Type*> args_type;
// method object
args_type.push_back(irb_.GetJMethodTy());
if (!cunit_.IsStatic()) {
// The first argument to non-static method is "this" object pointer
args_type.push_back(irb_.GetJObjectTy());
}
for (uint32_t i = 1; i < shorty_size; ++i) {
args_type.push_back(irb_.GetJType(shorty[i], kAccurate));
}
return llvm::FunctionType::get(ret_type, args_type, false);
}
bool DexLang::PrepareDalvikRegs() {
const unsigned num_regs = code_item_->registers_size_;
const unsigned num_ins = code_item_->ins_size_;
unsigned reg_idx = 0;
// Registers v[0..(num_regs - num_ins - 1)] are used for local variable
for (; reg_idx < (num_regs - num_ins); reg_idx++) {
regs_.push_back(DalvikReg::CreateLocalVarReg(*this, reg_idx));
}
// Registers v[(num_regs - num_ins)..(num_regs - 1)] are used for input
// argument
uint32_t shorty_size;
const char* shorty = cunit_.GetShorty(&shorty_size);
if (!cunit_.IsStatic()) {
// The first argument to non-static method is "this" object pointer
regs_.push_back(DalvikReg::CreateArgReg(*this, reg_idx++, kObject));
}
for (unsigned i = 1; i < shorty_size; i++) {
JType jty = GetJTypeFromShorty(shorty[i]);
regs_.push_back(DalvikReg::CreateArgReg(*this, reg_idx++, jty));
reg_idx++;
if (GetRegCategoryFromJType(jty) == kRegCat2) {
// Need a register pair to hold the value
regs_.push_back(NULL);
reg_idx++;
}
}
CHECK_EQ(num_regs, regs_.size());
return true;
}
bool DexLang::EmitPrologue() {
reg_alloc_bb_ = llvm::BasicBlock::Create(context_, "prologue.alloca", func_);
arg_reg_init_bb_ =
llvm::BasicBlock::Create(context_, "prologue.arginit", func_);
if (!PrepareDalvikRegs()) {
return false;
}
//Store argument to dalvik register
irb_.SetInsertPoint(arg_reg_init_bb_);
if (!EmitPrologueAssignArgRegister()) {
return false;
}
irb_.CreateBr(GetBasicBlock(0));
return true;
}
bool DexLang::EmitPrologueAssignArgRegister() {
llvm::Function::arg_iterator arg_iter(func_->arg_begin());
const unsigned num_regs = code_item_->registers_size_;
const unsigned num_ins = code_item_->ins_size_;
unsigned reg_idx = num_regs - num_ins;
uint32_t shorty_size;
const char* shorty = cunit_.GetShorty(&shorty_size);
// skip method object
++arg_iter;
if (!cunit_.IsStatic()) {
// The first argument to non-static method is "this" object pointer
EmitStoreDalvikReg(reg_idx, kObject, kAccurate, arg_iter);
arg_iter++;
reg_idx++;
}
for (unsigned i = 1; i < shorty_size; i++, arg_iter++) {
JType jty = GetJTypeFromShorty(shorty[i]);
EmitStoreDalvikReg(reg_idx, jty, kAccurate, arg_iter);
reg_idx++;
if (GetRegCategoryFromJType(jty) == kRegCat2) {
// Wide types
reg_idx++;
}
}
DCHECK_EQ(arg_iter, func_->arg_end());
DCHECK_EQ(reg_idx, num_regs);
return true;
}
bool DexLang::EmitPrologueAllcaShadowFrame() {
if (!require_shadow_frame) {
return true;
}
// Save current IR builder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(reg_alloc_bb_);
EmitInvokeIntrinsicNoThrow(IntrinsicHelper::AllocaShadowFrame,
irb_.getInt32(num_shadow_frame_entries_));
// Restore IRBuilder insert point
irb_.restoreIP(irb_ip_original);
return true;
}
bool DexLang::EmitPrologueLinkBasicBlocks() {
irb_.SetInsertPoint(reg_alloc_bb_);
irb_.CreateBr(arg_reg_init_bb_);
return true;
}
bool DexLang::PrettyLayoutExceptionBasicBlocks() {
llvm::BasicBlock* last_non_exception_bb = &func_->back();
DCHECK(last_non_exception_bb != NULL);
DCHECK_NE(last_non_exception_bb, exception_unwind_bb_);
if (exception_unwind_bb_ != NULL) {
exception_unwind_bb_->moveAfter(last_non_exception_bb);
}
for (std::vector<llvm::BasicBlock*>::reverse_iterator
landing_pads_bb_iter = landing_pads_bb_.rbegin(),
landing_pads_bb_end = landing_pads_bb_.rend();
landing_pads_bb_iter != landing_pads_bb_end; landing_pads_bb_iter++) {
llvm::BasicBlock* landing_pads_bb = *landing_pads_bb_iter;
// Move the successors (the cache handlers) first
llvm::TerminatorInst* inst = landing_pads_bb->getTerminator();
CHECK(inst != NULL);
for (unsigned i = 0, e = inst->getNumSuccessors(); i != e; i++) {
llvm::BasicBlock* catch_handler = inst->getSuccessor(i);
// One of the catch handler is the unwind basic block which is settled
// down earlier
if (catch_handler != exception_unwind_bb_) {
catch_handler->moveAfter(last_non_exception_bb);
}
}
if (landing_pads_bb != NULL) {
DCHECK_NE(last_non_exception_bb, landing_pads_bb);
landing_pads_bb->moveAfter(last_non_exception_bb);
}
}
return true;
}
bool DexLang::VerifyFunction() {
if (llvm::verifyFunction(*func_, llvm::PrintMessageAction)) {
LOG(INFO) << "Verification failed on function: "
<< PrettyMethod(cunit_.GetDexMethodIndex(), *dex_file_);
return false;
}
return true;
}
bool DexLang::OptimizeFunction() {
// Add optimization pass
llvm::FunctionPassManager fpm(&module_);
fpm.add(llvm::createTypeBasedAliasAnalysisPass());
fpm.add(llvm::createBasicAliasAnalysisPass());
// Perform simple optimizations first to enable the later optimization passes
// running fast
{
fpm.add(llvm::createCFGSimplificationPass());
// mem2reg
fpm.add(llvm::createPromoteMemoryToRegisterPass());
// Remove redundant instructions
fpm.add(llvm::createInstructionSimplifierPass());
// Fast CSE
fpm.add(llvm::createEarlyCSEPass());
fpm.add(llvm::createCorrelatedValuePropagationPass());
// 4 + (x + 5) -> x + (4 + 5)
fpm.add(llvm::createReassociatePass());
// Clean up
fpm.add(llvm::createCFGSimplificationPass()); // Merge & remove BBs
fpm.add(llvm::createInstructionCombiningPass());// Clean up after everything
}
{
// SCCP - Sparse conditional constant propagation
fpm.add(llvm::createSCCPPass());
// Global value numbering and redundant load elimination
fpm.add(llvm::createGVNPass());
// Clean up
fpm.add(llvm::createCFGSimplificationPass()); // Merge & remove BBs
fpm.add(llvm::createInstructionCombiningPass());// Clean up after everything
}
{
// Reorders basic blocks to increase the number of fall-through conditional
// branches
fpm.add(llvm::createBlockPlacementPass());
// Clean up
fpm.add(llvm::createCFGSimplificationPass()); // Merge & remove BBs
}
// DexLang doesn't use static branch prediction in the mean time
//fpm.add(llvm::createLowerExpectIntrinsicPass());
{
// Constant propagation
fpm.add(llvm::createConstantPropagationPass());
// Clean up
fpm.add(llvm::createCFGSimplificationPass()); // Merge & remove BBs
fpm.add(llvm::createInstructionCombiningPass());// Clean up after everything
}
{
// Dead code elimination
fpm.add(llvm::createDeadCodeEliminationPass());
fpm.add(llvm::createDeadStoreEliminationPass());
fpm.add(llvm::createAggressiveDCEPass());
// Do constant propagation again
fpm.add(llvm::createConstantPropagationPass());
// Clean up
fpm.add(llvm::createCFGSimplificationPass()); // Merge & remove BBs
fpm.add(llvm::createInstructionCombiningPass());// Clean up after everything
}
// Run the per-function optimization
fpm.doInitialization();
fpm.run(*func_);
fpm.doFinalization();
return true;
}
bool DexLang::RemoveRedundantPendingExceptionChecks() {
#if 0
const llvm::Function* exception_checking_function =
irb_.GetIntrinsics(IntrinsicHelper::IsExceptionPending);
std::vector<llvm::Instruction*> work_list;
unsigned num_removed = 0;
for (llvm::inst_iterator i = llvm::inst_begin(func_),
e = llvm::inst_end(func_); i != e; ++i) {
if (llvm::CallInst* call_inst = llvm::dyn_cast<llvm::CallInst>(&*i)) {
if (call_inst->getCalledFunction() != exception_checking_function) {
continue;
}
}
}
num_removed = work_list.size();
for (std::vector<llvm::Instruction*>::iterator inst_iter = work_list.begin(),
inst_end = work_list.end(); inst_iter != inst_end; inst_iter++) {
llvm::Instruction* inst = *inst_iter;
if (!inst->use_empty()) {
inst->replaceAllUsesWith(irb_.getFalse());
}
inst->eraseFromParent();
}
LOG(INFO) << num_removed << " redundant pending exception check removed.";
#endif
return true;
}
//----------------------------------------------------------------------------
// Emit* Helper Functions
//----------------------------------------------------------------------------
llvm::Value* DexLang::EmitLoadMethodObjectAddr() {
return func_->arg_begin();
}
llvm::Value* DexLang::EmitGetCurrentThread() {
return EmitInvokeIntrinsicNoThrow(IntrinsicHelper::GetCurrentThread);
}
llvm::Value*
DexLang::EmitInvokeIntrinsicNoThrow(IntrinsicHelper::IntrinsicId intr_id) {
DCHECK(IntrinsicHelper::GetAttr(intr_id) & IntrinsicHelper::kAttrNoThrow);
return irb_.CreateCall(intrinsic_helper_.GetIntrinsicFunction(intr_id));
}
llvm::Value*
DexLang::EmitInvokeIntrinsicNoThrow(IntrinsicHelper::IntrinsicId intr_id,
llvm::ArrayRef<llvm::Value*> args) {
llvm::Function* intr = intrinsic_helper_.GetIntrinsicFunction(intr_id);
DCHECK(IntrinsicHelper::GetAttr(intr_id) & IntrinsicHelper::kAttrNoThrow);
return irb_.CreateCall(intr, args);
}
llvm::Value*
DexLang::EmitInvokeIntrinsic(unsigned dex_pc,
IntrinsicHelper::IntrinsicId intr_id) {
llvm::Function* intr = intrinsic_helper_.GetIntrinsicFunction(intr_id);
unsigned intr_attr = IntrinsicHelper::GetAttr(intr_id);
bool may_throw = !(intr_attr & IntrinsicHelper::kAttrNoThrow);
// Setup PC before invocation when the intrinsics may generate the exception
if (may_throw) {
EmitUpdateDexPC(dex_pc);
}
llvm::Value* ret_val = irb_.CreateCall(intr);
if (may_throw) {
EmitGuard_ExceptionLandingPad(dex_pc);
}
return ret_val;
}
llvm::Value* DexLang::EmitInvokeIntrinsic(unsigned dex_pc,
IntrinsicHelper::IntrinsicId intr_id,
llvm::ArrayRef<llvm::Value*> args) {
llvm::Function* intr = intrinsic_helper_.GetIntrinsicFunction(intr_id);
unsigned intr_attr = IntrinsicHelper::GetAttr(intr_id);
bool may_throw = !(intr_attr & IntrinsicHelper::kAttrNoThrow);
// Setup PC before invocation when the intrinsics may generate the exception
if (may_throw) {
EmitUpdateDexPC(dex_pc);
}
llvm::Value* ret_val = irb_.CreateCall(intr, args);
if (may_throw) {
EmitGuard_ExceptionLandingPad(dex_pc);
}
return ret_val;
}
RegCategory DexLang::GetInferredRegCategory(unsigned dex_pc, unsigned reg_idx) {
Compiler::MethodReference mref(dex_file_, cunit_.GetDexMethodIndex());
const InferredRegCategoryMap* map =
verifier::MethodVerifier::GetInferredRegCategoryMap(mref);
CHECK_NE(map, static_cast<InferredRegCategoryMap*>(NULL));
return map->GetRegCategory(dex_pc, reg_idx);
}
llvm::Value* DexLang::EmitLoadArrayLength(llvm::Value* array) {
// Load array length
return EmitInvokeIntrinsicNoThrow(IntrinsicHelper::ArrayLength, array);
}
llvm::Value*
DexLang::EmitLoadStaticStorage(unsigned dex_pc, unsigned type_idx) {
llvm::BasicBlock* block_load_static =
CreateBasicBlockWithDexPC(dex_pc, "load_static");
llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont");
llvm::Constant* type_idx_value = irb_.getInt32(type_idx);
// Load static storage from dex cache
llvm::Value* storage_object_addr =
EmitInvokeIntrinsic(dex_pc, IntrinsicHelper::LoadClassSSBFromDexCache,
type_idx_value);
llvm::BasicBlock* block_original = irb_.GetInsertBlock();
// Test: Is the static storage of this class initialized?
llvm::Value* equal_null =
irb_.CreateICmpEQ(storage_object_addr, irb_.GetJNull());
irb_.CreateCondBr(equal_null, block_load_static, block_cont);
// Failback routine to load the class object
irb_.SetInsertPoint(block_load_static);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = EmitGetCurrentThread();
llvm::Value* loaded_storage_object_addr =
EmitInvokeIntrinsic3(dex_pc, IntrinsicHelper::InitializeAndLoadClassSSB,
type_idx_value, method_object_addr,
thread_object_addr);
llvm::BasicBlock* block_after_load_static = irb_.GetInsertBlock();
irb_.CreateBr(block_cont);
// Now the class object must be loaded
irb_.SetInsertPoint(block_cont);
llvm::PHINode* phi = irb_.CreatePHI(irb_.GetJObjectTy(), 2);
phi->addIncoming(storage_object_addr, block_original);
phi->addIncoming(loaded_storage_object_addr, block_after_load_static);
return phi;
}
llvm::Value* DexLang::EmitConditionResult(llvm::Value* lhs, llvm::Value* rhs,
CondBranchKind cond) {
switch (cond) {
case kCondBranch_EQ: {
return irb_.CreateICmpEQ(lhs, rhs);
}
case kCondBranch_NE: {
return irb_.CreateICmpNE(lhs, rhs);
}
case kCondBranch_LT: {
return irb_.CreateICmpSLT(lhs, rhs);
}
case kCondBranch_GE: {
return irb_.CreateICmpSGE(lhs, rhs);
}
case kCondBranch_GT: {
return irb_.CreateICmpSGT(lhs, rhs);
}
case kCondBranch_LE: {
return irb_.CreateICmpSLE(lhs, rhs);
}
default: {
// Unreachable
LOG(FATAL) << "Unknown conditional branch kind: " << cond;
break;
}
}
return NULL;
}
llvm::Value* DexLang::EmitIntArithmResultComputation(unsigned dex_pc,
llvm::Value* lhs,
llvm::Value* rhs,
IntArithmKind arithm,
JType op_jty) {
DCHECK((op_jty == kInt) || (op_jty == kLong)) << op_jty;
switch (arithm) {
case kIntArithm_Add: {
return irb_.CreateAdd(lhs, rhs);
}
case kIntArithm_Sub: {
return irb_.CreateSub(lhs, rhs);
}
case kIntArithm_Mul: {
return irb_.CreateMul(lhs, rhs);
}
case kIntArithm_Div:
case kIntArithm_Rem: {
return EmitIntDivRemResultComputation(dex_pc, lhs, rhs, arithm, op_jty);
}
case kIntArithm_And: {
return irb_.CreateAnd(lhs, rhs);
}
case kIntArithm_Or: {
return irb_.CreateOr(lhs, rhs);
}
case kIntArithm_Xor: {
return irb_.CreateXor(lhs, rhs);
}
default: {
LOG(FATAL) << "Unknown integer arithmetic kind: " << arithm;
break;
}
}
return NULL;
}
llvm::Value* DexLang::EmitIntDivRemResultComputation(unsigned dex_pc,
llvm::Value* dividend,
llvm::Value* divisor,
IntArithmKind arithm,
JType op_jty) {
// Throw exception if the divisor is 0.
EmitGuard_DivZeroException(dex_pc, divisor, op_jty);
// Note that it's not trivial to translate integer div/rem to sdiv/srem in
// LLVM IR since (MININT / -1) leads undefined behavior in LLVM due to
// overflow.
// Select intrinsic
bool is_div = (arithm == kIntArithm_Div);
IntrinsicHelper::IntrinsicId arithm_intrinsic = IntrinsicHelper::UnknownId;
switch (op_jty) {
case kInt: {
arithm_intrinsic = (is_div) ? IntrinsicHelper::DivInt :
IntrinsicHelper::RemInt;
break;
}
case kLong: {
arithm_intrinsic = (is_div) ? IntrinsicHelper::DivLong :
IntrinsicHelper::RemLong;
break;
}
default: {
LOG(FATAL) << "Unsupported " << ((is_div) ? "div" : "rem") << " operation"
" for type: " << op_jty;
return NULL;
}
}
return EmitInvokeIntrinsic2(dex_pc, arithm_intrinsic, dividend, divisor);
}
//----------------------------------------------------------------------------
// EmitInsn* Functions
//----------------------------------------------------------------------------
void DexLang::EmitInsn_Nop(unsigned dex_pc, const Instruction* insn) {
uint16_t insn_signature = code_item_->insns_[dex_pc];
if (insn_signature == Instruction::kPackedSwitchSignature ||
insn_signature == Instruction::kSparseSwitchSignature ||
insn_signature == Instruction::kArrayDataSignature) {
irb_.CreateUnreachable();
} else {
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
return;
}
void DexLang::EmitInsn_Move(unsigned dex_pc, const Instruction* insn,
JType jty) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, jty, kReg);
EmitStoreDalvikReg(dec_insn.vA, jty, kReg, src_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_MoveResult(unsigned dex_pc, const Instruction* insn,
JType jty) {
DecodedInstruction dec_insn(insn);
CHECK(retval_ != NULL) << "move-result must immediately after an invoke-kind "
"instruction";
// Check the type
CHECK_EQ(irb_.GetJType(jty, kReg), irb_.GetJType(retval_jty_, kReg))
<< "Mismatch type between the value from the most recent invoke-kind "
"instruction (" << retval_jty_ << ") and the kind of move-result "
"used! (" << jty << ")";
EmitStoreDalvikReg(dec_insn.vA, retval_jty_, kReg, retval_);
retval_ = NULL;
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_MoveException(unsigned dex_pc, const Instruction* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* exception_object_addr =
EmitInvokeIntrinsicNoThrow(IntrinsicHelper::GetException);
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, exception_object_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_ReturnVoid(unsigned dex_pc, const Instruction* insn) {
// Garbage collection safe-point
EmitGuard_GarbageCollectionSuspend();
// Pop the shadow frame
EmitPopShadowFrame();
// Return!
irb_.CreateRetVoid();
return;
}
void DexLang::EmitInsn_Return(unsigned dex_pc, const Instruction* insn) {
DecodedInstruction dec_insn(insn);
// Garbage collection safe-point
EmitGuard_GarbageCollectionSuspend();
// Pop the shadow frame
//
// NOTE: It is important to keep this AFTER the GC safe-point. Otherwise,
// the return value might be collected since the shadow stack is popped.
EmitPopShadowFrame();
// Return!
char ret_shorty = cunit_.GetShorty()[0];
llvm::Value* retval = EmitLoadDalvikReg(dec_insn.vA, ret_shorty, kAccurate);
irb_.CreateRet(retval);
return;
}
void DexLang::EmitInsn_LoadConstant(unsigned dex_pc, const Instruction* insn,
JType imm_jty) {
DecodedInstruction dec_insn(insn);
DCHECK(imm_jty == kInt || imm_jty == kLong) << imm_jty;
int64_t imm = 0;
switch (insn->Opcode()) {
// 32-bit Immediate
case Instruction::CONST_4:
case Instruction::CONST_16:
case Instruction::CONST:
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32: {
imm = static_cast<int64_t>(static_cast<int32_t>(dec_insn.vB));
break;
}
case Instruction::CONST_HIGH16: {
imm = static_cast<int64_t>(static_cast<int32_t>(
static_cast<uint32_t>(static_cast<uint16_t>(dec_insn.vB)) << 16));
break;
}
// 64-bit Immediate
case Instruction::CONST_WIDE: {
imm = static_cast<int64_t>(dec_insn.vB_wide);
break;
}
case Instruction::CONST_WIDE_HIGH16: {
imm = static_cast<int64_t>(
static_cast<uint64_t>(static_cast<uint16_t>(dec_insn.vB)) << 48);
break;
}
// Unknown opcode for load constant (unreachable)
default: {
LOG(FATAL) << "Unknown opcode for load constant: " << insn->Opcode();
break;
}
}
// Store the non-object register
llvm::Type* imm_type = irb_.GetJType(imm_jty, kAccurate);
llvm::Constant* imm_value = llvm::ConstantInt::getSigned(imm_type, imm);
EmitStoreDalvikReg(dec_insn.vA, imm_jty, kAccurate, imm_value);
// Store the object register if it is possible to be null.
//
// FIXME: Should we use GetInferredRegCategory() here to avoid store the value
// twice?
if (imm_jty == kInt && imm == 0) {
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, irb_.GetJNull());
}
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_LoadConstantString(unsigned dex_pc,
const Instruction* insn) {
DecodedInstruction dec_insn(insn);
uint32_t string_idx = dec_insn.vB;
llvm::Value* string_idx_value = irb_.getInt32(string_idx);
IntrinsicHelper::IntrinsicId intrinsic = IntrinsicHelper::UnknownId;
if (compiler_.CanAssumeStringIsPresentInDexCache(dex_cache_, string_idx)) {
intrinsic = IntrinsicHelper::ConstStringFast;
} else {
intrinsic = IntrinsicHelper::ConstString;
}
llvm::Value* string_addr =
EmitInvokeIntrinsic(dex_pc, intrinsic, string_idx_value);
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, string_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_UnconditionalBranch(unsigned dex_pc,
const Instruction* insn) {
DecodedInstruction dec_insn(insn);
int32_t branch_offset = dec_insn.vA;
irb_.CreateBr(GetBasicBlock(dex_pc + branch_offset));
return;
}
void DexLang::EmitInsn_ArrayLength(unsigned dex_pc, const Instruction* insn) {
DecodedInstruction dec_insn(insn);
// Get the array object address
llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
// Check whether the array address is null
EmitGuard_NullPointerException(dex_pc, array_addr);
// Get the array length and store it to the register
llvm::Value* array_len = EmitLoadArrayLength(array_addr);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, array_len);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_NewArray(unsigned dex_pc, const Instruction* insn) {
DecodedInstruction dec_insn(insn);
// Prepare argument to intrinsic
llvm::Value* array_length = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
llvm::Value* type_idx = irb_.getInt32(dec_insn.vC);
llvm::Value* array_addr =
EmitInvokeIntrinsic2(dex_pc, IntrinsicHelper::NewArray,
array_length, type_idx);
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, array_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_UnaryConditionalBranch(unsigned dex_pc,
const Instruction* insn,
CondBranchKind cond) {
DecodedInstruction dec_insn(insn);
int8_t src_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vA);
DCHECK_NE(kRegUnknown, src_reg_cat);
DCHECK_NE(kRegCat2, src_reg_cat);
int32_t branch_offset = dec_insn.vB;
llvm::Value* src1_value;
llvm::Value* src2_value;
if (src_reg_cat == kRegZero) {
src1_value = irb_.getInt32(0);
src2_value = irb_.getInt32(0);
} else if (src_reg_cat == kRegCat1nr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kReg);
src2_value = irb_.getInt32(0);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
src2_value = irb_.GetJNull();
}
llvm::Value* cond_value = EmitConditionResult(src1_value, src2_value, cond);
irb_.CreateCondBr(cond_value,
GetBasicBlock(dex_pc + branch_offset),
GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_BinaryConditionalBranch(unsigned dex_pc,
const Instruction* insn,
CondBranchKind cond) {
DecodedInstruction dec_insn(insn);
int8_t src1_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vA);
int8_t src2_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vB);
DCHECK_NE(kRegUnknown, src1_reg_cat);
DCHECK_NE(kRegUnknown, src2_reg_cat);
DCHECK_NE(kRegCat2, src1_reg_cat);
DCHECK_NE(kRegCat2, src2_reg_cat);
int32_t branch_offset = dec_insn.vC;
llvm::Value* src1_value;
llvm::Value* src2_value;
if (src1_reg_cat == kRegZero && src2_reg_cat == kRegZero) {
src1_value = irb_.getInt32(0);
src2_value = irb_.getInt32(0);
} else if (src1_reg_cat != kRegZero && src2_reg_cat != kRegZero) {
CHECK_EQ(src1_reg_cat, src2_reg_cat);
if (src1_reg_cat == kRegCat1nr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
}
} else {
DCHECK(src1_reg_cat == kRegZero ||
src2_reg_cat == kRegZero);
if (src1_reg_cat == kRegZero) {
if (src2_reg_cat == kRegCat1nr) {
src1_value = irb_.GetJInt(0);
src2_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
} else {
src1_value = irb_.GetJNull();
src2_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
}
} else { // src2_reg_cat == kRegZero
if (src2_reg_cat == kRegCat1nr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
src2_value = irb_.GetJInt(0);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
src2_value = irb_.GetJNull();
}
}
}
llvm::Value* cond_value =
EmitConditionResult(src1_value, src2_value, cond);
irb_.CreateCondBr(cond_value,
GetBasicBlock(dex_pc + branch_offset),
GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_AGet(unsigned dex_pc, const Instruction* insn,
JType elem_jty) {
DecodedInstruction dec_insn(insn);
// Select corresponding intrinsic
IntrinsicHelper::IntrinsicId aget_intrinsic = IntrinsicHelper::UnknownId;
switch (elem_jty) {
case kInt: {
aget_intrinsic = IntrinsicHelper::ArrayGet;
break;
}
case kLong: {
aget_intrinsic = IntrinsicHelper::ArrayGetWide;
break;
}
case kObject: {
aget_intrinsic = IntrinsicHelper::ArrayGetObject;
break;
}
case kBoolean: {
aget_intrinsic = IntrinsicHelper::ArrayGetBoolean;
break;
}
case kByte: {
aget_intrinsic = IntrinsicHelper::ArrayGetByte;
break;
}
case kChar: {
aget_intrinsic = IntrinsicHelper::ArrayGetChar;
break;
}
case kShort: {
aget_intrinsic = IntrinsicHelper::ArrayGetShort;
break;
}
default: {
LOG(FATAL) << "Unexpected element type got in aget instruction!";
return;
}
}
// Construct argument list passed to the intrinsic
llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
llvm::Value* index_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate);
EmitGuard_ArrayException(dex_pc, array_addr, index_value);
llvm::Value* array_element_value = EmitInvokeIntrinsic2(dex_pc,
aget_intrinsic,
array_addr,
index_value);
EmitStoreDalvikReg(dec_insn.vA, elem_jty, kArray, array_element_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_APut(unsigned dex_pc, const Instruction* insn,
JType elem_jty) {
DecodedInstruction dec_insn(insn);
// Select corresponding intrinsic
IntrinsicHelper::IntrinsicId aput_intrinsic = IntrinsicHelper::UnknownId;
switch (elem_jty) {
case kInt: {
aput_intrinsic = IntrinsicHelper::ArrayPut;
break;
}
case kLong: {
aput_intrinsic = IntrinsicHelper::ArrayPutWide;
break;
}
case kObject: {
aput_intrinsic = IntrinsicHelper::ArrayPutObject;
break;
}
case kBoolean: {
aput_intrinsic = IntrinsicHelper::ArrayPutBoolean;
break;
}
case kByte: {
aput_intrinsic = IntrinsicHelper::ArrayPutByte;
break;
}
case kChar: {
aput_intrinsic = IntrinsicHelper::ArrayPutChar;
break;
}
case kShort: {
aput_intrinsic = IntrinsicHelper::ArrayPutShort;
break;
}
default: {
LOG(FATAL) << "Unexpected element type got in aput instruction!";
return;
}
}
// Construct argument list passed to the intrinsic
llvm::Value* elem_addr = EmitLoadDalvikReg(dec_insn.vA, elem_jty, kAccurate);
llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
llvm::Value* index_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate);
EmitGuard_ArrayException(dex_pc, array_addr, index_value);
// Check the type if an object is putting
if (elem_jty == kObject) {
EmitInvokeIntrinsic2(dex_pc, IntrinsicHelper::CheckPutArrayElement,
elem_addr, array_addr);
}
EmitInvokeIntrinsic3(dex_pc, aput_intrinsic,
elem_addr, array_addr, index_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_SGet(unsigned dex_pc, const Instruction* insn,
JType field_jty) {
DecodedInstruction dec_insn(insn);
uint32_t field_idx = dec_insn.vB;
int field_offset;
int ssb_index;
bool is_referrers_class;
bool is_volatile;
bool is_fast_path = compiler_.ComputeStaticFieldInfo(field_idx, &cunit_,
field_offset, ssb_index,
is_referrers_class,
is_volatile,
/* is_put */true);
// Select corresponding intrinsic accroding to the field type and is_fast_path
IntrinsicHelper::IntrinsicId sget_intrinsic = IntrinsicHelper::UnknownId;
switch (field_jty) {
case kInt: {
sget_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldGetFast :
IntrinsicHelper::StaticFieldGet;
break;
}
case kLong: {
sget_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldGetWideFast :
IntrinsicHelper::StaticFieldGetWide;
break;
}
case kObject: {
sget_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldGetObjectFast :
IntrinsicHelper::StaticFieldGetObject;
break;
}
case kBoolean: {
sget_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldGetBooleanFast :
IntrinsicHelper::StaticFieldGetBoolean;
break;
}
case kByte: {
sget_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldGetByteFast :
IntrinsicHelper::StaticFieldGetByte;
break;
}
case kChar: {
sget_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldGetCharFast :
IntrinsicHelper::StaticFieldGetChar;
break;
}
case kShort: {
sget_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldGetShortFast :
IntrinsicHelper::StaticFieldGetShort;
break;
}
default: {
LOG(FATAL) << "Unexpected element type got in sget instruction!";
return;
}
}
llvm::Constant* field_idx_value = irb_.getInt32(field_idx);
llvm::Value* static_field_value;
if (!is_fast_path) {
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
static_field_value =
EmitInvokeIntrinsic2(dex_pc, sget_intrinsic,
field_idx_value, method_object_addr);
} else {
DCHECK_GE(field_offset, 0);
llvm::Value* static_storage_addr = NULL;
if (is_referrers_class) {
// Fast path, static storage base is this method's class
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
static_storage_addr =
EmitInvokeIntrinsic(dex_pc, IntrinsicHelper::LoadDeclaringClassSSB,
method_object_addr);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized
DCHECK_GE(ssb_index, 0);
static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index);
}
static_field_value =
EmitInvokeIntrinsic3(dex_pc, sget_intrinsic,
static_storage_addr, irb_.getInt32(field_offset),
irb_.getInt1(is_volatile));
}
EmitStoreDalvikReg(dec_insn.vA, field_jty, kField, static_field_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_SPut(unsigned dex_pc, const Instruction* insn,
JType field_jty) {
DecodedInstruction dec_insn(insn);
uint32_t field_idx = dec_insn.vB;
llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, field_jty, kField);
int field_offset;
int ssb_index;
bool is_referrers_class;
bool is_volatile;
bool is_fast_path = compiler_.ComputeStaticFieldInfo(field_idx, &cunit_,
field_offset, ssb_index,
is_referrers_class,
is_volatile,
/* is_put */true);
// Select corresponding intrinsic accroding to the field type and is_fast_path
IntrinsicHelper::IntrinsicId sput_intrinsic = IntrinsicHelper::UnknownId;
switch (field_jty) {
case kInt: {
sput_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldPutFast :
IntrinsicHelper::StaticFieldPut;
break;
}
case kLong: {
sput_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldPutWideFast :
IntrinsicHelper::StaticFieldPutWide;
break;
}
case kObject: {
sput_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldPutObjectFast :
IntrinsicHelper::StaticFieldPutObject;
break;
}
case kBoolean: {
sput_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldPutBooleanFast :
IntrinsicHelper::StaticFieldPutBoolean;
break;
}
case kByte: {
sput_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldPutByteFast :
IntrinsicHelper::StaticFieldPutByte;
break;
}
case kChar: {
sput_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldPutCharFast :
IntrinsicHelper::StaticFieldPutChar;
break;
}
case kShort: {
sput_intrinsic =
(is_fast_path) ? IntrinsicHelper::StaticFieldPutShortFast :
IntrinsicHelper::StaticFieldPutShort;
break;
}
default: {
LOG(FATAL) << "Unexpected element type got in sput instruction!";
return;
}
}
if (!is_fast_path) {
llvm::Constant* field_idx_value = irb_.getInt32(dec_insn.vB);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitInvokeIntrinsic3(dex_pc, sput_intrinsic,
field_idx_value, method_object_addr, new_value);
} else {
DCHECK_GE(field_offset, 0);
llvm::Value* static_storage_addr = NULL;
if (is_referrers_class) {
// Fast path, static storage base is this method's class
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
static_storage_addr =
EmitInvokeIntrinsic(dex_pc, IntrinsicHelper::LoadDeclaringClassSSB,
method_object_addr);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized
DCHECK_GE(ssb_index, 0);
static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index);
}
EmitInvokeIntrinsic4(dex_pc, sput_intrinsic,
static_storage_addr, irb_.getInt32(field_offset),
irb_.getInt1(is_volatile), new_value);
}
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_Invoke(unsigned dex_pc, const Instruction* insn,
InvokeType invoke_type, InvokeArgFmt arg_fmt) {
DecodedInstruction dec_insn(insn);
bool is_static = (invoke_type == kStatic);
uint32_t callee_method_idx = dec_insn.vB;
// Compute invoke related information for compiler decision
int vtable_idx = -1;
uintptr_t direct_code = 0; // Currently unused
uintptr_t direct_method = 0;
bool is_fast_path = compiler_.ComputeInvokeInfo(callee_method_idx, &cunit_,
invoke_type, vtable_idx,
direct_code, direct_method);
// Load *this* actual parameter
llvm::Value* this_addr = NULL;
if (is_static) {
this_addr = irb_.GetJNull();
} else {
// Test: Is *this* parameter equal to null?
this_addr = (arg_fmt == kArgReg) ?
EmitLoadDalvikReg(dec_insn.arg[0], kObject, kAccurate):
EmitLoadDalvikReg(dec_insn.vC + 0, kObject, kAccurate);
EmitGuard_NullPointerException(dex_pc, this_addr);
}
// Load the method object
llvm::Value* callee_method_object_addr = NULL;
llvm::Value* callee_method_idx_value = irb_.getInt32(callee_method_idx);
if (!is_fast_path) {
llvm::Value* caller_method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = EmitGetCurrentThread();
callee_method_object_addr =
EmitInvokeIntrinsic5(dex_pc, IntrinsicHelper::GetCalleeMethodObjAddr,
this_addr,
callee_method_idx_value,
caller_method_object_addr,
thread_object_addr,
irb_.getInt32(static_cast<unsigned>(invoke_type)));
} else {
switch (invoke_type) {
case kStatic:
case kDirect: {
if (direct_method != 0u &&
direct_method != static_cast<uintptr_t>(-1)) {
callee_method_object_addr =
irb_.CreateIntToPtr(irb_.GetPtrEquivInt(direct_method),
irb_.GetJMethodTy());
} else {
callee_method_object_addr =
EmitInvokeIntrinsic(dex_pc,
IntrinsicHelper::GetSDCalleeMethodObjAddrFast,
callee_method_idx_value);
}
break;
}
case kVirtual: {
DCHECK(vtable_idx != -1);
callee_method_object_addr =
EmitInvokeIntrinsic2(dex_pc,
IntrinsicHelper::GetVirtualCalleeMethodObjAddrFast,
irb_.getInt32(vtable_idx), this_addr);
break;
}
case kSuper: {
LOG(FATAL) << "invoke-super should be promoted to invoke-direct in "
"the fast path.";
break;
}
case kInterface: {
llvm::Value* caller_method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = EmitGetCurrentThread();
callee_method_object_addr =
EmitInvokeIntrinsic4(dex_pc,
IntrinsicHelper::GetInterfaceCalleeMethodObjAddrFast,
this_addr,
callee_method_idx_value,
caller_method_object_addr,
thread_object_addr);
break;
}
}
}
// Get the shorty of the callee
uint32_t callee_shorty_size;
const DexFile::MethodId& callee_method_id =
dex_file_->GetMethodId(callee_method_idx);
const char* callee_shorty =
dex_file_->GetMethodShorty(callee_method_id, &callee_shorty_size);
CHECK_GE(callee_shorty_size, 1u);
JType callee_ret_jty = GetJTypeFromShorty(callee_shorty[0]);
// Select the corresponding intrinsic according to the return type
IntrinsicHelper::IntrinsicId invoke_intrinsic = IntrinsicHelper::UnknownId;
if (callee_ret_jty == kVoid) {
invoke_intrinsic = IntrinsicHelper::InvokeRetVoid;
} else {
switch (GetRegCategoryFromJType(callee_ret_jty)) {
case kRegCat1nr: {
invoke_intrinsic = IntrinsicHelper::InvokeRetCat1;
break;
}
case kRegCat2: {
invoke_intrinsic = IntrinsicHelper::InvokeRetCat2;
break;
}
case kRegObject: {
invoke_intrinsic = IntrinsicHelper::InvokeRetObject;
break;
}
default: {
LOG(FATAL) << "Unknown register category for type: "
<< callee_ret_jty;
break;
}
}
}
// Load arguments for invoke intrinsics
std::vector<llvm::Value*> args;
// Callee's method id goes first
args.push_back(callee_method_object_addr);
// Load arguments listing in the dec_insn
unsigned arg_idx = 0;
if (!is_static) {
// Push "this" for non-static method
args.push_back(this_addr);
arg_idx++;
}
// Load argument values according to the shorty
for (uint32_t i = 1; i < callee_shorty_size; i++) {
unsigned reg_idx = (arg_fmt == kArgReg) ? (dec_insn.vC + arg_idx) :
(dec_insn.arg[arg_idx]);
JType jty = GetJTypeFromShorty(callee_shorty[i]);
args.push_back(EmitLoadDalvikReg(reg_idx, jty, kAccurate));
arg_idx++;
if (GetRegCategoryFromJType(jty) == kRegCat2) {
// Wide types occupied two registers
arg_idx++;
}
}
DCHECK_EQ(arg_idx, dec_insn.vA)
<< "Actual argument mismatch for callee: "
<< PrettyMethod(callee_method_idx, *dex_file_);
llvm::Value* retval = EmitInvokeIntrinsic(dex_pc, invoke_intrinsic, args);
// Store the return value for the subsequent move-result
if (callee_shorty[0] != 'V') {
retval_ = retval;
retval_jty_ = GetJTypeFromShorty(callee_shorty[0]);
} else {
retval_ = NULL;
}
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_IntArithm(unsigned dex_pc, const Instruction* insn,
IntArithmKind arithm, JType op_jty,
bool is_2addr) {
DecodedInstruction dec_insn(insn);
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
llvm::Value* src1_value;
llvm::Value* src2_value;
if (is_2addr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vC, op_jty, kAccurate);
}
llvm::Value* result_value =
EmitIntArithmResultComputation(dex_pc, src1_value, src2_value,
arithm, op_jty);
EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_IntArithmImmediate(unsigned dex_pc,
const Instruction* insn,
IntArithmKind arithm) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
llvm::Value* imm_value = irb_.getInt32(dec_insn.vC);
llvm::Value* result_value =
EmitIntArithmResultComputation(dex_pc, src_value, imm_value, arithm, kInt);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
void DexLang::EmitInsn_FPArithm(unsigned dex_pc, const Instruction* insn,
FPArithmKind arithm, JType op_jty,
bool is_2addr) {
DecodedInstruction dec_insn(insn);
DCHECK(op_jty == kFloat || op_jty == kDouble) << op_jty;
llvm::Value* src1_value;
llvm::Value* src2_value;
if (is_2addr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vC, op_jty, kAccurate);
}
llvm::Value* result_value;
switch (arithm) {
case kFPArithm_Add: {
result_value = irb_.CreateFAdd(src1_value, src2_value);
break;
}
case kFPArithm_Sub: {
result_value = irb_.CreateFSub(src1_value, src2_value);
break;
}
case kFPArithm_Mul: {
result_value = irb_.CreateFMul(src1_value, src2_value);
break;
}
case kFPArithm_Div: {
result_value = irb_.CreateFDiv(src1_value, src2_value);
break;
}
case kFPArithm_Rem: {
result_value = irb_.CreateFRem(src1_value, src2_value);
break;
}
default: {
LOG(FATAL) << "Unknown floating-point arithmetic kind: " << arithm;
return;
}
}
EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
return;
}
bool DexLang::EmitInstructions() {
unsigned dex_pc = 0;
while (dex_pc < code_item_->insns_size_in_code_units_) {
const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc);
if (!EmitInstruction(dex_pc, insn)) {
return false;
}
dex_pc += insn->SizeInCodeUnits();
}
return true;
}
bool DexLang::EmitInstruction(unsigned dex_pc, const Instruction* insn) {
// Set the IRBuilder insertion point
irb_.SetInsertPoint(GetBasicBlock(dex_pc));
#define ARGS dex_pc, insn
// Dispatch the instruction
switch (insn->Opcode()) {
case Instruction::NOP: {
EmitInsn_Nop(ARGS);
break;
}
case Instruction::MOVE:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_16: {
EmitInsn_Move(ARGS, kInt);
break;
}
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_FROM16:
case Instruction::MOVE_WIDE_16: {
EmitInsn_Move(ARGS, kLong);
break;
}
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_OBJECT_FROM16:
case Instruction::MOVE_OBJECT_16: {
EmitInsn_Move(ARGS, kObject);
break;
}
case Instruction::MOVE_RESULT: {
EmitInsn_MoveResult(ARGS, kInt);
break;
}
case Instruction::MOVE_RESULT_WIDE: {
EmitInsn_MoveResult(ARGS, kLong);
break;
}
case Instruction::MOVE_RESULT_OBJECT: {
EmitInsn_MoveResult(ARGS, kObject);
break;
}
case Instruction::MOVE_EXCEPTION: {
EmitInsn_MoveException(ARGS);
break;
}
case Instruction::RETURN_VOID: {
EmitInsn_ReturnVoid(ARGS);
break;
}
case Instruction::RETURN:
case Instruction::RETURN_WIDE:
case Instruction::RETURN_OBJECT: {
EmitInsn_Return(ARGS);
break;
}
case Instruction::CONST_4:
case Instruction::CONST_16:
case Instruction::CONST:
case Instruction::CONST_HIGH16: {
EmitInsn_LoadConstant(ARGS, kInt);
break;
}
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
case Instruction::CONST_WIDE:
case Instruction::CONST_WIDE_HIGH16: {
EmitInsn_LoadConstant(ARGS, kLong);
break;
}
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO: {
EmitInsn_LoadConstantString(ARGS);
break;
}
case Instruction::CONST_CLASS:
//EmitInsn_LoadConstantClass(ARGS);
break;
case Instruction::MONITOR_ENTER:
//EmitInsn_MonitorEnter(ARGS);
break;
case Instruction::MONITOR_EXIT:
//EmitInsn_MonitorExit(ARGS);
break;
case Instruction::CHECK_CAST:
//EmitInsn_CheckCast(ARGS);
break;
case Instruction::INSTANCE_OF:
//EmitInsn_InstanceOf(ARGS);
break;
case Instruction::ARRAY_LENGTH: {
EmitInsn_ArrayLength(ARGS);
break;
}
case Instruction::NEW_INSTANCE:
//EmitInsn_NewInstance(ARGS);
break;
case Instruction::NEW_ARRAY: {
EmitInsn_NewArray(ARGS);
break;
}
case Instruction::FILLED_NEW_ARRAY:
//EmitInsn_FilledNewArray(ARGS, false);
break;
case Instruction::FILLED_NEW_ARRAY_RANGE:
//EmitInsn_FilledNewArray(ARGS, true);
break;
case Instruction::FILL_ARRAY_DATA:
//EmitInsn_FillArrayData(ARGS);
break;
case Instruction::THROW:
//EmitInsn_ThrowException(ARGS);
break;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32: {
EmitInsn_UnconditionalBranch(ARGS);
break;
}
case Instruction::PACKED_SWITCH:
//EmitInsn_PackedSwitch(ARGS);
break;
case Instruction::SPARSE_SWITCH:
//EmitInsn_SparseSwitch(ARGS);
break;
case Instruction::CMPL_FLOAT:
//EmitInsn_FPCompare(ARGS, kFloat, false);
break;
case Instruction::CMPG_FLOAT:
//EmitInsn_FPCompare(ARGS, kFloat, true);
break;
case Instruction::CMPL_DOUBLE:
//EmitInsn_FPCompare(ARGS, kDouble, false);
break;
case Instruction::CMPG_DOUBLE:
//EmitInsn_FPCompare(ARGS, kDouble, true);
break;
case Instruction::CMP_LONG:
//EmitInsn_LongCompare(ARGS);
break;
case Instruction::IF_EQ: {
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_EQ);
break;
}
case Instruction::IF_NE: {
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_NE);
break;
}
case Instruction::IF_LT: {
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_LT);
break;
}
case Instruction::IF_GE: {
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_GE);
break;
}
case Instruction::IF_GT: {
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_GT);
break;
}
case Instruction::IF_LE: {
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_LE);
break;
}
case Instruction::IF_EQZ: {
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_EQ);
break;
}
case Instruction::IF_NEZ: {
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_NE);
break;
}
case Instruction::IF_LTZ: {
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_LT);
break;
}
case Instruction::IF_GEZ: {
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_GE);
break;
}
case Instruction::IF_GTZ: {
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_GT);
break;
}
case Instruction::IF_LEZ: {
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_LE);
break;
}
case Instruction::AGET: {
EmitInsn_AGet(ARGS, kInt);
break;
}
case Instruction::AGET_WIDE: {
EmitInsn_AGet(ARGS, kLong);
break;
}
case Instruction::AGET_OBJECT: {
EmitInsn_AGet(ARGS, kObject);
break;
}
case Instruction::AGET_BOOLEAN: {
EmitInsn_AGet(ARGS, kBoolean);
break;
}
case Instruction::AGET_BYTE: {
EmitInsn_AGet(ARGS, kByte);
break;
}
case Instruction::AGET_CHAR: {
EmitInsn_AGet(ARGS, kChar);
break;
}
case Instruction::AGET_SHORT: {
EmitInsn_AGet(ARGS, kShort);
break;
}
case Instruction::APUT: {
EmitInsn_APut(ARGS, kInt);
break;
}
case Instruction::APUT_WIDE: {
EmitInsn_APut(ARGS, kLong);
break;
}
case Instruction::APUT_OBJECT: {
EmitInsn_APut(ARGS, kObject);
break;
}
case Instruction::APUT_BOOLEAN: {
EmitInsn_APut(ARGS, kBoolean);
break;
}
case Instruction::APUT_BYTE: {
EmitInsn_APut(ARGS, kByte);
break;
}
case Instruction::APUT_CHAR: {
EmitInsn_APut(ARGS, kChar);
break;
}
case Instruction::APUT_SHORT: {
EmitInsn_APut(ARGS, kShort);
break;
}
case Instruction::IGET:
//EmitInsn_IGet(ARGS, kInt);
break;
case Instruction::IGET_WIDE:
//EmitInsn_IGet(ARGS, kLong);
break;
case Instruction::IGET_OBJECT:
//EmitInsn_IGet(ARGS, kObject);
break;
case Instruction::IGET_BOOLEAN:
//EmitInsn_IGet(ARGS, kBoolean);
break;
case Instruction::IGET_BYTE:
//EmitInsn_IGet(ARGS, kByte);
break;
case Instruction::IGET_CHAR:
//EmitInsn_IGet(ARGS, kChar);
break;
case Instruction::IGET_SHORT:
//EmitInsn_IGet(ARGS, kShort);
break;
case Instruction::IPUT:
//EmitInsn_IPut(ARGS, kInt);
break;
case Instruction::IPUT_WIDE:
//EmitInsn_IPut(ARGS, kLong);
break;
case Instruction::IPUT_OBJECT:
//EmitInsn_IPut(ARGS, kObject);
break;
case Instruction::IPUT_BOOLEAN:
//EmitInsn_IPut(ARGS, kBoolean);
break;
case Instruction::IPUT_BYTE:
//EmitInsn_IPut(ARGS, kByte);
break;
case Instruction::IPUT_CHAR:
//EmitInsn_IPut(ARGS, kChar);
break;
case Instruction::IPUT_SHORT:
//EmitInsn_IPut(ARGS, kShort);
break;
case Instruction::SGET: {
EmitInsn_SGet(ARGS, kInt);
break;
}
case Instruction::SGET_WIDE: {
EmitInsn_SGet(ARGS, kLong);
break;
}
case Instruction::SGET_OBJECT: {
EmitInsn_SGet(ARGS, kObject);
break;
}
case Instruction::SGET_BOOLEAN: {
EmitInsn_SGet(ARGS, kBoolean);
break;
}
case Instruction::SGET_BYTE: {
EmitInsn_SGet(ARGS, kByte);
break;
}
case Instruction::SGET_CHAR: {
EmitInsn_SGet(ARGS, kChar);
break;
}
case Instruction::SGET_SHORT: {
EmitInsn_SGet(ARGS, kShort);
break;
}
case Instruction::SPUT: {
EmitInsn_SPut(ARGS, kInt);
break;
}
case Instruction::SPUT_WIDE: {
EmitInsn_SPut(ARGS, kLong);
break;
}
case Instruction::SPUT_OBJECT: {
EmitInsn_SPut(ARGS, kObject);
break;
}
case Instruction::SPUT_BOOLEAN: {
EmitInsn_SPut(ARGS, kBoolean);
break;
}
case Instruction::SPUT_BYTE: {
EmitInsn_SPut(ARGS, kByte);
break;
}
case Instruction::SPUT_CHAR: {
EmitInsn_SPut(ARGS, kChar);
break;
}
case Instruction::SPUT_SHORT: {
EmitInsn_SPut(ARGS, kShort);
break;
}
case Instruction::INVOKE_VIRTUAL: {
EmitInsn_Invoke(ARGS, kVirtual, kArgReg);
break;
}
case Instruction::INVOKE_SUPER: {
EmitInsn_Invoke(ARGS, kSuper, kArgReg);
break;
}
case Instruction::INVOKE_DIRECT: {
EmitInsn_Invoke(ARGS, kDirect, kArgReg);
break;
}
case Instruction::INVOKE_STATIC: {
EmitInsn_Invoke(ARGS, kStatic, kArgReg);
break;
}
case Instruction::INVOKE_INTERFACE: {
EmitInsn_Invoke(ARGS, kInterface, kArgReg);
break;
}
case Instruction::INVOKE_VIRTUAL_RANGE: {
EmitInsn_Invoke(ARGS, kVirtual, kArgRange);
break;
}
case Instruction::INVOKE_SUPER_RANGE: {
EmitInsn_Invoke(ARGS, kSuper, kArgRange);
break;
}
case Instruction::INVOKE_DIRECT_RANGE: {
EmitInsn_Invoke(ARGS, kDirect, kArgRange);
break;
}
case Instruction::INVOKE_STATIC_RANGE: {
EmitInsn_Invoke(ARGS, kStatic, kArgRange);
break;
}
case Instruction::INVOKE_INTERFACE_RANGE: {
EmitInsn_Invoke(ARGS, kInterface, kArgRange);
break;
}
case Instruction::NEG_INT:
//EmitInsn_Neg(ARGS, kInt);
break;
case Instruction::NOT_INT:
//EmitInsn_Not(ARGS, kInt);
break;
case Instruction::NEG_LONG:
//EmitInsn_Neg(ARGS, kLong);
break;
case Instruction::NOT_LONG:
//EmitInsn_Not(ARGS, kLong);
break;
case Instruction::NEG_FLOAT:
//EmitInsn_FNeg(ARGS, kFloat);
break;
case Instruction::NEG_DOUBLE:
//EmitInsn_FNeg(ARGS, kDouble);
break;
case Instruction::INT_TO_LONG:
//EmitInsn_SExt(ARGS);
break;
case Instruction::INT_TO_FLOAT:
//EmitInsn_IntToFP(ARGS, kInt, kFloat);
break;
case Instruction::INT_TO_DOUBLE:
//EmitInsn_IntToFP(ARGS, kInt, kDouble);
break;
case Instruction::LONG_TO_INT:
//EmitInsn_Trunc(ARGS);
break;
case Instruction::LONG_TO_FLOAT:
//EmitInsn_IntToFP(ARGS, kLong, kFloat);
break;
case Instruction::LONG_TO_DOUBLE:
//EmitInsn_IntToFP(ARGS, kLong, kDouble);
break;
case Instruction::FLOAT_TO_INT:
//EmitInsn_FPToInt(ARGS, kFloat, kInt, F2I);
break;
case Instruction::FLOAT_TO_LONG:
//EmitInsn_FPToInt(ARGS, kFloat, kLong, F2L);
break;
case Instruction::FLOAT_TO_DOUBLE:
//EmitInsn_FExt(ARGS);
break;
case Instruction::DOUBLE_TO_INT:
//EmitInsn_FPToInt(ARGS, kDouble, kInt, D2I);
break;
case Instruction::DOUBLE_TO_LONG:
//EmitInsn_FPToInt(ARGS, kDouble, kLong, D2L);
break;
case Instruction::DOUBLE_TO_FLOAT:
//EmitInsn_FTrunc(ARGS);
break;
case Instruction::INT_TO_BYTE:
//EmitInsn_TruncAndSExt(ARGS, 8);
break;
case Instruction::INT_TO_CHAR:
//EmitInsn_TruncAndZExt(ARGS, 16);
break;
case Instruction::INT_TO_SHORT:
//EmitInsn_TruncAndSExt(ARGS, 16);
break;
case Instruction::ADD_INT: {
EmitInsn_IntArithm(ARGS, kIntArithm_Add, kInt, false);
break;
}
case Instruction::SUB_INT: {
EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kInt, false);
break;
}
case Instruction::MUL_INT: {
EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kInt, false);
break;
}
case Instruction::DIV_INT: {
EmitInsn_IntArithm(ARGS, kIntArithm_Div, kInt, false);
break;
}
case Instruction::REM_INT: {
EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kInt, false);
break;
}
case Instruction::AND_INT: {
EmitInsn_IntArithm(ARGS, kIntArithm_And, kInt, false);
break;
}
case Instruction::OR_INT: {
EmitInsn_IntArithm(ARGS, kIntArithm_Or, kInt, false);
break;
}
case Instruction::XOR_INT: {
EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kInt, false);
break;
}
case Instruction::SHL_INT:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kInt, false);
break;
case Instruction::SHR_INT:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kInt, false);
break;
case Instruction::USHR_INT:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kInt, false);
break;
case Instruction::ADD_LONG: {
EmitInsn_IntArithm(ARGS, kIntArithm_Add, kLong, false);
break;
}
case Instruction::SUB_LONG: {
EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kLong, false);
break;
}
case Instruction::MUL_LONG: {
EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kLong, false);
break;
}
case Instruction::DIV_LONG: {
EmitInsn_IntArithm(ARGS, kIntArithm_Div, kLong, false);
break;
}
case Instruction::REM_LONG: {
EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kLong, false);
break;
}
case Instruction::AND_LONG: {
EmitInsn_IntArithm(ARGS, kIntArithm_And, kLong, false);
break;
}
case Instruction::OR_LONG: {
EmitInsn_IntArithm(ARGS, kIntArithm_Or, kLong, false);
break;
}
case Instruction::XOR_LONG: {
EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kLong, false);
break;
}
case Instruction::SHL_LONG:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kLong, false);
break;
case Instruction::SHR_LONG:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kLong, false);
break;
case Instruction::USHR_LONG:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kLong, false);
break;
case Instruction::ADD_FLOAT: {
EmitInsn_FPArithm(ARGS, kFPArithm_Add, kFloat, false);
break;
}
case Instruction::SUB_FLOAT: {
EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kFloat, false);
break;
}
case Instruction::MUL_FLOAT: {
EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kFloat, false);
break;
}
case Instruction::DIV_FLOAT: {
EmitInsn_FPArithm(ARGS, kFPArithm_Div, kFloat, false);
break;
}
case Instruction::REM_FLOAT: {
EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kFloat, false);
break;
}
case Instruction::ADD_DOUBLE: {
EmitInsn_FPArithm(ARGS, kFPArithm_Add, kDouble, false);
break;
}
case Instruction::SUB_DOUBLE: {
EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kDouble, false);
break;
}
case Instruction::MUL_DOUBLE: {
EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kDouble, false);
break;
}
case Instruction::DIV_DOUBLE: {
EmitInsn_FPArithm(ARGS, kFPArithm_Div, kDouble, false);
break;
}
case Instruction::REM_DOUBLE: {
EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kDouble, false);
break;
}
case Instruction::ADD_INT_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Add, kInt, true);
break;
}
case Instruction::SUB_INT_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kInt, true);
break;
}
case Instruction::MUL_INT_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kInt, true);
break;
}
case Instruction::DIV_INT_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Div, kInt, true);
break;
}
case Instruction::REM_INT_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kInt, true);
break;
}
case Instruction::AND_INT_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_And, kInt, true);
break;
}
case Instruction::OR_INT_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Or, kInt, true);
break;
}
case Instruction::XOR_INT_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kInt, true);
break;
}
case Instruction::SHL_INT_2ADDR:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kInt, true);
break;
case Instruction::SHR_INT_2ADDR:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kInt, true);
break;
case Instruction::USHR_INT_2ADDR:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kInt, true);
break;
case Instruction::ADD_LONG_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Add, kLong, true);
break;
}
case Instruction::SUB_LONG_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kLong, true);
break;
}
case Instruction::MUL_LONG_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kLong, true);
break;
}
case Instruction::DIV_LONG_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Div, kLong, true);
break;
}
case Instruction::REM_LONG_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kLong, true);
break;
}
case Instruction::AND_LONG_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_And, kLong, true);
break;
}
case Instruction::OR_LONG_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Or, kLong, true);
break;
}
case Instruction::XOR_LONG_2ADDR: {
EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kLong, true);
break;
}
case Instruction::SHL_LONG_2ADDR:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kLong, true);
break;
case Instruction::SHR_LONG_2ADDR:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kLong, true);
break;
case Instruction::USHR_LONG_2ADDR:
//EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kLong, true);
break;
case Instruction::ADD_FLOAT_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Add, kFloat, true);
break;
}
case Instruction::SUB_FLOAT_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kFloat, true);
break;
}
case Instruction::MUL_FLOAT_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kFloat, true);
break;
}
case Instruction::DIV_FLOAT_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Div, kFloat, true);
break;
}
case Instruction::REM_FLOAT_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kFloat, true);
break;
}
case Instruction::ADD_DOUBLE_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Add, kDouble, true);
break;
}
case Instruction::SUB_DOUBLE_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kDouble, true);
break;
}
case Instruction::MUL_DOUBLE_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kDouble, true);
break;
}
case Instruction::DIV_DOUBLE_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Div, kDouble, true);
break;
}
case Instruction::REM_DOUBLE_2ADDR: {
EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kDouble, true);
break;
}
case Instruction::ADD_INT_LIT16:
case Instruction::ADD_INT_LIT8: {
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Add);
break;
}
case Instruction::RSUB_INT:
case Instruction::RSUB_INT_LIT8:
//EmitInsn_RSubImmediate(ARGS);
break;
case Instruction::MUL_INT_LIT16:
case Instruction::MUL_INT_LIT8: {
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Mul);
break;
}
case Instruction::DIV_INT_LIT16:
case Instruction::DIV_INT_LIT8: {
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Div);
break;
}
case Instruction::REM_INT_LIT16:
case Instruction::REM_INT_LIT8: {
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Rem);
break;
}
case Instruction::AND_INT_LIT16:
case Instruction::AND_INT_LIT8: {
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_And);
break;
}
case Instruction::OR_INT_LIT16:
case Instruction::OR_INT_LIT8: {
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Or);
break;
}
case Instruction::XOR_INT_LIT16:
case Instruction::XOR_INT_LIT8: {
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Xor);
break;
}
case Instruction::SHL_INT_LIT8:
//EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_Shl);
break;
case Instruction::SHR_INT_LIT8:
//EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_Shr);
break;
case Instruction::USHR_INT_LIT8:
//EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_UShr);
break;
case Instruction::UNUSED_3E:
case Instruction::UNUSED_3F:
case Instruction::UNUSED_40:
case Instruction::UNUSED_41:
case Instruction::UNUSED_42:
case Instruction::UNUSED_43:
case Instruction::UNUSED_73:
case Instruction::UNUSED_79:
case Instruction::UNUSED_7A:
case Instruction::UNUSED_E3:
case Instruction::UNUSED_E4:
case Instruction::UNUSED_E5:
case Instruction::UNUSED_E6:
case Instruction::UNUSED_E7:
case Instruction::UNUSED_E8:
case Instruction::UNUSED_E9:
case Instruction::UNUSED_EA:
case Instruction::UNUSED_EB:
case Instruction::UNUSED_EC:
case Instruction::UNUSED_ED:
case Instruction::UNUSED_EE:
case Instruction::UNUSED_EF:
case Instruction::UNUSED_F0:
case Instruction::UNUSED_F1:
case Instruction::UNUSED_F2:
case Instruction::UNUSED_F3:
case Instruction::UNUSED_F4:
case Instruction::UNUSED_F5:
case Instruction::UNUSED_F6:
case Instruction::UNUSED_F7:
case Instruction::UNUSED_F8:
case Instruction::UNUSED_F9:
case Instruction::UNUSED_FA:
case Instruction::UNUSED_FB:
case Instruction::UNUSED_FC:
case Instruction::UNUSED_FD:
case Instruction::UNUSED_FE:
case Instruction::UNUSED_FF: {
LOG(FATAL) << "Dex file contains UNUSED bytecode: " << insn->Opcode();
}
}
#undef ARGS
return true;
}
} // namespace greenland
} // namespace art