| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* This file contains codegen for the Mips ISA */ |
| |
| #include "codegen_mips.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "mips_lir.h" |
| |
| namespace art { |
| |
| void MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, |
| SpecialCaseHandler special_case) { |
| // TODO |
| } |
| |
| /* |
| * The lack of pc-relative loads on Mips presents somewhat of a challenge |
| * for our PIC switch table strategy. To materialize the current location |
| * we'll do a dummy JAL and reference our tables using r_RA as the |
| * base register. Note that r_RA will be used both as the base to |
| * locate the switch table data and as the reference base for the switch |
| * target offsets stored in the table. We'll use a special pseudo-instruction |
| * to represent the jal and trigger the construction of the |
| * switch table offsets (which will happen after final assembly and all |
| * labels are fixed). |
| * |
| * The test loop will look something like: |
| * |
| * ori rEnd, r_ZERO, #table_size ; size in bytes |
| * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA |
| * nop ; opportunistically fill |
| * BaseLabel: |
| * addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel |
| addu rEnd, rEnd, rBase ; end of table |
| * lw r_val, [rSP, v_reg_off] ; Test Value |
| * loop: |
| * beq rBase, rEnd, done |
| * lw r_key, 0(rBase) |
| * addu rBase, 8 |
| * bne r_val, r_key, loop |
| * lw r_disp, -4(rBase) |
| * addu r_RA, r_disp |
| * jr r_RA |
| * done: |
| * |
| */ |
| void MipsMir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, |
| RegLocation rl_src) { |
| const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; |
| if (cu_->verbose) { |
| DumpSparseSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable* tab_rec = |
| static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData)); |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| int elements = table[1]; |
| tab_rec->targets = |
| static_cast<LIR**>(arena_->Alloc(elements * sizeof(LIR*), ArenaAllocator::kAllocLIR)); |
| switch_tables_.Insert(tab_rec); |
| |
| // The table is composed of 8-byte key/disp pairs |
| int byte_size = elements * 8; |
| |
| int size_hi = byte_size >> 16; |
| int size_lo = byte_size & 0xffff; |
| |
| int rEnd = AllocTemp(); |
| if (size_hi) { |
| NewLIR2(kMipsLui, rEnd, size_hi); |
| } |
| // Must prevent code motion for the curr pc pair |
| GenBarrier(); // Scheduling barrier |
| NewLIR0(kMipsCurrPC); // Really a jal to .+8 |
| // Now, fill the branch delay slot |
| if (size_hi) { |
| NewLIR3(kMipsOri, rEnd, rEnd, size_lo); |
| } else { |
| NewLIR3(kMipsOri, rEnd, r_ZERO, size_lo); |
| } |
| GenBarrier(); // Scheduling barrier |
| |
| // Construct BaseLabel and set up table base register |
| LIR* base_label = NewLIR0(kPseudoTargetLabel); |
| // Remember base label so offsets can be computed later |
| tab_rec->anchor = base_label; |
| int rBase = AllocTemp(); |
| NewLIR4(kMipsDelta, rBase, 0, WrapPointer(base_label), WrapPointer(tab_rec)); |
| OpRegRegReg(kOpAdd, rEnd, rEnd, rBase); |
| |
| // Grab switch test value |
| rl_src = LoadValue(rl_src, kCoreReg); |
| |
| // Test loop |
| int r_key = AllocTemp(); |
| LIR* loop_label = NewLIR0(kPseudoTargetLabel); |
| LIR* exit_branch = OpCmpBranch(kCondEq, rBase, rEnd, NULL); |
| LoadWordDisp(rBase, 0, r_key); |
| OpRegImm(kOpAdd, rBase, 8); |
| OpCmpBranch(kCondNe, rl_src.low_reg, r_key, loop_label); |
| int r_disp = AllocTemp(); |
| LoadWordDisp(rBase, -4, r_disp); |
| OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp); |
| OpReg(kOpBx, r_RA); |
| |
| // Loop exit |
| LIR* exit_label = NewLIR0(kPseudoTargetLabel); |
| exit_branch->target = exit_label; |
| } |
| |
| /* |
| * Code pattern will look something like: |
| * |
| * lw r_val |
| * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA |
| * nop ; opportunistically fill |
| * [subiu r_val, bias] ; Remove bias if low_val != 0 |
| * bound check -> done |
| * lw r_disp, [r_RA, r_val] |
| * addu r_RA, r_disp |
| * jr r_RA |
| * done: |
| */ |
| void MipsMir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, |
| RegLocation rl_src) { |
| const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; |
| if (cu_->verbose) { |
| DumpPackedSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable* tab_rec = |
| static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData)); |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| int size = table[1]; |
| tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), |
| ArenaAllocator::kAllocLIR)); |
| switch_tables_.Insert(tab_rec); |
| |
| // Get the switch value |
| rl_src = LoadValue(rl_src, kCoreReg); |
| |
| // Prepare the bias. If too big, handle 1st stage here |
| int low_key = s4FromSwitchData(&table[2]); |
| bool large_bias = false; |
| int r_key; |
| if (low_key == 0) { |
| r_key = rl_src.low_reg; |
| } else if ((low_key & 0xffff) != low_key) { |
| r_key = AllocTemp(); |
| LoadConstant(r_key, low_key); |
| large_bias = true; |
| } else { |
| r_key = AllocTemp(); |
| } |
| |
| // Must prevent code motion for the curr pc pair |
| GenBarrier(); |
| NewLIR0(kMipsCurrPC); // Really a jal to .+8 |
| // Now, fill the branch delay slot with bias strip |
| if (low_key == 0) { |
| NewLIR0(kMipsNop); |
| } else { |
| if (large_bias) { |
| OpRegRegReg(kOpSub, r_key, rl_src.low_reg, r_key); |
| } else { |
| OpRegRegImm(kOpSub, r_key, rl_src.low_reg, low_key); |
| } |
| } |
| GenBarrier(); // Scheduling barrier |
| |
| // Construct BaseLabel and set up table base register |
| LIR* base_label = NewLIR0(kPseudoTargetLabel); |
| // Remember base label so offsets can be computed later |
| tab_rec->anchor = base_label; |
| |
| // Bounds check - if < 0 or >= size continue following switch |
| LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL); |
| |
| // Materialize the table base pointer |
| int rBase = AllocTemp(); |
| NewLIR4(kMipsDelta, rBase, 0, WrapPointer(base_label), WrapPointer(tab_rec)); |
| |
| // Load the displacement from the switch table |
| int r_disp = AllocTemp(); |
| LoadBaseIndexed(rBase, r_key, r_disp, 2, kWord); |
| |
| // Add to r_AP and go |
| OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp); |
| OpReg(kOpBx, r_RA); |
| |
| /* branch_over target here */ |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = target; |
| } |
| |
| /* |
| * Array data table format: |
| * ushort ident = 0x0300 magic value |
| * ushort width width of each element in the table |
| * uint size number of elements in the table |
| * ubyte data[size*width] table of data values (may contain a single-byte |
| * padding at the end) |
| * |
| * Total size is 4+(width * size + 1)/2 16-bit code units. |
| */ |
| void MipsMir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) { |
| const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; |
| // Add the table to the list - we'll process it later |
| FillArrayData* tab_rec = |
| reinterpret_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), |
| ArenaAllocator::kAllocData)); |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| uint16_t width = tab_rec->table[1]; |
| uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16); |
| tab_rec->size = (size * width) + 8; |
| |
| fill_array_data_.Insert(tab_rec); |
| |
| // Making a call - use explicit registers |
| FlushAllRegs(); /* Everything to home location */ |
| LockCallTemps(); |
| LoadValueDirectFixed(rl_src, rMIPS_ARG0); |
| |
| // Must prevent code motion for the curr pc pair |
| GenBarrier(); |
| NewLIR0(kMipsCurrPC); // Really a jal to .+8 |
| // Now, fill the branch delay slot with the helper load |
| int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData)); |
| GenBarrier(); // Scheduling barrier |
| |
| // Construct BaseLabel and set up table base register |
| LIR* base_label = NewLIR0(kPseudoTargetLabel); |
| |
| // Materialize a pointer to the fill data image |
| NewLIR4(kMipsDelta, rMIPS_ARG1, 0, WrapPointer(base_label), WrapPointer(tab_rec)); |
| |
| // And go... |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx, r_tgt); // ( array*, fill_data* ) |
| MarkSafepointPC(call_inst); |
| } |
| |
| void MipsMir2Lir::GenMoveException(RegLocation rl_dest) { |
| int ex_offset = Thread::ExceptionOffset().Int32Value(); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| int reset_reg = AllocTemp(); |
| LoadWordDisp(rMIPS_SELF, ex_offset, rl_result.low_reg); |
| LoadConstant(reset_reg, 0); |
| StoreWordDisp(rMIPS_SELF, ex_offset, reset_reg); |
| FreeTemp(reset_reg); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| /* |
| * Mark garbage collection card. Skip if the value we're storing is null. |
| */ |
| void MipsMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) { |
| int reg_card_base = AllocTemp(); |
| int reg_card_no = AllocTemp(); |
| LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL); |
| LoadWordDisp(rMIPS_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base); |
| OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); |
| StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, |
| kUnsignedByte); |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = target; |
| FreeTemp(reg_card_base); |
| FreeTemp(reg_card_no); |
| } |
| |
| void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { |
| int spill_count = num_core_spills_ + num_fp_spills_; |
| /* |
| * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live. Let the register |
| * allocation mechanism know so it doesn't try to use any of them when |
| * expanding the frame or flushing. This leaves the utility |
| * code with a single temp: r12. This should be enough. |
| */ |
| LockTemp(rMIPS_ARG0); |
| LockTemp(rMIPS_ARG1); |
| LockTemp(rMIPS_ARG2); |
| LockTemp(rMIPS_ARG3); |
| |
| /* |
| * We can safely skip the stack overflow check if we're |
| * a leaf *and* our frame size < fudge factor. |
| */ |
| bool skip_overflow_check = (mir_graph_->MethodIsLeaf() && |
| (static_cast<size_t>(frame_size_) < Thread::kStackOverflowReservedBytes)); |
| NewLIR0(kPseudoMethodEntry); |
| int check_reg = AllocTemp(); |
| int new_sp = AllocTemp(); |
| if (!skip_overflow_check) { |
| /* Load stack limit */ |
| LoadWordDisp(rMIPS_SELF, Thread::StackEndOffset().Int32Value(), check_reg); |
| } |
| /* Spill core callee saves */ |
| SpillCoreRegs(); |
| /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */ |
| DCHECK_EQ(num_fp_spills_, 0); |
| if (!skip_overflow_check) { |
| OpRegRegImm(kOpSub, new_sp, rMIPS_SP, frame_size_ - (spill_count * 4)); |
| GenRegRegCheck(kCondCc, new_sp, check_reg, kThrowStackOverflow); |
| OpRegCopy(rMIPS_SP, new_sp); // Establish stack |
| } else { |
| OpRegImm(kOpSub, rMIPS_SP, frame_size_ - (spill_count * 4)); |
| } |
| |
| FlushIns(ArgLocs, rl_method); |
| |
| FreeTemp(rMIPS_ARG0); |
| FreeTemp(rMIPS_ARG1); |
| FreeTemp(rMIPS_ARG2); |
| FreeTemp(rMIPS_ARG3); |
| } |
| |
| void MipsMir2Lir::GenExitSequence() { |
| /* |
| * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't |
| * allocated by the register utilities as temps. |
| */ |
| LockTemp(rMIPS_RET0); |
| LockTemp(rMIPS_RET1); |
| |
| NewLIR0(kPseudoMethodExit); |
| UnSpillCoreRegs(); |
| OpReg(kOpBx, r_RA); |
| } |
| |
| } // namespace art |