blob: e52bc1fd1e81d8b997def57fa85442d44bd2f385 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "reference_processor.h"
#include "mirror/object-inl.h"
#include "mirror/reference-inl.h"
#include "reflection.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "well_known_classes.h"
namespace art {
namespace gc {
ReferenceProcessor::ReferenceProcessor()
: process_references_args_(nullptr, nullptr, nullptr), slow_path_enabled_(false),
preserving_references_(false), lock_("reference processor lock", kReferenceProcessorLock),
condition_("reference processor condition", lock_) {
}
void ReferenceProcessor::EnableSlowPath() {
Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
slow_path_enabled_ = true;
}
void ReferenceProcessor::DisableSlowPath(Thread* self) {
slow_path_enabled_ = false;
condition_.Broadcast(self);
}
mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) {
mirror::Object* const referent = reference->GetReferent();
// If the referent is null then it is already cleared, we can just return null since there is no
// scenario where it becomes non-null during the reference processing phase.
if (LIKELY(!slow_path_enabled_) || referent == nullptr) {
return referent;
}
MutexLock mu(self, lock_);
while (slow_path_enabled_) {
mirror::HeapReference<mirror::Object>* const referent_addr =
reference->GetReferentReferenceAddr();
// If the referent became cleared, return it. Don't need barrier since thread roots can't get
// updated until after we leave the function due to holding the mutator lock.
if (referent_addr->AsMirrorPtr() == nullptr) {
return nullptr;
}
// Try to see if the referent is already marked by using the is_marked_callback. We can return
// it to the mutator as long as the GC is not preserving references.
IsHeapReferenceMarkedCallback* const is_marked_callback =
process_references_args_.is_marked_callback_;
if (LIKELY(is_marked_callback != nullptr)) {
// If it's null it means not marked, but it could become marked if the referent is reachable
// by finalizer referents. So we can not return in this case and must block. Otherwise, we
// can return it to the mutator as long as the GC is not preserving references, in which
// case only black nodes can be safely returned. If the GC is preserving references, the
// mutator could take a white field from a grey or white node and move it somewhere else
// in the heap causing corruption since this field would get swept.
if (is_marked_callback(referent_addr, process_references_args_.arg_)) {
if (!preserving_references_ ||
(LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) {
return referent_addr->AsMirrorPtr();
}
}
}
condition_.WaitHoldingLocks(self);
}
return reference->GetReferent();
}
bool ReferenceProcessor::PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object>* obj,
void* arg) {
auto* const args = reinterpret_cast<ProcessReferencesArgs*>(arg);
// TODO: Add smarter logic for preserving soft references.
mirror::Object* new_obj = args->mark_callback_(obj->AsMirrorPtr(), args->arg_);
DCHECK(new_obj != nullptr);
obj->Assign(new_obj);
return true;
}
void ReferenceProcessor::StartPreservingReferences(Thread* self) {
MutexLock mu(self, lock_);
preserving_references_ = true;
}
void ReferenceProcessor::StopPreservingReferences(Thread* self) {
MutexLock mu(self, lock_);
preserving_references_ = false;
// We are done preserving references, some people who are blocked may see a marked referent.
condition_.Broadcast(self);
}
// Process reference class instances and schedule finalizations.
void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings,
bool clear_soft_references,
IsHeapReferenceMarkedCallback* is_marked_callback,
MarkObjectCallback* mark_object_callback,
ProcessMarkStackCallback* process_mark_stack_callback,
void* arg) {
TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
Thread* self = Thread::Current();
{
MutexLock mu(self, lock_);
process_references_args_.is_marked_callback_ = is_marked_callback;
process_references_args_.mark_callback_ = mark_object_callback;
process_references_args_.arg_ = arg;
CHECK_EQ(slow_path_enabled_, concurrent) << "Slow path must be enabled iff concurrent";
}
// Unless required to clear soft references with white references, preserve some white referents.
if (!clear_soft_references) {
TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
"(Paused)ForwardSoftReferences", timings);
if (concurrent) {
StartPreservingReferences(self);
}
soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback,
&process_references_args_);
process_mark_stack_callback(arg);
if (concurrent) {
StopPreservingReferences(self);
}
}
// Clear all remaining soft and weak references with white referents.
soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
{
TimingLogger::ScopedTiming t(concurrent ? "EnqueueFinalizerReferences" :
"(Paused)EnqueueFinalizerReferences", timings);
if (concurrent) {
StartPreservingReferences(self);
}
// Preserve all white objects with finalize methods and schedule them for finalization.
finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, is_marked_callback,
mark_object_callback, arg);
process_mark_stack_callback(arg);
if (concurrent) {
StopPreservingReferences(self);
}
}
// Clear all finalizer referent reachable soft and weak references with white referents.
soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
// Clear all phantom references with white referents.
phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
// At this point all reference queues other than the cleared references should be empty.
DCHECK(soft_reference_queue_.IsEmpty());
DCHECK(weak_reference_queue_.IsEmpty());
DCHECK(finalizer_reference_queue_.IsEmpty());
DCHECK(phantom_reference_queue_.IsEmpty());
{
MutexLock mu(self, lock_);
// Need to always do this since the next GC may be concurrent. Doing this for only concurrent
// could result in a stale is_marked_callback_ being called before the reference processing
// starts since there is a small window of time where slow_path_enabled_ is enabled but the
// callback isn't yet set.
process_references_args_.is_marked_callback_ = nullptr;
if (concurrent) {
// Done processing, disable the slow path and broadcast to the waiters.
DisableSlowPath(self);
}
}
}
// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
// marked, put it on the appropriate list in the heap for later processing.
void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
IsHeapReferenceMarkedCallback* is_marked_callback,
void* arg) {
// klass can be the class of the old object if the visitor already updated the class of ref.
DCHECK(klass != nullptr);
DCHECK(klass->IsReferenceClass());
mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
if (referent->AsMirrorPtr() != nullptr && !is_marked_callback(referent, arg)) {
Thread* self = Thread::Current();
// TODO: Remove these locks, and use atomic stacks for storing references?
// We need to check that the references haven't already been enqueued since we can end up
// scanning the same reference multiple times due to dirty cards.
if (klass->IsSoftReferenceClass()) {
soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
} else if (klass->IsWeakReferenceClass()) {
weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
} else if (klass->IsFinalizerReferenceClass()) {
finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
} else if (klass->IsPhantomReferenceClass()) {
phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
} else {
LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
<< klass->GetAccessFlags();
}
}
}
void ReferenceProcessor::UpdateRoots(IsMarkedCallback* callback, void* arg) {
cleared_references_.UpdateRoots(callback, arg);
}
void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
Locks::mutator_lock_->AssertNotHeld(self);
if (!cleared_references_.IsEmpty()) {
// When a runtime isn't started there are no reference queues to care about so ignore.
if (LIKELY(Runtime::Current()->IsStarted())) {
ScopedObjectAccess soa(self);
ScopedLocalRef<jobject> arg(self->GetJniEnv(),
soa.AddLocalReference<jobject>(cleared_references_.GetList()));
jvalue args[1];
args[0].l = arg.get();
InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
}
cleared_references_.Clear();
}
}
} // namespace gc
} // namespace art