blob: cabfe2176ce4455c0ac3c25aa1e85d5644835d3e [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "semi_space-inl.h"
#include <functional>
#include <numeric>
#include <climits>
#include <vector>
#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex-inl.h"
#include "base/timing_logger.h"
#include "gc/accounting/heap_bitmap-inl.h"
#include "gc/accounting/mod_union_table.h"
#include "gc/accounting/remembered_set.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/heap.h"
#include "gc/reference_processor.h"
#include "gc/space/bump_pointer_space.h"
#include "gc/space/bump_pointer_space-inl.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "indirect_reference_table.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "mark_sweep-inl.h"
#include "monitor.h"
#include "mirror/reference-inl.h"
#include "mirror/object-inl.h"
#include "runtime.h"
#include "thread-inl.h"
#include "thread_list.h"
using ::art::mirror::Object;
namespace art {
namespace gc {
namespace collector {
static constexpr bool kProtectFromSpace = true;
static constexpr bool kStoreStackTraces = false;
static constexpr size_t kBytesPromotedThreshold = 4 * MB;
static constexpr size_t kLargeObjectBytesAllocatedThreshold = 16 * MB;
void SemiSpace::BindBitmaps() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
// Mark all of the spaces we never collect as immune.
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->GetLiveBitmap() != nullptr) {
if (space == to_space_) {
CHECK(to_space_->IsContinuousMemMapAllocSpace());
to_space_->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
} else if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
|| space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect
// Add the main free list space and the non-moving
// space to the immune space if a bump pointer space
// only collection.
|| (generational_ && !whole_heap_collection_ &&
(space == GetHeap()->GetNonMovingSpace() ||
space == GetHeap()->GetPrimaryFreeListSpace()))) {
CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
}
}
}
if (generational_ && !whole_heap_collection_) {
// We won't collect the large object space if a bump pointer space only collection.
is_large_object_space_immune_ = true;
}
}
SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
: GarbageCollector(heap,
name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
to_space_(nullptr),
from_space_(nullptr),
generational_(generational),
last_gc_to_space_end_(nullptr),
bytes_promoted_(0),
bytes_promoted_since_last_whole_heap_collection_(0),
large_object_bytes_allocated_at_last_whole_heap_collection_(0),
whole_heap_collection_(true),
collector_name_(name_),
swap_semi_spaces_(true) {
}
void SemiSpace::RunPhases() {
Thread* self = Thread::Current();
InitializePhase();
// Semi-space collector is special since it is sometimes called with the mutators suspended
// during the zygote creation and collector transitions. If we already exclusively hold the
// mutator lock, then we can't lock it again since it will cause a deadlock.
if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
GetHeap()->PreGcVerificationPaused(this);
GetHeap()->PrePauseRosAllocVerification(this);
MarkingPhase();
ReclaimPhase();
GetHeap()->PostGcVerificationPaused(this);
} else {
Locks::mutator_lock_->AssertNotHeld(self);
{
ScopedPause pause(this);
GetHeap()->PreGcVerificationPaused(this);
GetHeap()->PrePauseRosAllocVerification(this);
MarkingPhase();
}
{
ReaderMutexLock mu(self, *Locks::mutator_lock_);
ReclaimPhase();
}
GetHeap()->PostGcVerification(this);
}
FinishPhase();
}
void SemiSpace::InitializePhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
mark_stack_ = heap_->GetMarkStack();
DCHECK(mark_stack_ != nullptr);
immune_region_.Reset();
is_large_object_space_immune_ = false;
saved_bytes_ = 0;
bytes_moved_ = 0;
objects_moved_ = 0;
self_ = Thread::Current();
CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
// Set the initial bitmap.
to_space_live_bitmap_ = to_space_->GetLiveBitmap();
{
// TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
mark_bitmap_ = heap_->GetMarkBitmap();
}
}
void SemiSpace::ProcessReferences(Thread* self) {
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
GetHeap()->GetReferenceProcessor()->ProcessReferences(
false, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
&HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
}
void SemiSpace::MarkingPhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
CHECK(Locks::mutator_lock_->IsExclusiveHeld(self_));
if (kStoreStackTraces) {
Locks::mutator_lock_->AssertExclusiveHeld(self_);
// Store the stack traces into the runtime fault string in case we Get a heap corruption
// related crash later.
ThreadState old_state = self_->SetStateUnsafe(kRunnable);
std::ostringstream oss;
Runtime* runtime = Runtime::Current();
runtime->GetThreadList()->DumpForSigQuit(oss);
runtime->GetThreadList()->DumpNativeStacks(oss);
runtime->SetFaultMessage(oss.str());
CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
}
// Revoke the thread local buffers since the GC may allocate into a RosAllocSpace and this helps
// to prevent fragmentation.
RevokeAllThreadLocalBuffers();
if (generational_) {
if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
GetCurrentIteration()->GetClearSoftReferences()) {
// If an explicit, native allocation-triggered, or last attempt
// collection, collect the whole heap.
whole_heap_collection_ = true;
}
if (whole_heap_collection_) {
VLOG(heap) << "Whole heap collection";
name_ = collector_name_ + " whole";
} else {
VLOG(heap) << "Bump pointer space only collection";
name_ = collector_name_ + " bps";
}
}
if (!generational_ || whole_heap_collection_) {
// If non-generational, always clear soft references.
// If generational, clear soft references if a whole heap collection.
GetCurrentIteration()->SetClearSoftReferences(true);
}
Locks::mutator_lock_->AssertExclusiveHeld(self_);
if (generational_) {
// If last_gc_to_space_end_ is out of the bounds of the from-space
// (the to-space from last GC), then point it to the beginning of
// the from-space. For example, the very first GC or the
// pre-zygote compaction.
if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
last_gc_to_space_end_ = from_space_->Begin();
}
// Reset this before the marking starts below.
bytes_promoted_ = 0;
}
// Assume the cleared space is already empty.
BindBitmaps();
// Process dirty cards and add dirty cards to mod-union tables.
heap_->ProcessCards(GetTimings(), kUseRememberedSet && generational_);
// Clear the whole card table since we can not Get any additional dirty cards during the
// paused GC. This saves memory but only works for pause the world collectors.
t.NewTiming("ClearCardTable");
heap_->GetCardTable()->ClearCardTable();
// Need to do this before the checkpoint since we don't want any threads to add references to
// the live stack during the recursive mark.
t.NewTiming("SwapStacks");
if (kUseThreadLocalAllocationStack) {
TimingLogger::ScopedTiming t("RevokeAllThreadLocalAllocationStacks", GetTimings());
heap_->RevokeAllThreadLocalAllocationStacks(self_);
}
heap_->SwapStacks(self_);
{
WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
MarkRoots();
// Mark roots of immune spaces.
UpdateAndMarkModUnion();
// Recursively mark remaining objects.
MarkReachableObjects();
}
ProcessReferences(self_);
{
ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
SweepSystemWeaks();
}
// Revoke buffers before measuring how many objects were moved since the TLABs need to be revoked
// before they are properly counted.
RevokeAllThreadLocalBuffers();
// Record freed memory.
const int64_t from_bytes = from_space_->GetBytesAllocated();
const int64_t to_bytes = bytes_moved_;
const uint64_t from_objects = from_space_->GetObjectsAllocated();
const uint64_t to_objects = objects_moved_;
CHECK_LE(to_objects, from_objects);
// Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
// space.
RecordFree(ObjectBytePair(from_objects - to_objects, from_bytes - to_bytes));
// Clear and protect the from space.
from_space_->Clear();
VLOG(heap) << "Protecting from_space_: " << *from_space_;
from_space_->GetMemMap()->Protect(kProtectFromSpace ? PROT_NONE : PROT_READ);
heap_->PreSweepingGcVerification(this);
if (swap_semi_spaces_) {
heap_->SwapSemiSpaces();
}
}
void SemiSpace::UpdateAndMarkModUnion() {
for (auto& space : heap_->GetContinuousSpaces()) {
// If the space is immune then we need to mark the references to other spaces.
if (immune_region_.ContainsSpace(space)) {
accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
if (table != nullptr) {
// TODO: Improve naming.
TimingLogger::ScopedTiming t(
space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
"UpdateAndMarkImageModUnionTable",
GetTimings());
table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
} else if (heap_->FindRememberedSetFromSpace(space) != nullptr) {
DCHECK(kUseRememberedSet);
// If a bump pointer space only collection, the non-moving
// space is added to the immune space. The non-moving space
// doesn't have a mod union table, but has a remembered
// set. Its dirty cards will be scanned later in
// MarkReachableObjects().
DCHECK(generational_ && !whole_heap_collection_ &&
(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
<< "Space " << space->GetName() << " "
<< "generational_=" << generational_ << " "
<< "whole_heap_collection_=" << whole_heap_collection_ << " ";
} else {
DCHECK(!kUseRememberedSet);
// If a bump pointer space only collection, the non-moving
// space is added to the immune space. But the non-moving
// space doesn't have a mod union table. Instead, its live
// bitmap will be scanned later in MarkReachableObjects().
DCHECK(generational_ && !whole_heap_collection_ &&
(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
<< "Space " << space->GetName() << " "
<< "generational_=" << generational_ << " "
<< "whole_heap_collection_=" << whole_heap_collection_ << " ";
}
}
}
}
class SemiSpaceScanObjectVisitor {
public:
explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
void operator()(Object* obj) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_,
Locks::heap_bitmap_lock_) {
DCHECK(obj != nullptr);
semi_space_->ScanObject(obj);
}
private:
SemiSpace* const semi_space_;
};
// Used to verify that there's no references to the from-space.
class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
public:
explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
from_space_(from_space) {}
void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
if (from_space_->HasAddress(ref)) {
Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
LOG(FATAL) << ref << " found in from space";
}
}
private:
space::ContinuousMemMapAllocSpace* from_space_;
};
void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
obj->VisitReferences<kMovingClasses>(visitor, VoidFunctor());
}
class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
public:
explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
void operator()(Object* obj) const
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
DCHECK(obj != nullptr);
semi_space_->VerifyNoFromSpaceReferences(obj);
}
private:
SemiSpace* const semi_space_;
};
void SemiSpace::MarkReachableObjects() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
{
TimingLogger::ScopedTiming t2("MarkStackAsLive", GetTimings());
accounting::ObjectStack* live_stack = heap_->GetLiveStack();
heap_->MarkAllocStackAsLive(live_stack);
live_stack->Reset();
}
t.NewTiming("UpdateAndMarkRememberedSets");
for (auto& space : heap_->GetContinuousSpaces()) {
// If the space is immune and has no mod union table (the
// non-moving space when the bump pointer space only collection is
// enabled,) then we need to scan its live bitmap or dirty cards as roots
// (including the objects on the live stack which have just marked
// in the live bitmap above in MarkAllocStackAsLive().)
if (immune_region_.ContainsSpace(space) &&
heap_->FindModUnionTableFromSpace(space) == nullptr) {
DCHECK(generational_ && !whole_heap_collection_ &&
(space == GetHeap()->GetNonMovingSpace() || space == GetHeap()->GetPrimaryFreeListSpace()));
accounting::RememberedSet* rem_set = heap_->FindRememberedSetFromSpace(space);
if (kUseRememberedSet) {
DCHECK(rem_set != nullptr);
rem_set->UpdateAndMarkReferences(MarkHeapReferenceCallback, DelayReferenceReferentCallback,
from_space_, this);
if (kIsDebugBuild) {
// Verify that there are no from-space references that
// remain in the space, that is, the remembered set (and the
// card table) didn't miss any from-space references in the
// space.
accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
reinterpret_cast<uintptr_t>(space->End()),
visitor);
}
} else {
DCHECK(rem_set == nullptr);
accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
SemiSpaceScanObjectVisitor visitor(this);
live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
reinterpret_cast<uintptr_t>(space->End()),
visitor);
}
}
}
if (is_large_object_space_immune_) {
TimingLogger::ScopedTiming t("VisitLargeObjects", GetTimings());
DCHECK(generational_ && !whole_heap_collection_);
// Delay copying the live set to the marked set until here from
// BindBitmaps() as the large objects on the allocation stack may
// be newly added to the live set above in MarkAllocStackAsLive().
GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
// When the large object space is immune, we need to scan the
// large object space as roots as they contain references to their
// classes (primitive array classes) that could move though they
// don't contain any other references.
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
accounting::LargeObjectBitmap* large_live_bitmap = large_object_space->GetLiveBitmap();
SemiSpaceScanObjectVisitor visitor(this);
large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(large_object_space->Begin()),
reinterpret_cast<uintptr_t>(large_object_space->End()),
visitor);
}
// Recursively process the mark stack.
ProcessMarkStack();
}
void SemiSpace::ReclaimPhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
// Reclaim unmarked objects.
Sweep(false);
// Swap the live and mark bitmaps for each space which we modified space. This is an
// optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
// bitmaps.
SwapBitmaps();
// Unbind the live and mark bitmaps.
GetHeap()->UnBindBitmaps();
if (saved_bytes_ > 0) {
VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
}
if (generational_) {
// Record the end (top) of the to space so we can distinguish
// between objects that were allocated since the last GC and the
// older objects.
last_gc_to_space_end_ = to_space_->End();
}
}
void SemiSpace::ResizeMarkStack(size_t new_size) {
std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
CHECK_LE(mark_stack_->Size(), new_size);
mark_stack_->Resize(new_size);
for (const auto& obj : temp) {
mark_stack_->PushBack(obj);
}
}
inline void SemiSpace::MarkStackPush(Object* obj) {
if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
ResizeMarkStack(mark_stack_->Capacity() * 2);
}
// The object must be pushed on to the mark stack.
mark_stack_->PushBack(obj);
}
static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
// We will dirty the current page and somewhere in the middle of the next page. This means
// that the next object copied will also dirty that page.
// TODO: Worth considering the last object copied? We may end up dirtying one page which is
// not necessary per GC.
memcpy(dest, src, size);
return 0;
}
size_t saved_bytes = 0;
byte* byte_dest = reinterpret_cast<byte*>(dest);
if (kIsDebugBuild) {
for (size_t i = 0; i < size; ++i) {
CHECK_EQ(byte_dest[i], 0U);
}
}
// Process the start of the page. The page must already be dirty, don't bother with checking.
const byte* byte_src = reinterpret_cast<const byte*>(src);
const byte* limit = byte_src + size;
size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
// Copy the bytes until the start of the next page.
memcpy(dest, src, page_remain);
byte_src += page_remain;
byte_dest += page_remain;
DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
while (byte_src + kPageSize < limit) {
bool all_zero = true;
uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
// Assumes the destination of the copy is all zeros.
if (word_src[i] != 0) {
all_zero = false;
word_dest[i] = word_src[i];
}
}
if (all_zero) {
// Avoided copying into the page since it was all zeros.
saved_bytes += kPageSize;
}
byte_src += kPageSize;
byte_dest += kPageSize;
}
// Handle the part of the page at the end.
memcpy(byte_dest, byte_src, limit - byte_src);
return saved_bytes;
}
mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
size_t object_size = obj->SizeOf();
size_t bytes_allocated;
mirror::Object* forward_address = nullptr;
if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
// If it's allocated before the last GC (older), move
// (pseudo-promote) it to the main free list space (as sort
// of an old generation.)
space::MallocSpace* promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
forward_address = promo_dest_space->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
nullptr);
if (UNLIKELY(forward_address == nullptr)) {
// If out of space, fall back to the to-space.
forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr);
} else {
bytes_promoted_ += bytes_allocated;
// Dirty the card at the destionation as it may contain
// references (including the class pointer) to the bump pointer
// space.
GetHeap()->WriteBarrierEveryFieldOf(forward_address);
// Handle the bitmaps marking.
accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space->GetLiveBitmap();
DCHECK(live_bitmap != nullptr);
accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
DCHECK(mark_bitmap != nullptr);
DCHECK(!live_bitmap->Test(forward_address));
if (!whole_heap_collection_) {
// If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
DCHECK_EQ(live_bitmap, mark_bitmap);
// If a bump pointer space only collection, delay the live
// bitmap marking of the promoted object until it's popped off
// the mark stack (ProcessMarkStack()). The rationale: we may
// be in the middle of scanning the objects in the promo
// destination space for
// non-moving-space-to-bump-pointer-space references by
// iterating over the marked bits of the live bitmap
// (MarkReachableObjects()). If we don't delay it (and instead
// mark the promoted object here), the above promo destination
// space scan could encounter the just-promoted object and
// forward the references in the promoted object's fields even
// through it is pushed onto the mark stack. If this happens,
// the promoted object would be in an inconsistent state, that
// is, it's on the mark stack (gray) but its fields are
// already forwarded (black), which would cause a
// DCHECK(!to_space_->HasAddress(obj)) failure below.
} else {
// Mark forward_address on the live bit map.
live_bitmap->Set(forward_address);
// Mark forward_address on the mark bit map.
DCHECK(!mark_bitmap->Test(forward_address));
mark_bitmap->Set(forward_address);
}
}
DCHECK(forward_address != nullptr);
} else {
// If it's allocated after the last GC (younger), copy it to the to-space.
forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr);
}
CHECK(forward_address != nullptr) << "Out of memory in the to-space.";
++objects_moved_;
bytes_moved_ += bytes_allocated;
// Copy over the object and add it to the mark stack since we still need to update its
// references.
saved_bytes_ +=
CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
if (kUseBakerOrBrooksReadBarrier) {
obj->AssertReadBarrierPointer();
if (kUseBrooksReadBarrier) {
DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
forward_address->SetReadBarrierPointer(forward_address);
}
forward_address->AssertReadBarrierPointer();
}
if (to_space_live_bitmap_ != nullptr) {
to_space_live_bitmap_->Set(forward_address);
}
DCHECK(to_space_->HasAddress(forward_address) ||
(generational_ && GetHeap()->GetPrimaryFreeListSpace()->HasAddress(forward_address)));
return forward_address;
}
void SemiSpace::ProcessMarkStackCallback(void* arg) {
reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
}
mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
return ref.AsMirrorPtr();
}
void SemiSpace::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* obj_ptr,
void* arg) {
reinterpret_cast<SemiSpace*>(arg)->MarkObject(obj_ptr);
}
void SemiSpace::DelayReferenceReferentCallback(mirror::Class* klass, mirror::Reference* ref,
void* arg) {
reinterpret_cast<SemiSpace*>(arg)->DelayReferenceReferent(klass, ref);
}
void SemiSpace::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
RootType /*root_type*/) {
auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
if (*root != ref.AsMirrorPtr()) {
*root = ref.AsMirrorPtr();
}
}
// Marks all objects in the root set.
void SemiSpace::MarkRoots() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
Runtime::Current()->VisitRoots(MarkRootCallback, this);
}
bool SemiSpace::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* object,
void* arg) {
mirror::Object* obj = object->AsMirrorPtr();
mirror::Object* new_obj =
reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(obj);
if (new_obj == nullptr) {
return false;
}
if (new_obj != obj) {
// Write barrier is not necessary since it still points to the same object, just at a different
// address.
object->Assign(new_obj);
}
return true;
}
mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
}
void SemiSpace::SweepSystemWeaks() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
}
bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
return space != from_space_ && space != to_space_ && !immune_region_.ContainsSpace(space);
}
void SemiSpace::Sweep(bool swap_bitmaps) {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
DCHECK(mark_stack_->IsEmpty());
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->IsContinuousMemMapAllocSpace()) {
space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
if (!ShouldSweepSpace(alloc_space)) {
continue;
}
TimingLogger::ScopedTiming split(
alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
RecordFree(alloc_space->Sweep(swap_bitmaps));
}
}
if (!is_large_object_space_immune_) {
SweepLargeObjects(swap_bitmaps);
}
}
void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
DCHECK(!is_large_object_space_immune_);
TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
}
// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
// marked, put it on the appropriate list in the heap for later processing.
void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference,
&HeapReferenceMarkedCallback, this);
}
class SemiSpaceMarkObjectVisitor {
public:
explicit SemiSpaceMarkObjectVisitor(SemiSpace* collector) : collector_(collector) {
}
void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
// Object was already verified when we scanned it.
collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
}
void operator()(mirror::Class* klass, mirror::Reference* ref) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
collector_->DelayReferenceReferent(klass, ref);
}
private:
SemiSpace* const collector_;
};
// Visit all of the references of an object and update.
void SemiSpace::ScanObject(Object* obj) {
DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
SemiSpaceMarkObjectVisitor visitor(this);
obj->VisitReferences<kMovingClasses>(visitor, visitor);
}
// Scan anything that's on the mark stack.
void SemiSpace::ProcessMarkStack() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
space::MallocSpace* promo_dest_space = nullptr;
accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
if (generational_ && !whole_heap_collection_) {
// If a bump pointer space only collection (and the promotion is
// enabled,) we delay the live-bitmap marking of promoted objects
// from MarkObject() until this function.
promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
live_bitmap = promo_dest_space->GetLiveBitmap();
DCHECK(live_bitmap != nullptr);
accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
DCHECK(mark_bitmap != nullptr);
DCHECK_EQ(live_bitmap, mark_bitmap);
}
while (!mark_stack_->IsEmpty()) {
Object* obj = mark_stack_->PopBack();
if (generational_ && !whole_heap_collection_ && promo_dest_space->HasAddress(obj)) {
// obj has just been promoted. Mark the live bitmap for it,
// which is delayed from MarkObject().
DCHECK(!live_bitmap->Test(obj));
live_bitmap->Set(obj);
}
ScanObject(obj);
}
}
inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
// All immune objects are assumed marked.
if (immune_region_.ContainsObject(obj)) {
return obj;
}
if (from_space_->HasAddress(obj)) {
// Returns either the forwarding address or nullptr.
return GetForwardingAddressInFromSpace(obj);
} else if (to_space_->HasAddress(obj)) {
// Should be unlikely.
// Already forwarded, must be marked.
return obj;
}
return mark_bitmap_->Test(obj) ? obj : nullptr;
}
void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
DCHECK(to_space != nullptr);
to_space_ = to_space;
}
void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
DCHECK(from_space != nullptr);
from_space_ = from_space;
}
void SemiSpace::FinishPhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
// Null the "to" and "from" spaces since compacting from one to the other isn't valid until
// further action is done by the heap.
to_space_ = nullptr;
from_space_ = nullptr;
CHECK(mark_stack_->IsEmpty());
mark_stack_->Reset();
if (generational_) {
// Decide whether to do a whole heap collection or a bump pointer
// only space collection at the next collection by updating
// whole_heap_collection.
if (!whole_heap_collection_) {
// Enable whole_heap_collection if the bytes promoted since the
// last whole heap collection or the large object bytes
// allocated exceeds a threshold.
bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
bool bytes_promoted_threshold_exceeded =
bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold;
uint64_t current_los_bytes_allocated = GetHeap()->GetLargeObjectsSpace()->GetBytesAllocated();
uint64_t last_los_bytes_allocated =
large_object_bytes_allocated_at_last_whole_heap_collection_;
bool large_object_bytes_threshold_exceeded =
current_los_bytes_allocated >=
last_los_bytes_allocated + kLargeObjectBytesAllocatedThreshold;
if (bytes_promoted_threshold_exceeded || large_object_bytes_threshold_exceeded) {
whole_heap_collection_ = true;
}
} else {
// Reset the counters.
bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
large_object_bytes_allocated_at_last_whole_heap_collection_ =
GetHeap()->GetLargeObjectsSpace()->GetBytesAllocated();
whole_heap_collection_ = false;
}
}
// Clear all of the spaces' mark bitmaps.
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
heap_->ClearMarkedObjects();
}
void SemiSpace::RevokeAllThreadLocalBuffers() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
GetHeap()->RevokeAllThreadLocalBuffers();
}
} // namespace collector
} // namespace gc
} // namespace art