blob: e519e77f6085cc2a52ae8f11c92cc99058d66854 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <regex>
#include "base/arena_allocator.h"
#include "builder.h"
#include "gtest/gtest.h"
#include "induction_var_analysis.h"
#include "induction_var_range.h"
#include "nodes.h"
#include "optimizing_unit_test.h"
namespace art {
/**
* Fixture class for the InductionVarAnalysis tests.
*/
class InductionVarAnalysisTest : public testing::Test {
public:
InductionVarAnalysisTest() : pool_(), allocator_(&pool_) {
graph_ = CreateGraph(&allocator_);
}
~InductionVarAnalysisTest() { }
// Builds single for-loop at depth d.
void BuildForLoop(int d, int n) {
ASSERT_LT(d, n);
loop_preheader_[d] = new (&allocator_) HBasicBlock(graph_);
graph_->AddBlock(loop_preheader_[d]);
loop_header_[d] = new (&allocator_) HBasicBlock(graph_);
graph_->AddBlock(loop_header_[d]);
loop_preheader_[d]->AddSuccessor(loop_header_[d]);
if (d < (n - 1)) {
BuildForLoop(d + 1, n);
}
loop_body_[d] = new (&allocator_) HBasicBlock(graph_);
graph_->AddBlock(loop_body_[d]);
loop_body_[d]->AddSuccessor(loop_header_[d]);
if (d < (n - 1)) {
loop_header_[d]->AddSuccessor(loop_preheader_[d + 1]);
loop_header_[d + 1]->AddSuccessor(loop_body_[d]);
} else {
loop_header_[d]->AddSuccessor(loop_body_[d]);
}
}
// Builds a n-nested loop in CFG where each loop at depth 0 <= d < n
// is defined as "for (int i_d = 0; i_d < 100; i_d++)". Tests can further
// populate the loop with instructions to set up interesting scenarios.
void BuildLoopNest(int n) {
ASSERT_LE(n, 10);
graph_->SetNumberOfVRegs(n + 3);
// Build basic blocks with entry, nested loop, exit.
entry_ = new (&allocator_) HBasicBlock(graph_);
graph_->AddBlock(entry_);
BuildForLoop(0, n);
exit_ = new (&allocator_) HBasicBlock(graph_);
graph_->AddBlock(exit_);
entry_->AddSuccessor(loop_preheader_[0]);
loop_header_[0]->AddSuccessor(exit_);
graph_->SetEntryBlock(entry_);
graph_->SetExitBlock(exit_);
// Provide entry and exit instructions.
parameter_ = new (&allocator_) HParameterValue(0, Primitive::kPrimNot, true);
entry_->AddInstruction(parameter_);
constant0_ = graph_->GetIntConstant(0);
constant1_ = graph_->GetIntConstant(1);
constant100_ = graph_->GetIntConstant(100);
induc_ = new (&allocator_) HLocal(n);
entry_->AddInstruction(induc_);
entry_->AddInstruction(new (&allocator_) HStoreLocal(induc_, constant0_));
tmp_ = new (&allocator_) HLocal(n + 1);
entry_->AddInstruction(tmp_);
entry_->AddInstruction(new (&allocator_) HStoreLocal(tmp_, constant100_));
dum_ = new (&allocator_) HLocal(n + 2);
entry_->AddInstruction(dum_);
exit_->AddInstruction(new (&allocator_) HExit());
// Provide loop instructions.
for (int d = 0; d < n; d++) {
basic_[d] = new (&allocator_) HLocal(d);
entry_->AddInstruction(basic_[d]);
loop_preheader_[d]->AddInstruction(new (&allocator_) HStoreLocal(basic_[d], constant0_));
HInstruction* load = new (&allocator_) HLoadLocal(basic_[d], Primitive::kPrimInt);
loop_header_[d]->AddInstruction(load);
HInstruction* compare = new (&allocator_) HLessThan(load, constant100_);
loop_header_[d]->AddInstruction(compare);
loop_header_[d]->AddInstruction(new (&allocator_) HIf(compare));
load = new (&allocator_) HLoadLocal(basic_[d], Primitive::kPrimInt);
loop_body_[d]->AddInstruction(load);
increment_[d] = new (&allocator_) HAdd(Primitive::kPrimInt, load, constant1_);
loop_body_[d]->AddInstruction(increment_[d]);
loop_body_[d]->AddInstruction(new (&allocator_) HStoreLocal(basic_[d], increment_[d]));
loop_body_[d]->AddInstruction(new (&allocator_) HGoto());
}
}
// Builds if-statement at depth d.
void BuildIf(int d, HBasicBlock** ifT, HBasicBlock **ifF) {
HBasicBlock* cond = new (&allocator_) HBasicBlock(graph_);
HBasicBlock* ifTrue = new (&allocator_) HBasicBlock(graph_);
HBasicBlock* ifFalse = new (&allocator_) HBasicBlock(graph_);
graph_->AddBlock(cond);
graph_->AddBlock(ifTrue);
graph_->AddBlock(ifFalse);
// Conditional split.
loop_header_[d]->ReplaceSuccessor(loop_body_[d], cond);
cond->AddSuccessor(ifTrue);
cond->AddSuccessor(ifFalse);
ifTrue->AddSuccessor(loop_body_[d]);
ifFalse->AddSuccessor(loop_body_[d]);
cond->AddInstruction(new (&allocator_) HIf(parameter_));
*ifT = ifTrue;
*ifF = ifFalse;
}
// Inserts instruction right before increment at depth d.
HInstruction* InsertInstruction(HInstruction* instruction, int d) {
loop_body_[d]->InsertInstructionBefore(instruction, increment_[d]);
return instruction;
}
// Inserts local load at depth d.
HInstruction* InsertLocalLoad(HLocal* local, int d) {
return InsertInstruction(new (&allocator_) HLoadLocal(local, Primitive::kPrimInt), d);
}
// Inserts local store at depth d.
HInstruction* InsertLocalStore(HLocal* local, HInstruction* rhs, int d) {
return InsertInstruction(new (&allocator_) HStoreLocal(local, rhs), d);
}
// Inserts an array store with given local as subscript at depth d to
// enable tests to inspect the computed induction at that point easily.
HInstruction* InsertArrayStore(HLocal* subscript, int d) {
HInstruction* load = InsertInstruction(
new (&allocator_) HLoadLocal(subscript, Primitive::kPrimInt), d);
return InsertInstruction(new (&allocator_) HArraySet(
parameter_, load, constant0_, Primitive::kPrimInt, 0), d);
}
// Returns induction information of instruction in loop at depth d.
std::string GetInductionInfo(HInstruction* instruction, int d) {
return HInductionVarAnalysis::InductionToString(
iva_->LookupInfo(loop_body_[d]->GetLoopInformation(), instruction));
}
// Performs InductionVarAnalysis (after proper set up).
void PerformInductionVarAnalysis() {
ASSERT_TRUE(graph_->TryBuildingSsa());
iva_ = new (&allocator_) HInductionVarAnalysis(graph_);
iva_->Run();
}
// General building fields.
ArenaPool pool_;
ArenaAllocator allocator_;
HGraph* graph_;
HInductionVarAnalysis* iva_;
// Fixed basic blocks and instructions.
HBasicBlock* entry_;
HBasicBlock* exit_;
HInstruction* parameter_; // "this"
HInstruction* constant0_;
HInstruction* constant1_;
HInstruction* constant100_;
HLocal* induc_; // "vreg_n", the "k"
HLocal* tmp_; // "vreg_n+1"
HLocal* dum_; // "vreg_n+2"
// Loop specifics.
HBasicBlock* loop_preheader_[10];
HBasicBlock* loop_header_[10];
HBasicBlock* loop_body_[10];
HInstruction* increment_[10];
HLocal* basic_[10]; // "vreg_d", the "i_d"
};
//
// The actual InductionVarAnalysis tests.
//
TEST_F(InductionVarAnalysisTest, ProperLoopSetup) {
// Setup:
// for (int i_0 = 0; i_0 < 100; i_0++) {
// ..
// for (int i_9 = 0; i_9 < 100; i_9++) {
// }
// ..
// }
BuildLoopNest(10);
ASSERT_TRUE(graph_->TryBuildingSsa());
ASSERT_EQ(entry_->GetLoopInformation(), nullptr);
for (int d = 0; d < 1; d++) {
ASSERT_EQ(loop_preheader_[d]->GetLoopInformation(),
(d == 0) ? nullptr
: loop_header_[d - 1]->GetLoopInformation());
ASSERT_NE(loop_header_[d]->GetLoopInformation(), nullptr);
ASSERT_NE(loop_body_[d]->GetLoopInformation(), nullptr);
ASSERT_EQ(loop_header_[d]->GetLoopInformation(),
loop_body_[d]->GetLoopInformation());
}
ASSERT_EQ(exit_->GetLoopInformation(), nullptr);
}
TEST_F(InductionVarAnalysisTest, FindBasicInduction) {
// Setup:
// for (int i = 0; i < 100; i++) {
// a[i] = 0;
// }
BuildLoopNest(1);
HInstruction* store = InsertArrayStore(basic_[0], 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("((1) * i + (0))", GetInductionInfo(store->InputAt(1), 0).c_str());
EXPECT_STREQ("((1) * i + (1))", GetInductionInfo(increment_[0], 0).c_str());
// Trip-count.
EXPECT_STREQ("(100)", GetInductionInfo(loop_header_[0]->GetLastInstruction(), 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindDerivedInduction) {
// Setup:
// for (int i = 0; i < 100; i++) {
// k = 100 + i;
// k = 100 - i;
// k = 100 * i;
// k = i << 1;
// k = - i;
// }
BuildLoopNest(1);
HInstruction *add = InsertInstruction(
new (&allocator_) HAdd(Primitive::kPrimInt, constant100_, InsertLocalLoad(basic_[0], 0)), 0);
InsertLocalStore(induc_, add, 0);
HInstruction *sub = InsertInstruction(
new (&allocator_) HSub(Primitive::kPrimInt, constant100_, InsertLocalLoad(basic_[0], 0)), 0);
InsertLocalStore(induc_, sub, 0);
HInstruction *mul = InsertInstruction(
new (&allocator_) HMul(Primitive::kPrimInt, constant100_, InsertLocalLoad(basic_[0], 0)), 0);
InsertLocalStore(induc_, mul, 0);
HInstruction *shl = InsertInstruction(
new (&allocator_) HShl(Primitive::kPrimInt, InsertLocalLoad(basic_[0], 0), constant1_), 0);
InsertLocalStore(induc_, shl, 0);
HInstruction *neg = InsertInstruction(
new (&allocator_) HNeg(Primitive::kPrimInt, InsertLocalLoad(basic_[0], 0)), 0);
InsertLocalStore(induc_, neg, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("((1) * i + (100))", GetInductionInfo(add, 0).c_str());
EXPECT_STREQ("(( - (1)) * i + (100))", GetInductionInfo(sub, 0).c_str());
EXPECT_STREQ("((100) * i + (0))", GetInductionInfo(mul, 0).c_str());
EXPECT_STREQ("((2) * i + (0))", GetInductionInfo(shl, 0).c_str());
EXPECT_STREQ("(( - (1)) * i + (0))", GetInductionInfo(neg, 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindChainInduction) {
// Setup:
// k = 0;
// for (int i = 0; i < 100; i++) {
// k = k + 100;
// a[k] = 0;
// k = k - 1;
// a[k] = 0;
// }
BuildLoopNest(1);
HInstruction *add = InsertInstruction(
new (&allocator_) HAdd(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant100_), 0);
InsertLocalStore(induc_, add, 0);
HInstruction* store1 = InsertArrayStore(induc_, 0);
HInstruction *sub = InsertInstruction(
new (&allocator_) HSub(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant1_), 0);
InsertLocalStore(induc_, sub, 0);
HInstruction* store2 = InsertArrayStore(induc_, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("(((100) - (1)) * i + (100))",
GetInductionInfo(store1->InputAt(1), 0).c_str());
EXPECT_STREQ("(((100) - (1)) * i + ((100) - (1)))",
GetInductionInfo(store2->InputAt(1), 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindTwoWayBasicInduction) {
// Setup:
// k = 0;
// for (int i = 0; i < 100; i++) {
// if () k = k + 1;
// else k = k + 1;
// a[k] = 0;
// }
BuildLoopNest(1);
HBasicBlock* ifTrue;
HBasicBlock* ifFalse;
BuildIf(0, &ifTrue, &ifFalse);
// True-branch.
HInstruction* load1 = new (&allocator_) HLoadLocal(induc_, Primitive::kPrimInt);
ifTrue->AddInstruction(load1);
HInstruction* inc1 = new (&allocator_) HAdd(Primitive::kPrimInt, load1, constant1_);
ifTrue->AddInstruction(inc1);
ifTrue->AddInstruction(new (&allocator_) HStoreLocal(induc_, inc1));
// False-branch.
HInstruction* load2 = new (&allocator_) HLoadLocal(induc_, Primitive::kPrimInt);
ifFalse->AddInstruction(load2);
HInstruction* inc2 = new (&allocator_) HAdd(Primitive::kPrimInt, load2, constant1_);
ifFalse->AddInstruction(inc2);
ifFalse->AddInstruction(new (&allocator_) HStoreLocal(induc_, inc2));
// Merge over a phi.
HInstruction* store = InsertArrayStore(induc_, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("((1) * i + (1))", GetInductionInfo(store->InputAt(1), 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindTwoWayDerivedInduction) {
// Setup:
// for (int i = 0; i < 100; i++) {
// if () k = i + 1;
// else k = i + 1;
// a[k] = 0;
// }
BuildLoopNest(1);
HBasicBlock* ifTrue;
HBasicBlock* ifFalse;
BuildIf(0, &ifTrue, &ifFalse);
// True-branch.
HInstruction* load1 = new (&allocator_) HLoadLocal(basic_[0], Primitive::kPrimInt);
ifTrue->AddInstruction(load1);
HInstruction* inc1 = new (&allocator_) HAdd(Primitive::kPrimInt, load1, constant1_);
ifTrue->AddInstruction(inc1);
ifTrue->AddInstruction(new (&allocator_) HStoreLocal(induc_, inc1));
// False-branch.
HInstruction* load2 = new (&allocator_) HLoadLocal(basic_[0], Primitive::kPrimInt);
ifFalse->AddInstruction(load2);
HInstruction* inc2 = new (&allocator_) HAdd(Primitive::kPrimInt, load2, constant1_);
ifFalse->AddInstruction(inc2);
ifFalse->AddInstruction(new (&allocator_) HStoreLocal(induc_, inc2));
// Merge over a phi.
HInstruction* store = InsertArrayStore(induc_, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("((1) * i + (1))", GetInductionInfo(store->InputAt(1), 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindFirstOrderWrapAroundInduction) {
// Setup:
// k = 0;
// for (int i = 0; i < 100; i++) {
// a[k] = 0;
// k = 100 - i;
// }
BuildLoopNest(1);
HInstruction* store = InsertArrayStore(induc_, 0);
HInstruction *sub = InsertInstruction(
new (&allocator_) HSub(Primitive::kPrimInt, constant100_, InsertLocalLoad(basic_[0], 0)), 0);
InsertLocalStore(induc_, sub, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("wrap((0), (( - (1)) * i + (100)))",
GetInductionInfo(store->InputAt(1), 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindSecondOrderWrapAroundInduction) {
// Setup:
// k = 0;
// t = 100;
// for (int i = 0; i < 100; i++) {
// a[k] = 0;
// k = t;
// t = 100 - i;
// }
BuildLoopNest(1);
HInstruction* store = InsertArrayStore(induc_, 0);
InsertLocalStore(induc_, InsertLocalLoad(tmp_, 0), 0);
HInstruction *sub = InsertInstruction(
new (&allocator_) HSub(Primitive::kPrimInt, constant100_, InsertLocalLoad(basic_[0], 0)), 0);
InsertLocalStore(tmp_, sub, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("wrap((0), wrap((100), (( - (1)) * i + (100))))",
GetInductionInfo(store->InputAt(1), 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindWrapAroundDerivedInduction) {
// Setup:
// k = 0;
// for (int i = 0; i < 100; i++) {
// t = k + 100;
// t = k - 100;
// t = k * 100;
// t = k << 1;
// t = - k;
// k = i << 1;
// }
BuildLoopNest(1);
HInstruction *add = InsertInstruction(
new (&allocator_) HAdd(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant100_), 0);
InsertLocalStore(tmp_, add, 0);
HInstruction *sub = InsertInstruction(
new (&allocator_) HSub(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant100_), 0);
InsertLocalStore(tmp_, sub, 0);
HInstruction *mul = InsertInstruction(
new (&allocator_) HMul(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant100_), 0);
InsertLocalStore(tmp_, mul, 0);
HInstruction *shl = InsertInstruction(
new (&allocator_) HShl(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant1_), 0);
InsertLocalStore(tmp_, shl, 0);
HInstruction *neg = InsertInstruction(
new (&allocator_) HNeg(Primitive::kPrimInt, InsertLocalLoad(induc_, 0)), 0);
InsertLocalStore(tmp_, neg, 0);
InsertLocalStore(
induc_,
InsertInstruction(
new (&allocator_)
HShl(Primitive::kPrimInt, InsertLocalLoad(basic_[0], 0), constant1_), 0), 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("wrap((100), ((2) * i + (100)))", GetInductionInfo(add, 0).c_str());
EXPECT_STREQ("wrap(((0) - (100)), ((2) * i + ((0) - (100))))", GetInductionInfo(sub, 0).c_str());
EXPECT_STREQ("wrap((0), (((2) * (100)) * i + (0)))", GetInductionInfo(mul, 0).c_str());
EXPECT_STREQ("wrap((0), (((2) * (2)) * i + (0)))", GetInductionInfo(shl, 0).c_str());
EXPECT_STREQ("wrap((0), (( - (2)) * i + (0)))", GetInductionInfo(neg, 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindPeriodicInduction) {
// Setup:
// k = 0;
// t = 100;
// for (int i = 0; i < 100; i++) {
// a[k] = 0;
// a[t] = 0;
// // Swap t <-> k.
// d = t;
// t = k;
// k = d;
// }
BuildLoopNest(1);
HInstruction* store1 = InsertArrayStore(induc_, 0);
HInstruction* store2 = InsertArrayStore(tmp_, 0);
InsertLocalStore(dum_, InsertLocalLoad(tmp_, 0), 0);
InsertLocalStore(tmp_, InsertLocalLoad(induc_, 0), 0);
InsertLocalStore(induc_, InsertLocalLoad(dum_, 0), 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("periodic((0), (100))", GetInductionInfo(store1->InputAt(1), 0).c_str());
EXPECT_STREQ("periodic((100), (0))", GetInductionInfo(store2->InputAt(1), 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindIdiomaticPeriodicInduction) {
// Setup:
// k = 0;
// for (int i = 0; i < 100; i++) {
// a[k] = 0;
// k = 1 - k;
// }
BuildLoopNest(1);
HInstruction* store = InsertArrayStore(induc_, 0);
HInstruction *sub = InsertInstruction(
new (&allocator_) HSub(Primitive::kPrimInt, constant1_, InsertLocalLoad(induc_, 0)), 0);
InsertLocalStore(induc_, sub, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("periodic((0), (1))", GetInductionInfo(store->InputAt(1), 0).c_str());
EXPECT_STREQ("periodic((1), (0))", GetInductionInfo(sub, 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindDerivedPeriodicInduction) {
// Setup:
// k = 0;
// for (int i = 0; i < 100; i++) {
// k = 1 - k;
// t = k + 100;
// t = k - 100;
// t = k * 100;
// t = k << 1;
// t = - k;
// }
BuildLoopNest(1);
InsertLocalStore(
induc_,
InsertInstruction(new (&allocator_)
HSub(Primitive::kPrimInt, constant1_, InsertLocalLoad(induc_, 0)), 0), 0);
// Derived expressions.
HInstruction *add = InsertInstruction(
new (&allocator_) HAdd(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant100_), 0);
InsertLocalStore(tmp_, add, 0);
HInstruction *sub = InsertInstruction(
new (&allocator_) HSub(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant100_), 0);
InsertLocalStore(tmp_, sub, 0);
HInstruction *mul = InsertInstruction(
new (&allocator_) HMul(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant100_), 0);
InsertLocalStore(tmp_, mul, 0);
HInstruction *shl = InsertInstruction(
new (&allocator_) HShl(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant1_), 0);
InsertLocalStore(tmp_, shl, 0);
HInstruction *neg = InsertInstruction(
new (&allocator_) HNeg(Primitive::kPrimInt, InsertLocalLoad(induc_, 0)), 0);
InsertLocalStore(tmp_, neg, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("periodic(((1) + (100)), (100))", GetInductionInfo(add, 0).c_str());
EXPECT_STREQ("periodic(((1) - (100)), ((0) - (100)))", GetInductionInfo(sub, 0).c_str());
EXPECT_STREQ("periodic((100), (0))", GetInductionInfo(mul, 0).c_str());
EXPECT_STREQ("periodic((2), (0))", GetInductionInfo(shl, 0).c_str());
EXPECT_STREQ("periodic(( - (1)), (0))", GetInductionInfo(neg, 0).c_str());
}
TEST_F(InductionVarAnalysisTest, FindRange) {
// Setup:
// for (int i = 0; i < 100; i++) {
// k = i << 1;
// k = k + 1;
// a[k] = 0;
// }
BuildLoopNest(1);
HInstruction *shl = InsertInstruction(
new (&allocator_) HShl(Primitive::kPrimInt, InsertLocalLoad(basic_[0], 0), constant1_), 0);
InsertLocalStore(induc_, shl, 0);
HInstruction *add = InsertInstruction(
new (&allocator_) HAdd(Primitive::kPrimInt, InsertLocalLoad(induc_, 0), constant1_), 0);
InsertLocalStore(induc_, add, 0);
HInstruction* store = InsertArrayStore(induc_, 0);
PerformInductionVarAnalysis();
EXPECT_STREQ("((2) * i + (1))", GetInductionInfo(store->InputAt(1), 0).c_str());
InductionVarRange range(iva_);
InductionVarRange::Value v_min = range.GetMinInduction(store, store->InputAt(1));
InductionVarRange::Value v_max = range.GetMaxInduction(store, store->InputAt(1));
EXPECT_EQ(0, v_min.a_constant);
EXPECT_EQ(1, v_min.b_constant);
EXPECT_EQ(0, v_max.a_constant);
EXPECT_EQ(199, v_max.b_constant);
}
TEST_F(InductionVarAnalysisTest, FindDeepLoopInduction) {
// Setup:
// k = 0;
// for (int i_0 = 0; i_0 < 100; i_0++) {
// ..
// for (int i_9 = 0; i_9 < 100; i_9++) {
// k = 1 + k;
// a[k] = 0;
// }
// ..
// }
BuildLoopNest(10);
HInstruction *inc = InsertInstruction(
new (&allocator_) HAdd(Primitive::kPrimInt, constant1_, InsertLocalLoad(induc_, 9)), 9);
InsertLocalStore(induc_, inc, 9);
HInstruction* store = InsertArrayStore(induc_, 9);
PerformInductionVarAnalysis();
// Avoid exact phi number, since that depends on the SSA building phase.
std::regex r("\\(\\(1\\) \\* i \\+ "
"\\(\\(1\\) \\+ \\(\\d+:Phi\\)\\)\\)");
for (int d = 0; d < 10; d++) {
if (d == 9) {
EXPECT_TRUE(std::regex_match(GetInductionInfo(store->InputAt(1), d), r));
} else {
EXPECT_STREQ("", GetInductionInfo(store->InputAt(1), d).c_str());
}
EXPECT_STREQ("((1) * i + (1))", GetInductionInfo(increment_[d], d).c_str());
// Trip-count.
EXPECT_STREQ("(100)", GetInductionInfo(loop_header_[d]->GetLastInstruction(), d).c_str());
}
}
} // namespace art