blob: 3f141b10e51a5425389fad21bc50fe2e4f046c30 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "dex_file.h"
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <map>
#include "UniquePtr.h"
#include "class_linker.h"
#include "dex_file_verifier.h"
#include "globals.h"
#include "leb128.h"
#include "logging.h"
#include "object.h"
#include "os.h"
#include "stringprintf.h"
#include "thread.h"
#include "utf.h"
#include "utils.h"
#include "zip_archive.h"
namespace art {
const byte DexFile::kDexMagic[] = { 'd', 'e', 'x', '\n' };
const byte DexFile::kDexMagicVersion[] = { '0', '3', '5', '\0' };
DexFile::ClassPathEntry DexFile::FindInClassPath(const StringPiece& descriptor,
const ClassPath& class_path) {
for (size_t i = 0; i != class_path.size(); ++i) {
const DexFile* dex_file = class_path[i];
const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor);
if (dex_class_def != NULL) {
return ClassPathEntry(dex_file, dex_class_def);
}
}
// TODO: remove reinterpret_cast when issue with -std=gnu++0x host issue resolved
return ClassPathEntry(reinterpret_cast<const DexFile*>(NULL),
reinterpret_cast<const DexFile::ClassDef*>(NULL));
}
void DexFile::OpenDexFiles(const std::vector<const char*>& dex_filenames,
std::vector<const DexFile*>& dex_files,
const std::string& strip_location_prefix) {
for (size_t i = 0; i < dex_filenames.size(); i++) {
const char* dex_filename = dex_filenames[i];
const DexFile* dex_file = Open(dex_filename, strip_location_prefix);
if (dex_file == NULL) {
fprintf(stderr, "could not open .dex from file %s\n", dex_filename);
exit(EXIT_FAILURE);
}
dex_files.push_back(dex_file);
}
}
const DexFile* DexFile::Open(const std::string& filename,
const std::string& strip_location_prefix) {
if (IsValidZipFilename(filename)) {
return DexFile::OpenZip(filename, strip_location_prefix);
}
if (!IsValidDexFilename(filename)) {
LOG(WARNING) << "Attempting to open dex file with unknown extension '" << filename << "'";
}
return DexFile::OpenFile(filename, filename, strip_location_prefix);
}
void DexFile::ChangePermissions(int prot) const {
if (mprotect(mem_map_->GetAddress(), mem_map_->GetLength(), prot) != 0) {
PLOG(FATAL) << "Failed to change dex file permissions to " << prot << " for " << GetLocation();
}
}
const std::string StripLocationPrefix(const std::string& original_location,
const std::string& strip_location_prefix) {
StringPiece location = original_location;
if (!location.starts_with(strip_location_prefix)) {
LOG(ERROR) << location << " does not start with " << strip_location_prefix;
return "";
}
location.remove_prefix(strip_location_prefix.size());
return location.ToString();
}
const DexFile* DexFile::OpenFile(const std::string& filename,
const std::string& original_location,
const std::string& strip_location_prefix) {
std::string location(StripLocationPrefix(original_location, strip_location_prefix));
if (location.empty()) {
return NULL;
}
int fd = open(filename.c_str(), O_RDONLY); // TODO: scoped_fd
if (fd == -1) {
PLOG(ERROR) << "open(\"" << filename << "\", O_RDONLY) failed";
return NULL;
}
struct stat sbuf;
memset(&sbuf, 0, sizeof(sbuf));
if (fstat(fd, &sbuf) == -1) {
PLOG(ERROR) << "fstat \"" << filename << "\" failed";
close(fd);
return NULL;
}
if (S_ISDIR(sbuf.st_mode)) {
LOG(ERROR) << "attempt to mmap directory \"" << filename << "\"";
return NULL;
}
size_t length = sbuf.st_size;
UniquePtr<MemMap> map(MemMap::MapFile(length, PROT_READ, MAP_PRIVATE, fd, 0));
if (map.get() == NULL) {
LOG(ERROR) << "mmap \"" << filename << "\" failed";
close(fd);
return NULL;
}
close(fd);
return OpenMemory(location, map.release());
}
const char* DexFile::kClassesDex = "classes.dex";
// Open classes.dex from within a .zip, .jar, .apk, ...
const DexFile* DexFile::OpenZip(const std::string& filename,
const std::string& strip_location_prefix) {
std::string location(StripLocationPrefix(filename, strip_location_prefix));
if (location.empty()) {
return NULL;
}
UniquePtr<ZipArchive> zip_archive(ZipArchive::Open(filename));
if (zip_archive.get() == NULL) {
LOG(ERROR) << "Failed to open " << filename << " when looking for classes.dex";
return NULL;
}
return DexFile::Open(*zip_archive.get(), location);
}
const DexFile* DexFile::Open(const ZipArchive& zip_archive, const std::string& location) {
UniquePtr<ZipEntry> zip_entry(zip_archive.Find(kClassesDex));
if (zip_entry.get() == NULL) {
LOG(ERROR) << "Failed to find classes.dex within " << location;
return NULL;
}
uint32_t length = zip_entry->GetUncompressedLength();
std::string name("classes.dex extracted in memory from ");
name += location;
UniquePtr<MemMap> map(MemMap::MapAnonymous(name.c_str(), NULL, length, PROT_READ | PROT_WRITE));
if (map.get() == NULL) {
LOG(ERROR) << "mmap classes.dex for \"" << location << "\" failed";
return NULL;
}
// Extract classes.dex
bool success = zip_entry->ExtractToMemory(*map.get());
if (!success) {
LOG(ERROR) << "Failed to extract classes.dex from '" << location << "' to memory";
return NULL;
}
return OpenMemory(location, map.release());
}
const DexFile* DexFile::OpenMemory(const byte* base,
size_t length,
const std::string& location,
MemMap* mem_map) {
CHECK_ALIGNED(base, 4); // various dex file structures must be word aligned
UniquePtr<DexFile> dex_file(new DexFile(base, length, location, mem_map));
if (!dex_file->Init()) {
return NULL;
} else {
return dex_file.release();
}
}
DexFile::~DexFile() {
// We don't call DeleteGlobalRef on dex_object_ because we're only called by DestroyJavaVM, and
// that's only called after DetachCurrentThread, which means there's no JNIEnv. We could
// re-attach, but cleaning up these global references is not obviously useful. It's not as if
// the global reference table is otherwise empty!
}
jobject DexFile::GetDexObject(JNIEnv* env) const {
MutexLock mu(dex_object_lock_);
if (dex_object_ != NULL) {
return dex_object_;
}
void* address = const_cast<void*>(reinterpret_cast<const void*>(base_));
jobject byte_buffer = env->NewDirectByteBuffer(address, length_);
if (byte_buffer == NULL) {
return NULL;
}
jclass c = env->FindClass("com/android/dex/Dex");
if (c == NULL) {
return NULL;
}
jmethodID mid = env->GetStaticMethodID(c, "create", "(Ljava/nio/ByteBuffer;)Lcom/android/dex/Dex;");
if (mid == NULL) {
return NULL;
}
jvalue args[1];
args[0].l = byte_buffer;
jobject local = env->CallStaticObjectMethodA(c, mid, args);
if (local == NULL) {
return NULL;
}
dex_object_ = env->NewGlobalRef(local);
return dex_object_;
}
bool DexFile::Init() {
InitMembers();
if (!CheckMagicAndVersion()) {
return false;
}
InitIndex();
if (!DexFileVerifier::Verify(this, base_, length_)) {
return false;
}
return true;
}
void DexFile::InitMembers() {
const byte* b = base_;
header_ = reinterpret_cast<const Header*>(b);
const Header* h = header_;
string_ids_ = reinterpret_cast<const StringId*>(b + h->string_ids_off_);
type_ids_ = reinterpret_cast<const TypeId*>(b + h->type_ids_off_);
field_ids_ = reinterpret_cast<const FieldId*>(b + h->field_ids_off_);
method_ids_ = reinterpret_cast<const MethodId*>(b + h->method_ids_off_);
proto_ids_ = reinterpret_cast<const ProtoId*>(b + h->proto_ids_off_);
class_defs_ = reinterpret_cast<const ClassDef*>(b + h->class_defs_off_);
DCHECK_EQ(length_, header_->file_size_);
}
bool DexFile::CheckMagicAndVersion() const {
CHECK(header_->magic_ != NULL) << GetLocation();
if (!IsMagicValid(header_->magic_)) {
LOG(ERROR) << "Unrecognized magic number in " << GetLocation() << ":"
<< " " << header_->magic_[0]
<< " " << header_->magic_[1]
<< " " << header_->magic_[2]
<< " " << header_->magic_[3];
return false;
}
if (!IsVersionValid(header_->magic_)) {
LOG(ERROR) << "Unrecognized version number in " << GetLocation() << ":"
<< " " << header_->magic_[4]
<< " " << header_->magic_[5]
<< " " << header_->magic_[6]
<< " " << header_->magic_[7];
return false;
}
return true;
}
bool DexFile::IsMagicValid(const byte* magic) {
return (memcmp(magic, kDexMagic, sizeof(kDexMagic)) == 0);
}
bool DexFile::IsVersionValid(const byte* magic) {
const byte* version = &magic[sizeof(kDexMagic)];
return (memcmp(version, kDexMagicVersion, sizeof(kDexMagicVersion)) == 0);
}
uint32_t DexFile::GetVersion() const {
const char* version = reinterpret_cast<const char*>(&GetHeader().magic_[sizeof(kDexMagic)]);
return atoi(version);
}
int32_t DexFile::GetStringLength(const StringId& string_id) const {
const byte* ptr = base_ + string_id.string_data_off_;
return DecodeUnsignedLeb128(&ptr);
}
// Returns a pointer to the UTF-8 string data referred to by the given string_id.
const char* DexFile::GetStringDataAndLength(const StringId& string_id, int32_t* length) const {
CHECK(length != NULL) << GetLocation();
const byte* ptr = base_ + string_id.string_data_off_;
*length = DecodeUnsignedLeb128(&ptr);
return reinterpret_cast<const char*>(ptr);
}
void DexFile::InitIndex() {
CHECK_EQ(index_.size(), 0U) << GetLocation();
for (size_t i = 0; i < NumClassDefs(); ++i) {
const ClassDef& class_def = GetClassDef(i);
const char* descriptor = GetClassDescriptor(class_def);
index_[descriptor] = i;
}
}
bool DexFile::FindClassDefIndex(const StringPiece& descriptor, uint32_t& idx) const {
Index::const_iterator it = index_.find(descriptor);
if (it == index_.end()) {
return false;
}
idx = it->second;
return true;
}
const DexFile::ClassDef* DexFile::FindClassDef(const StringPiece& descriptor) const {
uint32_t idx;
if (FindClassDefIndex(descriptor, idx)) {
return &GetClassDef(idx);
}
return NULL;
}
const DexFile::FieldId* DexFile::FindFieldId(const DexFile::TypeId& declaring_klass,
const DexFile::StringId& name,
const DexFile::TypeId& type) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const uint16_t class_idx = GetIndexForTypeId(declaring_klass);
const uint32_t name_idx = GetIndexForStringId(name);
const uint16_t type_idx = GetIndexForTypeId(type);
uint32_t lo = 0;
uint32_t hi = NumFieldIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
const DexFile::FieldId& field = GetFieldId(mid);
if (class_idx > field.class_idx_) {
lo = mid + 1;
} else if (class_idx < field.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > field.name_idx_) {
lo = mid + 1;
} else if (name_idx < field.name_idx_) {
hi = mid - 1;
} else {
if (type_idx > field.type_idx_) {
lo = mid + 1;
} else if (type_idx < field.type_idx_) {
hi = mid - 1;
} else {
return &field;
}
}
}
}
return NULL;
}
const DexFile::MethodId* DexFile::FindMethodId(const DexFile::TypeId& declaring_klass,
const DexFile::StringId& name,
const DexFile::ProtoId& signature) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const uint16_t class_idx = GetIndexForTypeId(declaring_klass);
const uint32_t name_idx = GetIndexForStringId(name);
const uint16_t proto_idx = GetIndexForProtoId(signature);
uint32_t lo = 0;
uint32_t hi = NumMethodIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
const DexFile::MethodId& method = GetMethodId(mid);
if (class_idx > method.class_idx_) {
lo = mid + 1;
} else if (class_idx < method.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > method.name_idx_) {
lo = mid + 1;
} else if (name_idx < method.name_idx_) {
hi = mid - 1;
} else {
if (proto_idx > method.proto_idx_) {
lo = mid + 1;
} else if (proto_idx < method.proto_idx_) {
hi = mid - 1;
} else {
return &method;
}
}
}
}
return NULL;
}
const DexFile::StringId* DexFile::FindStringId(const std::string& string) const {
uint32_t lo = 0;
uint32_t hi = NumStringIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
int32_t length;
const DexFile::StringId& str_id = GetStringId(mid);
const char* str = GetStringDataAndLength(str_id, &length);
int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string.c_str(), str);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &str_id;
}
}
return NULL;
}
const DexFile::TypeId* DexFile::FindTypeId(uint32_t string_idx) const {
uint32_t lo = 0;
uint32_t hi = NumTypeIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
const TypeId& type_id = GetTypeId(mid);
if (string_idx > type_id.descriptor_idx_) {
lo = mid + 1;
} else if (string_idx < type_id.descriptor_idx_) {
hi = mid - 1;
} else {
return &type_id;
}
}
return NULL;
}
const DexFile::ProtoId* DexFile::FindProtoId(uint16_t return_type_idx,
const std::vector<uint16_t>& signature_type_idxs) const {
uint32_t lo = 0;
uint32_t hi = NumProtoIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
const DexFile::ProtoId& proto = GetProtoId(mid);
int compare = return_type_idx - proto.return_type_idx_;
if (compare == 0) {
DexFileParameterIterator it(*this, proto);
size_t i = 0;
while (it.HasNext() && i < signature_type_idxs.size() && compare == 0) {
compare = signature_type_idxs[i] - it.GetTypeIdx();
it.Next();
i++;
}
if (compare == 0) {
if (it.HasNext()) {
compare = -1;
} else if (i < signature_type_idxs.size()) {
compare = 1;
}
}
}
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &proto;
}
}
return NULL;
}
// Given a signature place the type ids into the given vector
bool DexFile::CreateTypeList(uint16_t* return_type_idx, std::vector<uint16_t>* param_type_idxs,
const std::string& signature) const {
if (signature[0] != '(') {
return false;
}
size_t offset = 1;
size_t end = signature.size();
bool process_return = false;
while (offset < end) {
char c = signature[offset];
offset++;
if (c == ')') {
process_return = true;
continue;
}
std::string descriptor;
descriptor += c;
while (c == '[') { // process array prefix
if (offset >= end) { // expect some descriptor following [
return false;
}
c = signature[offset];
offset++;
descriptor += c;
}
if (c == 'L') { // process type descriptors
do {
if (offset >= end) { // unexpected early termination of descriptor
return false;
}
c = signature[offset];
offset++;
descriptor += c;
} while (c != ';');
}
const DexFile::StringId* string_id = FindStringId(descriptor);
if (string_id == NULL) {
return false;
}
const DexFile::TypeId* type_id = FindTypeId(GetIndexForStringId(*string_id));
if (type_id == NULL) {
return false;
}
uint16_t type_idx = GetIndexForTypeId(*type_id);
if (!process_return) {
param_type_idxs->push_back(type_idx);
} else {
*return_type_idx = type_idx;
return offset == end; // return true if the signature had reached a sensible end
}
}
return false; // failed to correctly parse return type
}
// Materializes the method descriptor for a method prototype. Method
// descriptors are not stored directly in the dex file. Instead, one
// must assemble the descriptor from references in the prototype.
std::string DexFile::CreateMethodSignature(uint32_t proto_idx, int32_t* unicode_length) const {
const ProtoId& proto_id = GetProtoId(proto_idx);
std::string descriptor;
descriptor.push_back('(');
const TypeList* type_list = GetProtoParameters(proto_id);
size_t parameter_length = 0;
if (type_list != NULL) {
// A non-zero number of arguments. Append the type names.
for (size_t i = 0; i < type_list->Size(); ++i) {
const TypeItem& type_item = type_list->GetTypeItem(i);
uint32_t type_idx = type_item.type_idx_;
int32_t type_length;
const char* name = StringByTypeIdx(type_idx, &type_length);
parameter_length += type_length;
descriptor.append(name);
}
}
descriptor.push_back(')');
uint32_t return_type_idx = proto_id.return_type_idx_;
int32_t return_type_length;
const char* name = StringByTypeIdx(return_type_idx, &return_type_length);
descriptor.append(name);
if (unicode_length != NULL) {
*unicode_length = parameter_length + return_type_length + 2; // 2 for ( and )
}
return descriptor;
}
int32_t DexFile::GetLineNumFromPC(const Method* method, uint32_t rel_pc) const {
// For native method, lineno should be -2 to indicate it is native. Note that
// "line number == -2" is how libcore tells from StackTraceElement.
if (method->GetCodeItemOffset() == 0) {
return -2;
}
const CodeItem* code_item = GetCodeItem(method->GetCodeItemOffset());
DCHECK(code_item != NULL) << GetLocation();
// A method with no line number info should return -1
LineNumFromPcContext context(rel_pc, -1);
DecodeDebugInfo(code_item, method->IsStatic(), method->GetDexMethodIndex(), LineNumForPcCb,
NULL, &context);
return context.line_num_;
}
int32_t DexFile::FindCatchHandlerOffset(const CodeItem &code_item, int32_t tries_size,
uint32_t address) {
// Note: Signed type is important for max and min.
int32_t min = 0;
int32_t max = tries_size - 1;
while (max >= min) {
int32_t mid = (min + max) / 2;
const TryItem* pTry = DexFile::GetTryItems(code_item, mid);
uint32_t start = pTry->start_addr_;
if (address < start) {
max = mid - 1;
} else {
uint32_t end = start + pTry->insn_count_;
if (address >= end) {
min = mid + 1;
} else { // We have a winner!
return (int32_t) pTry->handler_off_;
}
}
}
// No match.
return -1;
}
void DexFile::DecodeDebugInfo0(const CodeItem* code_item, bool is_static, uint32_t method_idx,
DexDebugNewPositionCb posCb, DexDebugNewLocalCb local_cb,
void* cnxt, const byte* stream, LocalInfo* local_in_reg) const {
uint32_t line = DecodeUnsignedLeb128(&stream);
uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
uint16_t arg_reg = code_item->registers_size_ - code_item->ins_size_;
uint32_t address = 0;
bool need_locals = (local_cb != NULL);
if (!is_static) {
if (need_locals) {
const char* descriptor = GetMethodDeclaringClassDescriptor(GetMethodId(method_idx));
local_in_reg[arg_reg].name_ = "this";
local_in_reg[arg_reg].descriptor_ = descriptor;
local_in_reg[arg_reg].signature_ = NULL;
local_in_reg[arg_reg].start_address_ = 0;
local_in_reg[arg_reg].is_live_ = true;
}
arg_reg++;
}
DexFileParameterIterator it(*this, GetMethodPrototype(GetMethodId(method_idx)));
for (uint32_t i = 0; i < parameters_size && it.HasNext(); ++i, it.Next()) {
if (arg_reg >= code_item->registers_size_) {
LOG(ERROR) << "invalid stream - arg reg >= reg size (" << arg_reg
<< " >= " << code_item->registers_size_ << ") in " << GetLocation();
return;
}
uint32_t id = DecodeUnsignedLeb128P1(&stream);
const char* descriptor = it.GetDescriptor();
if (need_locals && id != kDexNoIndex) {
const char* name = StringDataByIdx(id);
local_in_reg[arg_reg].name_ = name;
local_in_reg[arg_reg].descriptor_ = descriptor;
local_in_reg[arg_reg].signature_ = NULL;
local_in_reg[arg_reg].start_address_ = address;
local_in_reg[arg_reg].is_live_ = true;
}
switch (*descriptor) {
case 'D':
case 'J':
arg_reg += 2;
break;
default:
arg_reg += 1;
break;
}
}
if (it.HasNext()) {
LOG(ERROR) << "invalid stream - problem with parameter iterator in " << GetLocation();
return;
}
for (;;) {
uint8_t opcode = *stream++;
uint16_t reg;
uint16_t name_idx;
uint16_t descriptor_idx;
uint16_t signature_idx = 0;
switch (opcode) {
case DBG_END_SEQUENCE:
return;
case DBG_ADVANCE_PC:
address += DecodeUnsignedLeb128(&stream);
break;
case DBG_ADVANCE_LINE:
line += DecodeSignedLeb128(&stream);
break;
case DBG_START_LOCAL:
case DBG_START_LOCAL_EXTENDED:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ") in " << GetLocation();
return;
}
name_idx = DecodeUnsignedLeb128P1(&stream);
descriptor_idx = DecodeUnsignedLeb128P1(&stream);
if (opcode == DBG_START_LOCAL_EXTENDED) {
signature_idx = DecodeUnsignedLeb128P1(&stream);
}
// Emit what was previously there, if anything
if (need_locals) {
InvokeLocalCbIfLive(cnxt, reg, address, local_in_reg, local_cb);
local_in_reg[reg].name_ = StringDataByIdx(name_idx);
local_in_reg[reg].descriptor_ = StringByTypeIdx(descriptor_idx);
if (opcode == DBG_START_LOCAL_EXTENDED) {
local_in_reg[reg].signature_ = StringDataByIdx(signature_idx);
}
local_in_reg[reg].start_address_ = address;
local_in_reg[reg].is_live_ = true;
}
break;
case DBG_END_LOCAL:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ") in " << GetLocation();
return;
}
if (need_locals) {
InvokeLocalCbIfLive(cnxt, reg, address, local_in_reg, local_cb);
local_in_reg[reg].is_live_ = false;
}
break;
case DBG_RESTART_LOCAL:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ") in " << GetLocation();
return;
}
if (need_locals) {
if (local_in_reg[reg].name_ == NULL || local_in_reg[reg].descriptor_ == NULL) {
LOG(ERROR) << "invalid stream - no name or descriptor in " << GetLocation();
return;
}
// If the register is live, the "restart" is superfluous,
// and we don't want to mess with the existing start address.
if (!local_in_reg[reg].is_live_) {
local_in_reg[reg].start_address_ = address;
local_in_reg[reg].is_live_ = true;
}
}
break;
case DBG_SET_PROLOGUE_END:
case DBG_SET_EPILOGUE_BEGIN:
case DBG_SET_FILE:
break;
default: {
int adjopcode = opcode - DBG_FIRST_SPECIAL;
address += adjopcode / DBG_LINE_RANGE;
line += DBG_LINE_BASE + (adjopcode % DBG_LINE_RANGE);
if (posCb != NULL) {
if (posCb(cnxt, address, line)) {
// early exit
return;
}
}
break;
}
}
}
}
void DexFile::DecodeDebugInfo(const CodeItem* code_item, bool is_static, uint32_t method_idx,
DexDebugNewPositionCb posCb, DexDebugNewLocalCb local_cb,
void* cnxt) const {
const byte* stream = GetDebugInfoStream(code_item);
LocalInfo local_in_reg[code_item->registers_size_];
if (stream != NULL) {
DecodeDebugInfo0(code_item, is_static, method_idx, posCb, local_cb, cnxt, stream, local_in_reg);
}
for (int reg = 0; reg < code_item->registers_size_; reg++) {
InvokeLocalCbIfLive(cnxt, reg, code_item->insns_size_in_code_units_, local_in_reg, local_cb);
}
}
bool DexFile::LineNumForPcCb(void* cnxt, uint32_t address, uint32_t line_num) {
LineNumFromPcContext* context = reinterpret_cast<LineNumFromPcContext*>(cnxt);
// We know that this callback will be called in
// ascending address order, so keep going until we find
// a match or we've just gone past it.
if (address > context->address_) {
// The line number from the previous positions callback
// wil be the final result.
return true;
} else {
context->line_num_ = line_num;
return address == context->address_;
}
}
// Decodes the header section from the class data bytes.
void ClassDataItemIterator::ReadClassDataHeader() {
CHECK(ptr_pos_ != NULL);
header_.static_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.instance_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.direct_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.virtual_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_);
}
void ClassDataItemIterator::ReadClassDataField() {
field_.field_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_);
field_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_);
}
void ClassDataItemIterator::ReadClassDataMethod() {
method_.method_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_);
method_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_);
method_.code_off_ = DecodeUnsignedLeb128(&ptr_pos_);
}
// Read a signed integer. "zwidth" is the zero-based byte count.
static int32_t ReadSignedInt(const byte* ptr, int zwidth) {
int32_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint32_t)val >> 8) | (((int32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
return val;
}
// Read an unsigned integer. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
static uint32_t ReadUnsignedInt(const byte* ptr, int zwidth, bool fill_on_right) {
uint32_t val = 0;
if (!fill_on_right) {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
} else {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
}
return val;
}
// Read a signed long. "zwidth" is the zero-based byte count.
static int64_t ReadSignedLong(const byte* ptr, int zwidth) {
int64_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint64_t)val >> 8) | (((int64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
return val;
}
// Read an unsigned long. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
static uint64_t ReadUnsignedLong(const byte* ptr, int zwidth, bool fill_on_right) {
uint64_t val = 0;
if (!fill_on_right) {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
} else {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
}
return val;
}
EncodedStaticFieldValueIterator::EncodedStaticFieldValueIterator(const DexFile& dex_file,
DexCache* dex_cache, ClassLinker* linker, const DexFile::ClassDef& class_def) :
dex_file_(dex_file), dex_cache_(dex_cache), linker_(linker), array_size_(), pos_(-1), type_(0) {
ptr_ = dex_file.GetEncodedStaticFieldValuesArray(class_def);
if (ptr_ == NULL) {
array_size_ = 0;
} else {
array_size_ = DecodeUnsignedLeb128(&ptr_);
}
if (array_size_ > 0) {
Next();
}
}
void EncodedStaticFieldValueIterator::Next() {
pos_++;
if (pos_ >= array_size_) {
return;
}
byte value_type = *ptr_++;
byte value_arg = value_type >> kEncodedValueArgShift;
size_t width = value_arg + 1; // assume and correct later
type_ = value_type & kEncodedValueTypeMask;
switch (type_) {
case kBoolean:
jval_.i = (value_arg != 0) ? 1 : 0;
width = 0;
break;
case kByte:
jval_.i = ReadSignedInt(ptr_, value_arg);
CHECK(IsInt(8, jval_.i));
break;
case kShort:
jval_.i = ReadSignedInt(ptr_, value_arg);
CHECK(IsInt(16, jval_.i));
break;
case kChar:
jval_.i = ReadUnsignedInt(ptr_, value_arg, false);
CHECK(IsUint(16, jval_.i));
break;
case kInt:
jval_.i = ReadSignedInt(ptr_, value_arg);
break;
case kLong:
jval_.j = ReadSignedLong(ptr_, value_arg);
break;
case kFloat:
jval_.i = ReadUnsignedInt(ptr_, value_arg, true);
break;
case kDouble:
jval_.j = ReadUnsignedLong(ptr_, value_arg, true);
break;
case kString:
case kType:
case kMethod:
case kEnum:
jval_.i = ReadUnsignedInt(ptr_, value_arg, false);
break;
case kField:
case kArray:
case kAnnotation:
UNIMPLEMENTED(FATAL) << ": type " << type_;
break;
case kNull:
jval_.l = NULL;
width = 0;
break;
default:
LOG(FATAL) << "Unreached";
}
ptr_ += width;
}
void EncodedStaticFieldValueIterator::ReadValueToField(Field* field) const {
switch (type_) {
case kBoolean: field->SetBoolean(NULL, jval_.z); break;
case kByte: field->SetByte(NULL, jval_.b); break;
case kShort: field->SetShort(NULL, jval_.s); break;
case kChar: field->SetChar(NULL, jval_.c); break;
case kInt: field->SetInt(NULL, jval_.i); break;
case kLong: field->SetLong(NULL, jval_.j); break;
case kFloat: field->SetFloat(NULL, jval_.f); break;
case kDouble: field->SetDouble(NULL, jval_.d); break;
case kNull: field->SetObject(NULL, NULL); break;
case kString: {
String* resolved = linker_->ResolveString(dex_file_, jval_.i, dex_cache_);
field->SetObject(NULL, resolved);
break;
}
default: UNIMPLEMENTED(FATAL) << ": type " << type_;
}
}
CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item, uint32_t address) {
handler_.address_ = -1;
int32_t offset = -1;
// Short-circuit the overwhelmingly common cases.
switch (code_item.tries_size_) {
case 0:
break;
case 1: {
const DexFile::TryItem* tries = DexFile::GetTryItems(code_item, 0);
uint32_t start = tries->start_addr_;
if (address >= start) {
uint32_t end = start + tries->insn_count_;
if (address < end) {
offset = tries->handler_off_;
}
}
break;
}
default:
offset = DexFile::FindCatchHandlerOffset(code_item, code_item.tries_size_, address);
}
if (offset >= 0) {
const byte* handler_data = DexFile::GetCatchHandlerData(code_item, offset);
Init(handler_data);
} else {
// Not found, initialize as empty
current_data_ = NULL;
remaining_count_ = -1;
catch_all_ = false;
DCHECK(!HasNext());
}
}
void CatchHandlerIterator::Init(const byte* handler_data) {
current_data_ = handler_data;
remaining_count_ = DecodeSignedLeb128(&current_data_);
// If remaining_count_ is non-positive, then it is the negative of
// the number of catch types, and the catches are followed by a
// catch-all handler.
if (remaining_count_ <= 0) {
catch_all_ = true;
remaining_count_ = -remaining_count_;
} else {
catch_all_ = false;
}
Next();
}
void CatchHandlerIterator::Next() {
if (remaining_count_ > 0) {
handler_.type_idx_ = DecodeUnsignedLeb128(&current_data_);
handler_.address_ = DecodeUnsignedLeb128(&current_data_);
remaining_count_--;
return;
}
if (catch_all_) {
handler_.type_idx_ = DexFile::kDexNoIndex16;
handler_.address_ = DecodeUnsignedLeb128(&current_data_);
catch_all_ = false;
return;
}
// no more handler
remaining_count_ = -1;
}
} // namespace art