blob: 0acce1e4219fdf25702f706d79a2c105ee522349 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "profile_compilation_info.h"
#include "errno.h"
#include <limits.h>
#include <vector>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include "base/mutex.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/unix_file/fd_file.h"
#include "jit/profiling_info.h"
#include "os.h"
#include "safe_map.h"
#include "utils.h"
namespace art {
const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' };
// Last profile version: fix profman merges. Update profile version to force
// regeneration of possibly faulty profiles.
const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '0', '5', '\0' };
static constexpr uint16_t kMaxDexFileKeyLength = PATH_MAX;
// Debug flag to ignore checksums when testing if a method or a class is present in the profile.
// Used to facilitate testing profile guided compilation across a large number of apps
// using the same test profile.
static constexpr bool kDebugIgnoreChecksum = false;
static constexpr uint8_t kIsMissingTypesEncoding = 6;
static constexpr uint8_t kIsMegamorphicEncoding = 7;
static_assert(sizeof(InlineCache::kIndividualCacheSize) == sizeof(uint8_t),
"InlineCache::kIndividualCacheSize does not have the expect type size");
static_assert(InlineCache::kIndividualCacheSize < kIsMegamorphicEncoding,
"InlineCache::kIndividualCacheSize is larger than expected");
static_assert(InlineCache::kIndividualCacheSize < kIsMissingTypesEncoding,
"InlineCache::kIndividualCacheSize is larger than expected");
ProfileCompilationInfo::ProfileCompilationInfo(const ProfileCompilationInfo& pci) {
MergeWith(pci);
}
ProfileCompilationInfo::~ProfileCompilationInfo() {
ClearProfile();
}
void ProfileCompilationInfo::DexPcData::AddClass(uint16_t dex_profile_idx,
const dex::TypeIndex& type_idx) {
if (is_megamorphic || is_missing_types) {
return;
}
classes.emplace(dex_profile_idx, type_idx);
if (classes.size() >= InlineCache::kIndividualCacheSize) {
is_megamorphic = true;
classes.clear();
}
}
// Transform the actual dex location into relative paths.
// Note: this is OK because we don't store profiles of different apps into the same file.
// Apps with split apks don't cause trouble because each split has a different name and will not
// collide with other entries.
std::string ProfileCompilationInfo::GetProfileDexFileKey(const std::string& dex_location) {
DCHECK(!dex_location.empty());
size_t last_sep_index = dex_location.find_last_of('/');
if (last_sep_index == std::string::npos) {
return dex_location;
} else {
DCHECK(last_sep_index < dex_location.size());
return dex_location.substr(last_sep_index + 1);
}
}
bool ProfileCompilationInfo::AddMethodsAndClasses(
const std::vector<ProfileMethodInfo>& methods,
const std::set<DexCacheResolvedClasses>& resolved_classes) {
for (const ProfileMethodInfo& method : methods) {
if (!AddMethod(method)) {
return false;
}
}
for (const DexCacheResolvedClasses& dex_cache : resolved_classes) {
if (!AddResolvedClasses(dex_cache)) {
return false;
}
}
return true;
}
bool ProfileCompilationInfo::MergeAndSave(const std::string& filename,
uint64_t* bytes_written,
bool force) {
ScopedTrace trace(__PRETTY_FUNCTION__);
ScopedFlock flock;
std::string error;
int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC;
// There's no need to fsync profile data right away. We get many chances
// to write it again in case something goes wrong. We can rely on a simple
// close(), no sync, and let to the kernel decide when to write to disk.
if (!flock.Init(filename.c_str(), flags, /*block*/false, /*flush_on_close*/false, &error)) {
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = flock.GetFile()->Fd();
// Load the file but keep a copy around to be able to infer if the content has changed.
ProfileCompilationInfo fileInfo;
ProfileLoadSatus status = fileInfo.LoadInternal(fd, &error);
if (status == kProfileLoadSuccess) {
// Merge the content of file into the current object.
if (MergeWith(fileInfo)) {
// If after the merge we have the same data as what is the file there's no point
// in actually doing the write. The file will be exactly the same as before.
if (Equals(fileInfo)) {
if (bytes_written != nullptr) {
*bytes_written = 0;
}
return true;
}
} else {
LOG(WARNING) << "Could not merge previous profile data from file " << filename;
if (!force) {
return false;
}
}
} else if (force &&
((status == kProfileLoadVersionMismatch) || (status == kProfileLoadBadData))) {
// Log a warning but don't return false. We will clear the profile anyway.
LOG(WARNING) << "Clearing bad or obsolete profile data from file "
<< filename << ": " << error;
} else {
LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
return false;
}
// We need to clear the data because we don't support appending to the profiles yet.
if (!flock.GetFile()->ClearContent()) {
PLOG(WARNING) << "Could not clear profile file: " << filename;
return false;
}
// This doesn't need locking because we are trying to lock the file for exclusive
// access and fail immediately if we can't.
bool result = Save(fd);
if (result) {
VLOG(profiler) << "Successfully saved profile info to " << filename
<< " Size: " << GetFileSizeBytes(filename);
if (bytes_written != nullptr) {
*bytes_written = GetFileSizeBytes(filename);
}
} else {
VLOG(profiler) << "Failed to save profile info to " << filename;
}
return result;
}
// Returns true if all the bytes were successfully written to the file descriptor.
static bool WriteBuffer(int fd, const uint8_t* buffer, size_t byte_count) {
while (byte_count > 0) {
int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count));
if (bytes_written == -1) {
return false;
}
byte_count -= bytes_written; // Reduce the number of remaining bytes.
buffer += bytes_written; // Move the buffer forward.
}
return true;
}
// Add the string bytes to the buffer.
static void AddStringToBuffer(std::vector<uint8_t>* buffer, const std::string& value) {
buffer->insert(buffer->end(), value.begin(), value.end());
}
// Insert each byte, from low to high into the buffer.
template <typename T>
static void AddUintToBuffer(std::vector<uint8_t>* buffer, T value) {
for (size_t i = 0; i < sizeof(T); i++) {
buffer->push_back((value >> (i * kBitsPerByte)) & 0xff);
}
}
static constexpr size_t kLineHeaderSize =
2 * sizeof(uint16_t) + // class_set.size + dex_location.size
2 * sizeof(uint32_t); // method_map.size + checksum
/**
* Serialization format:
* magic,version,number_of_dex_files
* dex_location1,number_of_classes1,methods_region_size,dex_location_checksum1, \
* method_encoding_11,method_encoding_12...,class_id1,class_id2...
* dex_location2,number_of_classes2,methods_region_size,dex_location_checksum2, \
* method_encoding_21,method_encoding_22...,,class_id1,class_id2...
* .....
* The method_encoding is:
* method_id,number_of_inline_caches,inline_cache1,inline_cache2...
* The inline_cache is:
* dex_pc,[M|dex_map_size], dex_profile_index,class_id1,class_id2...,dex_profile_index2,...
* dex_map_size is the number of dex_indeces that follows.
* Classes are grouped per their dex files and the line
* `dex_profile_index,class_id1,class_id2...,dex_profile_index2,...` encodes the
* mapping from `dex_profile_index` to the set of classes `class_id1,class_id2...`
* M stands for megamorphic or missing types and it's encoded as either
* the byte kIsMegamorphicEncoding or kIsMissingTypesEncoding.
* When present, there will be no class ids following.
**/
bool ProfileCompilationInfo::Save(int fd) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
// Cache at most 50KB before writing.
static constexpr size_t kMaxSizeToKeepBeforeWriting = 50 * KB;
// Use a vector wrapper to avoid keeping track of offsets when we add elements.
std::vector<uint8_t> buffer;
WriteBuffer(fd, kProfileMagic, sizeof(kProfileMagic));
WriteBuffer(fd, kProfileVersion, sizeof(kProfileVersion));
DCHECK_LE(info_.size(), std::numeric_limits<uint8_t>::max());
AddUintToBuffer(&buffer, static_cast<uint8_t>(info_.size()));
// Dex files must be written in the order of their profile index. This
// avoids writing the index in the output file and simplifies the parsing logic.
for (const DexFileData* dex_data_ptr : info_) {
const DexFileData& dex_data = *dex_data_ptr;
if (buffer.size() > kMaxSizeToKeepBeforeWriting) {
if (!WriteBuffer(fd, buffer.data(), buffer.size())) {
return false;
}
buffer.clear();
}
// Note that we allow dex files without any methods or classes, so that
// inline caches can refer valid dex files.
if (dex_data.profile_key.size() >= kMaxDexFileKeyLength) {
LOG(WARNING) << "DexFileKey exceeds allocated limit";
return false;
}
// Make sure that the buffer has enough capacity to avoid repeated resizings
// while we add data.
uint32_t methods_region_size = GetMethodsRegionSize(dex_data);
size_t required_capacity = buffer.size() +
kLineHeaderSize +
dex_data.profile_key.size() +
sizeof(uint16_t) * dex_data.class_set.size() +
methods_region_size;
buffer.reserve(required_capacity);
DCHECK_LE(dex_data.profile_key.size(), std::numeric_limits<uint16_t>::max());
DCHECK_LE(dex_data.class_set.size(), std::numeric_limits<uint16_t>::max());
AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.profile_key.size()));
AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.class_set.size()));
AddUintToBuffer(&buffer, methods_region_size); // uint32_t
AddUintToBuffer(&buffer, dex_data.checksum); // uint32_t
AddStringToBuffer(&buffer, dex_data.profile_key);
for (const auto& method_it : dex_data.method_map) {
AddUintToBuffer(&buffer, method_it.first);
AddInlineCacheToBuffer(&buffer, method_it.second);
}
for (const auto& class_id : dex_data.class_set) {
AddUintToBuffer(&buffer, class_id.index_);
}
DCHECK_LE(required_capacity, buffer.size())
<< "Failed to add the expected number of bytes in the buffer";
}
return WriteBuffer(fd, buffer.data(), buffer.size());
}
void ProfileCompilationInfo::AddInlineCacheToBuffer(std::vector<uint8_t>* buffer,
const InlineCacheMap& inline_cache_map) {
// Add inline cache map size.
AddUintToBuffer(buffer, static_cast<uint16_t>(inline_cache_map.size()));
if (inline_cache_map.size() == 0) {
return;
}
for (const auto& inline_cache_it : inline_cache_map) {
uint16_t dex_pc = inline_cache_it.first;
const DexPcData dex_pc_data = inline_cache_it.second;
const ClassSet& classes = dex_pc_data.classes;
// Add the dex pc.
AddUintToBuffer(buffer, dex_pc);
// Add the megamorphic/missing_types encoding if needed and continue.
// In either cases we don't add any classes to the profiles and so there's
// no point to continue.
// TODO(calin): in case we miss types there is still value to add the
// rest of the classes. They can be added without bumping the profile version.
if (dex_pc_data.is_missing_types) {
DCHECK(!dex_pc_data.is_megamorphic); // at this point the megamorphic flag should not be set.
DCHECK_EQ(classes.size(), 0u);
AddUintToBuffer(buffer, kIsMissingTypesEncoding);
continue;
} else if (dex_pc_data.is_megamorphic) {
DCHECK_EQ(classes.size(), 0u);
AddUintToBuffer(buffer, kIsMegamorphicEncoding);
continue;
}
DCHECK_LT(classes.size(), InlineCache::kIndividualCacheSize);
DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes";
SafeMap<uint8_t, std::vector<dex::TypeIndex>> dex_to_classes_map;
// Group the classes by dex. We expect that most of the classes will come from
// the same dex, so this will be more efficient than encoding the dex index
// for each class reference.
GroupClassesByDex(classes, &dex_to_classes_map);
// Add the dex map size.
AddUintToBuffer(buffer, static_cast<uint8_t>(dex_to_classes_map.size()));
for (const auto& dex_it : dex_to_classes_map) {
uint8_t dex_profile_index = dex_it.first;
const std::vector<dex::TypeIndex>& dex_classes = dex_it.second;
// Add the dex profile index.
AddUintToBuffer(buffer, dex_profile_index);
// Add the the number of classes for each dex profile index.
AddUintToBuffer(buffer, static_cast<uint8_t>(dex_classes.size()));
for (size_t i = 0; i < dex_classes.size(); i++) {
// Add the type index of the classes.
AddUintToBuffer(buffer, dex_classes[i].index_);
}
}
}
}
uint32_t ProfileCompilationInfo::GetMethodsRegionSize(const DexFileData& dex_data) {
// ((uint16_t)method index + (uint16_t)inline cache size) * number of methods
uint32_t size = 2 * sizeof(uint16_t) * dex_data.method_map.size();
for (const auto& method_it : dex_data.method_map) {
const InlineCacheMap& inline_cache = method_it.second;
size += sizeof(uint16_t) * inline_cache.size(); // dex_pc
for (const auto& inline_cache_it : inline_cache) {
const ClassSet& classes = inline_cache_it.second.classes;
SafeMap<uint8_t, std::vector<dex::TypeIndex>> dex_to_classes_map;
GroupClassesByDex(classes, &dex_to_classes_map);
size += sizeof(uint8_t); // dex_to_classes_map size
for (const auto& dex_it : dex_to_classes_map) {
size += sizeof(uint8_t); // dex profile index
size += sizeof(uint8_t); // number of classes
const std::vector<dex::TypeIndex>& dex_classes = dex_it.second;
size += sizeof(uint16_t) * dex_classes.size(); // the actual classes
}
}
}
return size;
}
void ProfileCompilationInfo::GroupClassesByDex(
const ClassSet& classes,
/*out*/SafeMap<uint8_t, std::vector<dex::TypeIndex>>* dex_to_classes_map) {
for (const auto& classes_it : classes) {
auto dex_it = dex_to_classes_map->FindOrAdd(classes_it.dex_profile_index);
dex_it->second.push_back(classes_it.type_index);
}
}
ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData(
const std::string& profile_key,
uint32_t checksum) {
const auto& profile_index_it = profile_key_map_.FindOrAdd(profile_key, profile_key_map_.size());
if (profile_key_map_.size() > std::numeric_limits<uint8_t>::max()) {
// Allow only 255 dex files to be profiled. This allows us to save bytes
// when encoding. The number is well above what we expect for normal applications.
if (kIsDebugBuild) {
LOG(ERROR) << "Exceeded the maximum number of dex files (255). Something went wrong";
}
profile_key_map_.erase(profile_key);
return nullptr;
}
uint8_t profile_index = profile_index_it->second;
if (info_.size() <= profile_index) {
// This is a new addition. Add it to the info_ array.
info_.emplace_back(new DexFileData(profile_key, checksum, profile_index));
}
DexFileData* result = info_[profile_index];
// DCHECK that profile info map key is consistent with the one stored in the dex file data.
// This should always be the case since since the cache map is managed by ProfileCompilationInfo.
DCHECK_EQ(profile_key, result->profile_key);
DCHECK_EQ(profile_index, result->profile_index);
// Check that the checksum matches.
// This may different if for example the dex file was updated and
// we had a record of the old one.
if (result->checksum != checksum) {
LOG(WARNING) << "Checksum mismatch for dex " << profile_key;
return nullptr;
}
return result;
}
const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData(
const std::string& profile_key) const {
const auto& profile_index_it = profile_key_map_.find(profile_key);
if (profile_index_it == profile_key_map_.end()) {
return nullptr;
}
uint8_t profile_index = profile_index_it->second;
const DexFileData* result = info_[profile_index];
DCHECK_EQ(profile_key, result->profile_key);
DCHECK_EQ(profile_index, result->profile_index);
return result;
}
bool ProfileCompilationInfo::AddResolvedClasses(const DexCacheResolvedClasses& classes) {
const std::string dex_location = GetProfileDexFileKey(classes.GetDexLocation());
const uint32_t checksum = classes.GetLocationChecksum();
DexFileData* const data = GetOrAddDexFileData(dex_location, checksum);
if (data == nullptr) {
return false;
}
data->class_set.insert(classes.GetClasses().begin(), classes.GetClasses().end());
return true;
}
bool ProfileCompilationInfo::AddMethodIndex(const std::string& dex_location,
uint32_t dex_checksum,
uint16_t method_index) {
return AddMethod(dex_location, dex_checksum, method_index, OfflineProfileMethodInfo());
}
bool ProfileCompilationInfo::AddMethod(const std::string& dex_location,
uint32_t dex_checksum,
uint16_t method_index,
const OfflineProfileMethodInfo& pmi) {
DexFileData* const data = GetOrAddDexFileData(GetProfileDexFileKey(dex_location), dex_checksum);
if (data == nullptr) { // checksum mismatch
return false;
}
auto inline_cache_it = data->method_map.FindOrAdd(method_index);
for (const auto& pmi_inline_cache_it : pmi.inline_caches) {
uint16_t pmi_ic_dex_pc = pmi_inline_cache_it.first;
const DexPcData& pmi_ic_dex_pc_data = pmi_inline_cache_it.second;
DexPcData& dex_pc_data = inline_cache_it->second.FindOrAdd(pmi_ic_dex_pc)->second;
if (dex_pc_data.is_missing_types || dex_pc_data.is_megamorphic) {
// We are already megamorphic or we are missing types; no point in going forward.
continue;
}
if (pmi_ic_dex_pc_data.is_missing_types) {
dex_pc_data.SetIsMissingTypes();
continue;
}
if (pmi_ic_dex_pc_data.is_megamorphic) {
dex_pc_data.SetIsMegamorphic();
continue;
}
for (const ClassReference& class_ref : pmi_ic_dex_pc_data.classes) {
const DexReference& dex_ref = pmi.dex_references[class_ref.dex_profile_index];
DexFileData* class_dex_data = GetOrAddDexFileData(
GetProfileDexFileKey(dex_ref.dex_location),
dex_ref.dex_checksum);
if (class_dex_data == nullptr) { // checksum mismatch
return false;
}
dex_pc_data.AddClass(class_dex_data->profile_index, class_ref.type_index);
}
}
return true;
}
bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi) {
DexFileData* const data = GetOrAddDexFileData(
GetProfileDexFileKey(pmi.dex_file->GetLocation()),
pmi.dex_file->GetLocationChecksum());
if (data == nullptr) { // checksum mismatch
return false;
}
auto inline_cache_it = data->method_map.FindOrAdd(pmi.dex_method_index);
for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) {
if (cache.is_missing_types) {
auto dex_pc_data_it = inline_cache_it->second.FindOrAdd(cache.dex_pc);
dex_pc_data_it->second.SetIsMissingTypes();
continue;
}
for (const ProfileMethodInfo::ProfileClassReference& class_ref : cache.classes) {
DexFileData* class_dex_data = GetOrAddDexFileData(
GetProfileDexFileKey(class_ref.dex_file->GetLocation()),
class_ref.dex_file->GetLocationChecksum());
if (class_dex_data == nullptr) { // checksum mismatch
return false;
}
auto dex_pc_data_it = inline_cache_it->second.FindOrAdd(cache.dex_pc);
if (dex_pc_data_it->second.is_missing_types) {
// Don't bother adding classes if we are missing types.
break;
}
dex_pc_data_it->second.AddClass(class_dex_data->profile_index, class_ref.type_index);
}
}
return true;
}
bool ProfileCompilationInfo::AddClassIndex(const std::string& dex_location,
uint32_t checksum,
dex::TypeIndex type_idx) {
DexFileData* const data = GetOrAddDexFileData(dex_location, checksum);
if (data == nullptr) {
return false;
}
data->class_set.insert(type_idx);
return true;
}
#define READ_UINT(type, buffer, dest, error) \
do { \
if (!(buffer).ReadUintAndAdvance<type>(&(dest))) { \
*(error) = "Could not read "#dest; \
return false; \
} \
} \
while (false)
bool ProfileCompilationInfo::ReadInlineCache(SafeBuffer& buffer,
uint8_t number_of_dex_files,
/*out*/ InlineCacheMap* inline_cache,
/*out*/ std::string* error) {
uint16_t inline_cache_size;
READ_UINT(uint16_t, buffer, inline_cache_size, error);
for (; inline_cache_size > 0; inline_cache_size--) {
uint16_t dex_pc;
uint8_t dex_to_classes_map_size;
READ_UINT(uint16_t, buffer, dex_pc, error);
READ_UINT(uint8_t, buffer, dex_to_classes_map_size, error);
auto dex_pc_data_it = inline_cache->FindOrAdd(dex_pc);
if (dex_to_classes_map_size == kIsMissingTypesEncoding) {
dex_pc_data_it->second.SetIsMissingTypes();
continue;
}
if (dex_to_classes_map_size == kIsMegamorphicEncoding) {
dex_pc_data_it->second.SetIsMegamorphic();
continue;
}
for (; dex_to_classes_map_size > 0; dex_to_classes_map_size--) {
uint8_t dex_profile_index;
uint8_t dex_classes_size;
READ_UINT(uint8_t, buffer, dex_profile_index, error);
READ_UINT(uint8_t, buffer, dex_classes_size, error);
if (dex_profile_index >= number_of_dex_files) {
*error = "dex_profile_index out of bounds ";
*error += std::to_string(dex_profile_index) + " " + std::to_string(number_of_dex_files);
return false;
}
for (; dex_classes_size > 0; dex_classes_size--) {
uint16_t type_index;
READ_UINT(uint16_t, buffer, type_index, error);
dex_pc_data_it->second.AddClass(dex_profile_index, dex::TypeIndex(type_index));
}
}
}
return true;
}
bool ProfileCompilationInfo::ReadMethods(SafeBuffer& buffer,
uint8_t number_of_dex_files,
const ProfileLineHeader& line_header,
/*out*/std::string* error) {
while (buffer.HasMoreData()) {
DexFileData* const data = GetOrAddDexFileData(line_header.dex_location, line_header.checksum);
uint16_t method_index;
READ_UINT(uint16_t, buffer, method_index, error);
auto it = data->method_map.FindOrAdd(method_index);
if (!ReadInlineCache(buffer, number_of_dex_files, &(it->second), error)) {
return false;
}
}
return true;
}
bool ProfileCompilationInfo::ReadClasses(SafeBuffer& buffer,
uint16_t classes_to_read,
const ProfileLineHeader& line_header,
/*out*/std::string* error) {
for (uint16_t i = 0; i < classes_to_read; i++) {
uint16_t type_index;
READ_UINT(uint16_t, buffer, type_index, error);
if (!AddClassIndex(line_header.dex_location,
line_header.checksum,
dex::TypeIndex(type_index))) {
return false;
}
}
return true;
}
// Tests for EOF by trying to read 1 byte from the descriptor.
// Returns:
// 0 if the descriptor is at the EOF,
// -1 if there was an IO error
// 1 if the descriptor has more content to read
static int testEOF(int fd) {
uint8_t buffer[1];
return TEMP_FAILURE_RETRY(read(fd, buffer, 1));
}
// Reads an uint value previously written with AddUintToBuffer.
template <typename T>
bool ProfileCompilationInfo::SafeBuffer::ReadUintAndAdvance(/*out*/T* value) {
static_assert(std::is_unsigned<T>::value, "Type is not unsigned");
if (ptr_current_ + sizeof(T) > ptr_end_) {
return false;
}
*value = 0;
for (size_t i = 0; i < sizeof(T); i++) {
*value += ptr_current_[i] << (i * kBitsPerByte);
}
ptr_current_ += sizeof(T);
return true;
}
bool ProfileCompilationInfo::SafeBuffer::CompareAndAdvance(const uint8_t* data, size_t data_size) {
if (ptr_current_ + data_size > ptr_end_) {
return false;
}
if (memcmp(ptr_current_, data, data_size) == 0) {
ptr_current_ += data_size;
return true;
}
return false;
}
bool ProfileCompilationInfo::SafeBuffer::HasMoreData() {
return ptr_current_ < ptr_end_;
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::SafeBuffer::FillFromFd(
int fd,
const std::string& source,
/*out*/std::string* error) {
size_t byte_count = ptr_end_ - ptr_current_;
uint8_t* buffer = ptr_current_;
while (byte_count > 0) {
int bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer, byte_count));
if (bytes_read == 0) {
*error += "Profile EOF reached prematurely for " + source;
return kProfileLoadBadData;
} else if (bytes_read < 0) {
*error += "Profile IO error for " + source + strerror(errno);
return kProfileLoadIOError;
}
byte_count -= bytes_read;
buffer += bytes_read;
}
return kProfileLoadSuccess;
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileHeader(
int fd,
/*out*/uint8_t* number_of_dex_files,
/*out*/std::string* error) {
// Read magic and version
const size_t kMagicVersionSize =
sizeof(kProfileMagic) +
sizeof(kProfileVersion) +
sizeof(uint8_t); // number of dex files
SafeBuffer safe_buffer(kMagicVersionSize);
ProfileLoadSatus status = safe_buffer.FillFromFd(fd, "ReadProfileHeader", error);
if (status != kProfileLoadSuccess) {
return status;
}
if (!safe_buffer.CompareAndAdvance(kProfileMagic, sizeof(kProfileMagic))) {
*error = "Profile missing magic";
return kProfileLoadVersionMismatch;
}
if (!safe_buffer.CompareAndAdvance(kProfileVersion, sizeof(kProfileVersion))) {
*error = "Profile version mismatch";
return kProfileLoadVersionMismatch;
}
if (!safe_buffer.ReadUintAndAdvance<uint8_t>(number_of_dex_files)) {
*error = "Cannot read the number of dex files";
return kProfileLoadBadData;
}
return kProfileLoadSuccess;
}
bool ProfileCompilationInfo::ReadProfileLineHeaderElements(SafeBuffer& buffer,
/*out*/uint16_t* dex_location_size,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error) {
READ_UINT(uint16_t, buffer, *dex_location_size, error);
READ_UINT(uint16_t, buffer, line_header->class_set_size, error);
READ_UINT(uint32_t, buffer, line_header->method_region_size_bytes, error);
READ_UINT(uint32_t, buffer, line_header->checksum, error);
return true;
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileLineHeader(
int fd,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error) {
SafeBuffer header_buffer(kLineHeaderSize);
ProfileLoadSatus status = header_buffer.FillFromFd(fd, "ReadProfileLineHeader", error);
if (status != kProfileLoadSuccess) {
return status;
}
uint16_t dex_location_size;
if (!ReadProfileLineHeaderElements(header_buffer, &dex_location_size, line_header, error)) {
return kProfileLoadBadData;
}
if (dex_location_size == 0 || dex_location_size > kMaxDexFileKeyLength) {
*error = "DexFileKey has an invalid size: " +
std::to_string(static_cast<uint32_t>(dex_location_size));
return kProfileLoadBadData;
}
SafeBuffer location_buffer(dex_location_size);
status = location_buffer.FillFromFd(fd, "ReadProfileHeaderDexLocation", error);
if (status != kProfileLoadSuccess) {
return status;
}
line_header->dex_location.assign(
reinterpret_cast<char*>(location_buffer.Get()), dex_location_size);
return kProfileLoadSuccess;
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileLine(
int fd,
uint8_t number_of_dex_files,
const ProfileLineHeader& line_header,
/*out*/std::string* error) {
if (GetOrAddDexFileData(line_header.dex_location, line_header.checksum) == nullptr) {
*error = "Error when reading profile file line header: checksum mismatch for "
+ line_header.dex_location;
return kProfileLoadBadData;
}
{
SafeBuffer buffer(line_header.method_region_size_bytes);
ProfileLoadSatus status = buffer.FillFromFd(fd, "ReadProfileLineMethods", error);
if (status != kProfileLoadSuccess) {
return status;
}
if (!ReadMethods(buffer, number_of_dex_files, line_header, error)) {
return kProfileLoadBadData;
}
}
{
SafeBuffer buffer(sizeof(uint16_t) * line_header.class_set_size);
ProfileLoadSatus status = buffer.FillFromFd(fd, "ReadProfileLineClasses", error);
if (status != kProfileLoadSuccess) {
return status;
}
if (!ReadClasses(buffer, line_header.class_set_size, line_header, error)) {
return kProfileLoadBadData;
}
}
return kProfileLoadSuccess;
}
// TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and
// return a unique pointer to a ProfileCompilationInfo upon success.
bool ProfileCompilationInfo::Load(int fd) {
std::string error;
ProfileLoadSatus status = LoadInternal(fd, &error);
if (status == kProfileLoadSuccess) {
return true;
} else {
LOG(WARNING) << "Error when reading profile: " << error;
return false;
}
}
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::LoadInternal(
int fd, std::string* error) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
if (!IsEmpty()) {
return kProfileLoadWouldOverwiteData;
}
struct stat stat_buffer;
if (fstat(fd, &stat_buffer) != 0) {
return kProfileLoadIOError;
}
// We allow empty profile files.
// Profiles may be created by ActivityManager or installd before we manage to
// process them in the runtime or profman.
if (stat_buffer.st_size == 0) {
return kProfileLoadSuccess;
}
// Read profile header: magic + version + number_of_dex_files.
uint8_t number_of_dex_files;
ProfileLoadSatus status = ReadProfileHeader(fd, &number_of_dex_files, error);
if (status != kProfileLoadSuccess) {
return status;
}
for (uint8_t k = 0; k < number_of_dex_files; k++) {
ProfileLineHeader line_header;
// First, read the line header to get the amount of data we need to read.
status = ReadProfileLineHeader(fd, &line_header, error);
if (status != kProfileLoadSuccess) {
return status;
}
// Now read the actual profile line.
status = ReadProfileLine(fd, number_of_dex_files, line_header, error);
if (status != kProfileLoadSuccess) {
return status;
}
}
// Check that we read everything and that profiles don't contain junk data.
int result = testEOF(fd);
if (result == 0) {
return kProfileLoadSuccess;
} else if (result < 0) {
return kProfileLoadIOError;
} else {
*error = "Unexpected content in the profile file";
return kProfileLoadBadData;
}
}
bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other) {
// First verify that all checksums match. This will avoid adding garbage to
// the current profile info.
// Note that the number of elements should be very small, so this should not
// be a performance issue.
for (const DexFileData* other_dex_data : other.info_) {
const DexFileData* dex_data = FindDexData(other_dex_data->profile_key);
if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) {
LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key;
return false;
}
}
// All checksums match. Import the data.
// The other profile might have a different indexing of dex files.
// That is because each dex files gets a 'dex_profile_index' on a first come first served basis.
// That means that the order in with the methods are added to the profile matters for the
// actual indices.
// The reason we cannot rely on the actual multidex index is that a single profile may store
// data from multiple splits. This means that a profile may contain a classes2.dex from split-A
// and one from split-B.
// First, build a mapping from other_dex_profile_index to this_dex_profile_index.
// This will make sure that the ClassReferences will point to the correct dex file.
SafeMap<uint8_t, uint8_t> dex_profile_index_remap;
for (const DexFileData* other_dex_data : other.info_) {
const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key,
other_dex_data->checksum);
if (dex_data == nullptr) {
return false; // Could happen if we exceed the number of allowed dex files.
}
dex_profile_index_remap.Put(other_dex_data->profile_index, dex_data->profile_index);
}
// Merge the actual profile data.
for (const DexFileData* other_dex_data : other.info_) {
DexFileData* dex_data = const_cast<DexFileData*>(FindDexData(other_dex_data->profile_key));
DCHECK(dex_data != nullptr);
// Merge the classes.
dex_data->class_set.insert(other_dex_data->class_set.begin(),
other_dex_data->class_set.end());
// Merge the methods and the inline caches.
for (const auto& other_method_it : other_dex_data->method_map) {
uint16_t other_method_index = other_method_it.first;
auto method_it = dex_data->method_map.FindOrAdd(other_method_index);
const auto& other_inline_cache = other_method_it.second;
for (const auto& other_ic_it : other_inline_cache) {
uint16_t other_dex_pc = other_ic_it.first;
const ClassSet& other_class_set = other_ic_it.second.classes;
auto class_set = method_it->second.FindOrAdd(other_dex_pc);
if (other_ic_it.second.is_missing_types) {
class_set->second.SetIsMissingTypes();
} else if (other_ic_it.second.is_megamorphic) {
class_set->second.SetIsMegamorphic();
} else {
for (const auto& class_it : other_class_set) {
class_set->second.AddClass(dex_profile_index_remap.Get(
class_it.dex_profile_index), class_it.type_index);
}
}
}
}
}
return true;
}
static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) {
return kDebugIgnoreChecksum || dex_file_checksum == checksum;
}
static bool ChecksumMatch(const DexFile& dex_file, uint32_t checksum) {
return ChecksumMatch(dex_file.GetLocationChecksum(), checksum);
}
bool ProfileCompilationInfo::ContainsMethod(const MethodReference& method_ref) const {
return FindMethod(method_ref.dex_file->GetLocation(),
method_ref.dex_file->GetLocationChecksum(),
method_ref.dex_method_index) != nullptr;
}
const ProfileCompilationInfo::InlineCacheMap*
ProfileCompilationInfo::FindMethod(const std::string& dex_location,
uint32_t dex_checksum,
uint16_t dex_method_index) const {
const DexFileData* dex_data = FindDexData(GetProfileDexFileKey(dex_location));
if (dex_data != nullptr) {
if (!ChecksumMatch(dex_checksum, dex_data->checksum)) {
return nullptr;
}
const MethodMap& methods = dex_data->method_map;
const auto method_it = methods.find(dex_method_index);
return method_it == methods.end() ? nullptr : &(method_it->second);
}
return nullptr;
}
bool ProfileCompilationInfo::GetMethod(const std::string& dex_location,
uint32_t dex_checksum,
uint16_t dex_method_index,
/*out*/OfflineProfileMethodInfo* pmi) const {
const InlineCacheMap* inline_caches = FindMethod(dex_location, dex_checksum, dex_method_index);
if (inline_caches == nullptr) {
return false;
}
pmi->dex_references.resize(info_.size());
for (const DexFileData* dex_data : info_) {
pmi->dex_references[dex_data->profile_index].dex_location = dex_data->profile_key;
pmi->dex_references[dex_data->profile_index].dex_checksum = dex_data->checksum;
}
// TODO(calin): maybe expose a direct pointer to avoid copying
pmi->inline_caches = *inline_caches;
return true;
}
bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file, dex::TypeIndex type_idx) const {
const DexFileData* dex_data = FindDexData(GetProfileDexFileKey(dex_file.GetLocation()));
if (dex_data != nullptr) {
if (!ChecksumMatch(dex_file, dex_data->checksum)) {
return false;
}
const std::set<dex::TypeIndex>& classes = dex_data->class_set;
return classes.find(type_idx) != classes.end();
}
return false;
}
uint32_t ProfileCompilationInfo::GetNumberOfMethods() const {
uint32_t total = 0;
for (const DexFileData* dex_data : info_) {
total += dex_data->method_map.size();
}
return total;
}
uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const {
uint32_t total = 0;
for (const DexFileData* dex_data : info_) {
total += dex_data->class_set.size();
}
return total;
}
// Produce a non-owning vector from a vector.
template<typename T>
const std::vector<T*>* MakeNonOwningVector(const std::vector<std::unique_ptr<T>>* owning_vector) {
auto non_owning_vector = new std::vector<T*>();
for (auto& element : *owning_vector) {
non_owning_vector->push_back(element.get());
}
return non_owning_vector;
}
std::string ProfileCompilationInfo::DumpInfo(
const std::vector<std::unique_ptr<const DexFile>>* dex_files,
bool print_full_dex_location) const {
std::unique_ptr<const std::vector<const DexFile*>> non_owning_dex_files(
MakeNonOwningVector(dex_files));
return DumpInfo(non_owning_dex_files.get(), print_full_dex_location);
}
std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>* dex_files,
bool print_full_dex_location) const {
std::ostringstream os;
if (info_.empty()) {
return "ProfileInfo: empty";
}
os << "ProfileInfo:";
const std::string kFirstDexFileKeySubstitute = ":classes.dex";
for (const DexFileData* dex_data : info_) {
os << "\n";
if (print_full_dex_location) {
os << dex_data->profile_key;
} else {
// Replace the (empty) multidex suffix of the first key with a substitute for easier reading.
std::string multidex_suffix = DexFile::GetMultiDexSuffix(dex_data->profile_key);
os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix);
}
os << " [index=" << static_cast<uint32_t>(dex_data->profile_index) << "]";
const DexFile* dex_file = nullptr;
if (dex_files != nullptr) {
for (size_t i = 0; i < dex_files->size(); i++) {
if (dex_data->profile_key == (*dex_files)[i]->GetLocation()) {
dex_file = (*dex_files)[i];
}
}
}
os << "\n\tmethods: ";
for (const auto& method_it : dex_data->method_map) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true);
} else {
os << method_it.first;
}
os << "[";
for (const auto& inline_cache_it : method_it.second) {
os << "{" << std::hex << inline_cache_it.first << std::dec << ":";
if (inline_cache_it.second.is_missing_types) {
os << "MT";
} else if (inline_cache_it.second.is_megamorphic) {
os << "MM";
} else {
for (const ClassReference& class_ref : inline_cache_it.second.classes) {
os << "(" << static_cast<uint32_t>(class_ref.dex_profile_index)
<< "," << class_ref.type_index.index_ << ")";
}
}
os << "}";
}
os << "], ";
}
os << "\n\tclasses: ";
for (const auto class_it : dex_data->class_set) {
if (dex_file != nullptr) {
os << "\n\t\t" << dex_file->PrettyType(class_it);
} else {
os << class_it.index_ << ",";
}
}
}
return os.str();
}
bool ProfileCompilationInfo::GetClassesAndMethods(const DexFile* dex_file,
std::set<dex::TypeIndex>* class_set,
MethodMap* method_map) const {
std::set<std::string> ret;
std::string profile_key = GetProfileDexFileKey(dex_file->GetLocation());
const DexFileData* dex_data = FindDexData(profile_key);
if (dex_data == nullptr || dex_data->checksum != dex_file->GetLocationChecksum()) {
return false;
}
*method_map = dex_data->method_map;
*class_set = dex_data->class_set;
return true;
}
bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) {
// No need to compare profile_key_map_. That's only a cache for fast search.
// All the information is already in the info_ vector.
if (info_.size() != other.info_.size()) {
return false;
}
for (size_t i = 0; i < info_.size(); i++) {
const DexFileData& dex_data = *info_[i];
const DexFileData& other_dex_data = *other.info_[i];
if (!(dex_data == other_dex_data)) {
return false;
}
}
return true;
}
std::set<DexCacheResolvedClasses> ProfileCompilationInfo::GetResolvedClasses(
const std::unordered_set<std::string>& dex_files_locations) const {
std::unordered_map<std::string, std::string> key_to_location_map;
for (const std::string& location : dex_files_locations) {
key_to_location_map.emplace(GetProfileDexFileKey(location), location);
}
std::set<DexCacheResolvedClasses> ret;
for (const DexFileData* dex_data : info_) {
const auto& it = key_to_location_map.find(dex_data->profile_key);
if (it != key_to_location_map.end()) {
DexCacheResolvedClasses classes(it->second, it->second, dex_data->checksum);
classes.AddClasses(dex_data->class_set.begin(), dex_data->class_set.end());
ret.insert(classes);
}
}
return ret;
}
void ProfileCompilationInfo::ClearResolvedClasses() {
for (DexFileData* dex_data : info_) {
dex_data->class_set.clear();
}
}
// Naive implementation to generate a random profile file suitable for testing.
bool ProfileCompilationInfo::GenerateTestProfile(int fd,
uint16_t number_of_dex_files,
uint16_t method_ratio,
uint16_t class_ratio,
uint32_t random_seed) {
const std::string base_dex_location = "base.apk";
ProfileCompilationInfo info;
// The limits are defined by the dex specification.
uint16_t max_method = std::numeric_limits<uint16_t>::max();
uint16_t max_classes = std::numeric_limits<uint16_t>::max();
uint16_t number_of_methods = max_method * method_ratio / 100;
uint16_t number_of_classes = max_classes * class_ratio / 100;
std::srand(random_seed);
// Make sure we generate more samples with a low index value.
// This makes it more likely to hit valid method/class indices in small apps.
const uint16_t kFavorFirstN = 10000;
const uint16_t kFavorSplit = 2;
for (uint16_t i = 0; i < number_of_dex_files; i++) {
std::string dex_location = DexFile::GetMultiDexLocation(i, base_dex_location.c_str());
std::string profile_key = GetProfileDexFileKey(dex_location);
for (uint16_t m = 0; m < number_of_methods; m++) {
uint16_t method_idx = rand() % max_method;
if (m < (number_of_methods / kFavorSplit)) {
method_idx %= kFavorFirstN;
}
info.AddMethodIndex(profile_key, 0, method_idx);
}
for (uint16_t c = 0; c < number_of_classes; c++) {
uint16_t type_idx = rand() % max_classes;
if (c < (number_of_classes / kFavorSplit)) {
type_idx %= kFavorFirstN;
}
info.AddClassIndex(profile_key, 0, dex::TypeIndex(type_idx));
}
}
return info.Save(fd);
}
// Naive implementation to generate a random profile file suitable for testing.
bool ProfileCompilationInfo::GenerateTestProfile(
int fd,
std::vector<std::unique_ptr<const DexFile>>& dex_files,
uint32_t random_seed) {
std::srand(random_seed);
ProfileCompilationInfo info;
for (std::unique_ptr<const DexFile>& dex_file : dex_files) {
const std::string& location = dex_file->GetLocation();
uint32_t checksum = dex_file->GetLocationChecksum();
for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
// Randomly add a class from the dex file (with 50% chance).
if (std::rand() % 2 != 0) {
info.AddClassIndex(location, checksum, dex::TypeIndex(dex_file->GetClassDef(i).class_idx_));
}
}
for (uint32_t i = 0; i < dex_file->NumMethodIds(); ++i) {
// Randomly add a method from the dex file (with 50% chance).
if (std::rand() % 2 != 0) {
info.AddMethodIndex(location, checksum, i);
}
}
}
return info.Save(fd);
}
bool ProfileCompilationInfo::OfflineProfileMethodInfo::operator==(
const OfflineProfileMethodInfo& other) const {
if (inline_caches.size() != other.inline_caches.size()) {
return false;
}
// We can't use a simple equality test because we need to match the dex files
// of the inline caches which might have different profile indexes.
for (const auto& inline_cache_it : inline_caches) {
uint16_t dex_pc = inline_cache_it.first;
const DexPcData dex_pc_data = inline_cache_it.second;
const auto other_it = other.inline_caches.find(dex_pc);
if (other_it == other.inline_caches.end()) {
return false;
}
const DexPcData& other_dex_pc_data = other_it->second;
if (dex_pc_data.is_megamorphic != other_dex_pc_data.is_megamorphic ||
dex_pc_data.is_missing_types != other_dex_pc_data.is_missing_types) {
return false;
}
for (const ClassReference& class_ref : dex_pc_data.classes) {
bool found = false;
for (const ClassReference& other_class_ref : other_dex_pc_data.classes) {
CHECK_LE(class_ref.dex_profile_index, dex_references.size());
CHECK_LE(other_class_ref.dex_profile_index, other.dex_references.size());
const DexReference& dex_ref = dex_references[class_ref.dex_profile_index];
const DexReference& other_dex_ref = other.dex_references[other_class_ref.dex_profile_index];
if (class_ref.type_index == other_class_ref.type_index &&
dex_ref == other_dex_ref) {
found = true;
break;
}
}
if (!found) {
return false;
}
}
}
return true;
}
void ProfileCompilationInfo::ClearProfile() {
for (DexFileData* dex_data : info_) {
delete dex_data;
}
info_.clear();
profile_key_map_.clear();
}
bool ProfileCompilationInfo::IsEmpty() const {
DCHECK_EQ(info_.empty(), profile_key_map_.empty());
return info_.empty();
}
} // namespace art