| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "oat/runtime/oat_support_entrypoints.h" |
| |
| namespace art { |
| |
| /* |
| * This source files contains "gen" codegen routines that should |
| * be applicable to most targets. Only mid-level support utilities |
| * and "op" calls may be used here. |
| */ |
| void genInvoke(CompilationUnit* cUnit, CallInfo* info); |
| bool smallLiteralDivide(CompilationUnit* cUnit, Instruction::Code dalvikOpcode, |
| RegLocation rlSrc, RegLocation rlDest, int lit); |
| |
| void markSafepointPC(CompilationUnit* cUnit, LIR* inst) |
| { |
| inst->defMask = ENCODE_ALL; |
| LIR* safepointPC = newLIR0(cUnit, kPseudoSafepointPC); |
| DCHECK_EQ(safepointPC->defMask, ENCODE_ALL); |
| } |
| |
| /* |
| * To save scheduling time, helper calls are broken into two parts: generation of |
| * the helper target address, and the actuall call to the helper. Because x86 |
| * has a memory call operation, part 1 is a NOP for x86. For other targets, |
| * load arguments between the two parts. |
| */ |
| int callHelperSetup(CompilationUnit* cUnit, int helperOffset) |
| { |
| return (cUnit->instructionSet == kX86) ? 0 : loadHelper(cUnit, helperOffset); |
| } |
| |
| /* NOTE: if rTgt is a temp, it will be freed following use */ |
| LIR* callHelper(CompilationUnit* cUnit, int rTgt, int helperOffset, bool safepointPC) |
| { |
| LIR* callInst; |
| if (cUnit->instructionSet == kX86) { |
| callInst = opThreadMem(cUnit, kOpBlx, helperOffset); |
| } else { |
| callInst = opReg(cUnit, kOpBlx, rTgt); |
| oatFreeTemp(cUnit, rTgt); |
| } |
| if (safepointPC) { |
| markSafepointPC(cUnit, callInst); |
| } |
| return callInst; |
| } |
| |
| void callRuntimeHelperImm(CompilationUnit* cUnit, int helperOffset, int arg0, bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| loadConstant(cUnit, targetReg(kArg0), arg0); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperReg(CompilationUnit* cUnit, int helperOffset, int arg0, bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| opRegCopy(cUnit, targetReg(kArg0), arg0); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperRegLocation(CompilationUnit* cUnit, int helperOffset, RegLocation arg0, |
| bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| if (arg0.wide == 0) { |
| loadValueDirectFixed(cUnit, arg0, targetReg(kArg0)); |
| } else { |
| loadValueDirectWideFixed(cUnit, arg0, targetReg(kArg0), targetReg(kArg1)); |
| } |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperImmImm(CompilationUnit* cUnit, int helperOffset, int arg0, int arg1, |
| bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| loadConstant(cUnit, targetReg(kArg0), arg0); |
| loadConstant(cUnit, targetReg(kArg1), arg1); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperImmRegLocation(CompilationUnit* cUnit, int helperOffset, int arg0, |
| RegLocation arg1, bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| if (arg1.wide == 0) { |
| loadValueDirectFixed(cUnit, arg1, targetReg(kArg1)); |
| } else { |
| loadValueDirectWideFixed(cUnit, arg1, targetReg(kArg1), targetReg(kArg2)); |
| } |
| loadConstant(cUnit, targetReg(kArg0), arg0); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperRegLocationImm(CompilationUnit* cUnit, int helperOffset, RegLocation arg0, |
| int arg1, bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| loadValueDirectFixed(cUnit, arg0, targetReg(kArg0)); |
| loadConstant(cUnit, targetReg(kArg1), arg1); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperImmReg(CompilationUnit* cUnit, int helperOffset, int arg0, int arg1, |
| bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| opRegCopy(cUnit, targetReg(kArg1), arg1); |
| loadConstant(cUnit, targetReg(kArg0), arg0); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperRegImm(CompilationUnit* cUnit, int helperOffset, int arg0, int arg1, |
| bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| opRegCopy(cUnit, targetReg(kArg0), arg0); |
| loadConstant(cUnit, targetReg(kArg1), arg1); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperImmMethod(CompilationUnit* cUnit, int helperOffset, int arg0, bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| loadCurrMethodDirect(cUnit, targetReg(kArg1)); |
| loadConstant(cUnit, targetReg(kArg0), arg0); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperRegLocationRegLocation(CompilationUnit* cUnit, int helperOffset, |
| RegLocation arg0, RegLocation arg1, bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| if (arg0.wide == 0) { |
| loadValueDirectFixed(cUnit, arg0, arg0.fp ? targetReg(kFArg0) : targetReg(kArg0)); |
| if (arg1.wide == 0) { |
| if (cUnit->instructionSet == kMips) { |
| loadValueDirectFixed(cUnit, arg1, arg1.fp ? targetReg(kFArg2) : targetReg(kArg1)); |
| } else { |
| loadValueDirectFixed(cUnit, arg1, targetReg(kArg1)); |
| } |
| } else { |
| if (cUnit->instructionSet == kMips) { |
| loadValueDirectWideFixed(cUnit, arg1, arg1.fp ? targetReg(kFArg2) : targetReg(kArg1), arg1.fp ? targetReg(kFArg3) : targetReg(kArg2)); |
| } else { |
| loadValueDirectWideFixed(cUnit, arg1, targetReg(kArg1), targetReg(kArg2)); |
| } |
| } |
| } else { |
| loadValueDirectWideFixed(cUnit, arg0, arg0.fp ? targetReg(kFArg0) : targetReg(kArg0), arg0.fp ? targetReg(kFArg1) : targetReg(kArg1)); |
| if (arg1.wide == 0) { |
| loadValueDirectFixed(cUnit, arg1, arg1.fp ? targetReg(kFArg2) : targetReg(kArg2)); |
| } else { |
| loadValueDirectWideFixed(cUnit, arg1, arg1.fp ? targetReg(kFArg2) : targetReg(kArg2), arg1.fp ? targetReg(kFArg3) : targetReg(kArg3)); |
| } |
| } |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperRegReg(CompilationUnit* cUnit, int helperOffset, int arg0, int arg1, |
| bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| DCHECK_NE((int)targetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 |
| opRegCopy(cUnit, targetReg(kArg0), arg0); |
| opRegCopy(cUnit, targetReg(kArg1), arg1); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperRegRegImm(CompilationUnit* cUnit, int helperOffset, int arg0, int arg1, |
| int arg2, bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| DCHECK_NE((int)targetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 |
| opRegCopy(cUnit, targetReg(kArg0), arg0); |
| opRegCopy(cUnit, targetReg(kArg1), arg1); |
| loadConstant(cUnit, targetReg(kArg2), arg2); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperImmMethodRegLocation(CompilationUnit* cUnit, int helperOffset, int arg0, |
| RegLocation arg2, bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| loadValueDirectFixed(cUnit, arg2, targetReg(kArg2)); |
| loadCurrMethodDirect(cUnit, targetReg(kArg1)); |
| loadConstant(cUnit, targetReg(kArg0), arg0); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperImmMethodImm(CompilationUnit* cUnit, int helperOffset, int arg0, int arg2, |
| bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| loadCurrMethodDirect(cUnit, targetReg(kArg1)); |
| loadConstant(cUnit, targetReg(kArg2), arg2); |
| loadConstant(cUnit, targetReg(kArg0), arg0); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| void callRuntimeHelperImmRegLocationRegLocation(CompilationUnit* cUnit, int helperOffset, |
| int arg0, RegLocation arg1, RegLocation arg2, |
| bool safepointPC) { |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| loadValueDirectFixed(cUnit, arg1, targetReg(kArg1)); |
| if (arg2.wide == 0) { |
| loadValueDirectFixed(cUnit, arg2, targetReg(kArg2)); |
| } else { |
| loadValueDirectWideFixed(cUnit, arg2, targetReg(kArg2), targetReg(kArg3)); |
| } |
| loadConstant(cUnit, targetReg(kArg0), arg0); |
| oatClobberCalleeSave(cUnit); |
| callHelper(cUnit, rTgt, helperOffset, safepointPC); |
| } |
| |
| /* |
| * Generate an kPseudoBarrier marker to indicate the boundary of special |
| * blocks. |
| */ |
| void genBarrier(CompilationUnit* cUnit) |
| { |
| LIR* barrier = newLIR0(cUnit, kPseudoBarrier); |
| /* Mark all resources as being clobbered */ |
| barrier->defMask = -1; |
| } |
| |
| |
| /* Generate unconditional branch instructions */ |
| LIR* opUnconditionalBranch(CompilationUnit* cUnit, LIR* target) |
| { |
| LIR* branch = opBranchUnconditional(cUnit, kOpUncondBr); |
| branch->target = (LIR*) target; |
| return branch; |
| } |
| |
| // FIXME: need to do some work to split out targets with |
| // condition codes and those without |
| LIR* genCheck(CompilationUnit* cUnit, ConditionCode cCode, |
| ThrowKind kind) |
| { |
| DCHECK_NE(cUnit->instructionSet, kMips); |
| LIR* tgt = rawLIR(cUnit, 0, kPseudoThrowTarget, kind, |
| cUnit->currentDalvikOffset); |
| LIR* branch = opCondBranch(cUnit, cCode, tgt); |
| // Remember branch target - will process later |
| oatInsertGrowableList(cUnit, &cUnit->throwLaunchpads, (intptr_t)tgt); |
| return branch; |
| } |
| |
| LIR* genImmedCheck(CompilationUnit* cUnit, ConditionCode cCode, |
| int reg, int immVal, ThrowKind kind) |
| { |
| LIR* tgt = rawLIR(cUnit, 0, kPseudoThrowTarget, kind, |
| cUnit->currentDalvikOffset); |
| LIR* branch; |
| if (cCode == kCondAl) { |
| branch = opUnconditionalBranch(cUnit, tgt); |
| } else { |
| branch = opCmpImmBranch(cUnit, cCode, reg, immVal, tgt); |
| } |
| // Remember branch target - will process later |
| oatInsertGrowableList(cUnit, &cUnit->throwLaunchpads, (intptr_t)tgt); |
| return branch; |
| } |
| |
| /* Perform null-check on a register. */ |
| LIR* genNullCheck(CompilationUnit* cUnit, int sReg, int mReg, int optFlags) |
| { |
| if (!(cUnit->disableOpt & (1 << kNullCheckElimination)) && |
| optFlags & MIR_IGNORE_NULL_CHECK) { |
| return NULL; |
| } |
| return genImmedCheck(cUnit, kCondEq, mReg, 0, kThrowNullPointer); |
| } |
| |
| /* Perform check on two registers */ |
| LIR* genRegRegCheck(CompilationUnit* cUnit, ConditionCode cCode, |
| int reg1, int reg2, ThrowKind kind) |
| { |
| LIR* tgt = rawLIR(cUnit, 0, kPseudoThrowTarget, kind, |
| cUnit->currentDalvikOffset, reg1, reg2); |
| LIR* branch = opCmpBranch(cUnit, cCode, reg1, reg2, tgt); |
| // Remember branch target - will process later |
| oatInsertGrowableList(cUnit, &cUnit->throwLaunchpads, (intptr_t)tgt); |
| return branch; |
| } |
| |
| void genCompareAndBranch(CompilationUnit* cUnit, Instruction::Code opcode, |
| RegLocation rlSrc1, RegLocation rlSrc2, LIR* taken, |
| LIR* fallThrough) |
| { |
| ConditionCode cond; |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| switch (opcode) { |
| case Instruction::IF_EQ: |
| cond = kCondEq; |
| break; |
| case Instruction::IF_NE: |
| cond = kCondNe; |
| break; |
| case Instruction::IF_LT: |
| cond = kCondLt; |
| break; |
| case Instruction::IF_GE: |
| cond = kCondGe; |
| break; |
| case Instruction::IF_GT: |
| cond = kCondGt; |
| break; |
| case Instruction::IF_LE: |
| cond = kCondLe; |
| break; |
| default: |
| cond = (ConditionCode)0; |
| LOG(FATAL) << "Unexpected opcode " << (int)opcode; |
| } |
| opCmpBranch(cUnit, cond, rlSrc1.lowReg, rlSrc2.lowReg, taken); |
| opUnconditionalBranch(cUnit, fallThrough); |
| } |
| |
| void genCompareZeroAndBranch(CompilationUnit* cUnit, Instruction::Code opcode, |
| RegLocation rlSrc, LIR* taken, LIR* fallThrough) |
| { |
| ConditionCode cond; |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| switch (opcode) { |
| case Instruction::IF_EQZ: |
| cond = kCondEq; |
| break; |
| case Instruction::IF_NEZ: |
| cond = kCondNe; |
| break; |
| case Instruction::IF_LTZ: |
| cond = kCondLt; |
| break; |
| case Instruction::IF_GEZ: |
| cond = kCondGe; |
| break; |
| case Instruction::IF_GTZ: |
| cond = kCondGt; |
| break; |
| case Instruction::IF_LEZ: |
| cond = kCondLe; |
| break; |
| default: |
| cond = (ConditionCode)0; |
| LOG(FATAL) << "Unexpected opcode " << (int)opcode; |
| } |
| if (cUnit->instructionSet == kThumb2) { |
| opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0); |
| opCondBranch(cUnit, cond, taken); |
| } else { |
| opCmpImmBranch(cUnit, cond, rlSrc.lowReg, 0, taken); |
| } |
| opUnconditionalBranch(cUnit, fallThrough); |
| } |
| |
| void genIntToLong(CompilationUnit* cUnit, RegLocation rlDest, |
| RegLocation rlSrc) |
| { |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| if (rlSrc.location == kLocPhysReg) { |
| opRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); |
| } else { |
| loadValueDirect(cUnit, rlSrc, rlResult.lowReg); |
| } |
| opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } |
| |
| void genIntNarrowing(CompilationUnit* cUnit, Instruction::Code opcode, |
| RegLocation rlDest, RegLocation rlSrc) |
| { |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| OpKind op = kOpInvalid; |
| switch (opcode) { |
| case Instruction::INT_TO_BYTE: |
| op = kOp2Byte; |
| break; |
| case Instruction::INT_TO_SHORT: |
| op = kOp2Short; |
| break; |
| case Instruction::INT_TO_CHAR: |
| op = kOp2Char; |
| break; |
| default: |
| LOG(ERROR) << "Bad int conversion type"; |
| } |
| opRegReg(cUnit, op, rlResult.lowReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| |
| /* |
| * Let helper function take care of everything. Will call |
| * Array::AllocFromCode(type_idx, method, count); |
| * Note: AllocFromCode will handle checks for errNegativeArraySize. |
| */ |
| void genNewArray(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest, |
| RegLocation rlSrc) |
| { |
| oatFlushAllRegs(cUnit); /* Everything to home location */ |
| int funcOffset; |
| if (cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx, |
| *cUnit->dex_file, |
| type_idx)) { |
| funcOffset = ENTRYPOINT_OFFSET(pAllocArrayFromCode); |
| } else { |
| funcOffset= ENTRYPOINT_OFFSET(pAllocArrayFromCodeWithAccessCheck); |
| } |
| callRuntimeHelperImmMethodRegLocation(cUnit, funcOffset, type_idx, rlSrc, true); |
| RegLocation rlResult = oatGetReturn(cUnit, false); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| |
| /* |
| * Similar to genNewArray, but with post-allocation initialization. |
| * Verifier guarantees we're dealing with an array class. Current |
| * code throws runtime exception "bad Filled array req" for 'D' and 'J'. |
| * Current code also throws internal unimp if not 'L', '[' or 'I'. |
| */ |
| void genFilledNewArray(CompilationUnit* cUnit, CallInfo* info) |
| { |
| int elems = info->numArgWords; |
| int typeIdx = info->index; |
| oatFlushAllRegs(cUnit); /* Everything to home location */ |
| int funcOffset; |
| if (cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx, |
| *cUnit->dex_file, |
| typeIdx)) { |
| funcOffset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCode); |
| } else { |
| funcOffset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCodeWithAccessCheck); |
| } |
| callRuntimeHelperImmMethodImm(cUnit, funcOffset, typeIdx, elems, true); |
| oatFreeTemp(cUnit, targetReg(kArg2)); |
| oatFreeTemp(cUnit, targetReg(kArg1)); |
| /* |
| * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the |
| * return region. Because AllocFromCode placed the new array |
| * in kRet0, we'll just lock it into place. When debugger support is |
| * added, it may be necessary to additionally copy all return |
| * values to a home location in thread-local storage |
| */ |
| oatLockTemp(cUnit, targetReg(kRet0)); |
| |
| // TODO: use the correct component size, currently all supported types |
| // share array alignment with ints (see comment at head of function) |
| size_t component_size = sizeof(int32_t); |
| |
| // Having a range of 0 is legal |
| if (info->isRange && (elems > 0)) { |
| /* |
| * Bit of ugliness here. We're going generate a mem copy loop |
| * on the register range, but it is possible that some regs |
| * in the range have been promoted. This is unlikely, but |
| * before generating the copy, we'll just force a flush |
| * of any regs in the source range that have been promoted to |
| * home location. |
| */ |
| for (int i = 0; i < elems; i++) { |
| RegLocation loc = oatUpdateLoc(cUnit, info->args[i]); |
| if (loc.location == kLocPhysReg) { |
| storeBaseDisp(cUnit, targetReg(kSp), oatSRegOffset(cUnit, loc.sRegLow), |
| loc.lowReg, kWord); |
| } |
| } |
| /* |
| * TUNING note: generated code here could be much improved, but |
| * this is an uncommon operation and isn't especially performance |
| * critical. |
| */ |
| int rSrc = oatAllocTemp(cUnit); |
| int rDst = oatAllocTemp(cUnit); |
| int rIdx = oatAllocTemp(cUnit); |
| int rVal = INVALID_REG; |
| switch(cUnit->instructionSet) { |
| case kThumb2: |
| rVal = targetReg(kLr); |
| break; |
| case kX86: |
| oatFreeTemp(cUnit, targetReg(kRet0)); |
| rVal = oatAllocTemp(cUnit); |
| break; |
| case kMips: |
| rVal = oatAllocTemp(cUnit); |
| break; |
| default: LOG(FATAL) << "Unexpected instruction set: " << cUnit->instructionSet; |
| } |
| // Set up source pointer |
| RegLocation rlFirst = info->args[0]; |
| opRegRegImm(cUnit, kOpAdd, rSrc, targetReg(kSp), |
| oatSRegOffset(cUnit, rlFirst.sRegLow)); |
| // Set up the target pointer |
| opRegRegImm(cUnit, kOpAdd, rDst, targetReg(kRet0), |
| Array::DataOffset(component_size).Int32Value()); |
| // Set up the loop counter (known to be > 0) |
| loadConstant(cUnit, rIdx, elems - 1); |
| // Generate the copy loop. Going backwards for convenience |
| LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| // Copy next element |
| loadBaseIndexed(cUnit, rSrc, rIdx, rVal, 2, kWord); |
| storeBaseIndexed(cUnit, rDst, rIdx, rVal, 2, kWord); |
| oatFreeTemp(cUnit, rVal); |
| opDecAndBranch(cUnit, kCondGe, rIdx, target); |
| if (cUnit->instructionSet == kX86) { |
| // Restore the target pointer |
| opRegRegImm(cUnit, kOpAdd, targetReg(kRet0), rDst, -Array::DataOffset(component_size).Int32Value()); |
| } |
| } else if (!info->isRange) { |
| // TUNING: interleave |
| for (int i = 0; i < elems; i++) { |
| RegLocation rlArg = loadValue(cUnit, info->args[i], kCoreReg); |
| storeBaseDisp(cUnit, targetReg(kRet0), |
| Array::DataOffset(component_size).Int32Value() + |
| i * 4, rlArg.lowReg, kWord); |
| // If the loadValue caused a temp to be allocated, free it |
| if (oatIsTemp(cUnit, rlArg.lowReg)) { |
| oatFreeTemp(cUnit, rlArg.lowReg); |
| } |
| } |
| } |
| if (info->result.location != kLocInvalid) { |
| storeValue(cUnit, info->result, oatGetReturn(cUnit, false /* not fp */)); |
| } |
| } |
| |
| void genSput(CompilationUnit* cUnit, uint32_t fieldIdx, RegLocation rlSrc, |
| bool isLongOrDouble, bool isObject) |
| { |
| int fieldOffset; |
| int ssbIndex; |
| bool isVolatile; |
| bool isReferrersClass; |
| |
| OatCompilationUnit mUnit(cUnit->class_loader, cUnit->class_linker, *cUnit->dex_file, |
| cUnit->code_item, cUnit->method_idx, cUnit->access_flags); |
| |
| bool fastPath = |
| cUnit->compiler->ComputeStaticFieldInfo(fieldIdx, &mUnit, |
| fieldOffset, ssbIndex, |
| isReferrersClass, isVolatile, |
| true); |
| if (fastPath && !SLOW_FIELD_PATH) { |
| DCHECK_GE(fieldOffset, 0); |
| int rBase; |
| if (isReferrersClass) { |
| // Fast path, static storage base is this method's class |
| RegLocation rlMethod = loadCurrMethod(cUnit); |
| rBase = oatAllocTemp(cUnit); |
| loadWordDisp(cUnit, rlMethod.lowReg, |
| AbstractMethod::DeclaringClassOffset().Int32Value(), rBase); |
| if (oatIsTemp(cUnit, rlMethod.lowReg)) { |
| oatFreeTemp(cUnit, rlMethod.lowReg); |
| } |
| } else { |
| // Medium path, static storage base in a different class which |
| // requires checks that the other class is initialized. |
| DCHECK_GE(ssbIndex, 0); |
| // May do runtime call so everything to home locations. |
| oatFlushAllRegs(cUnit); |
| // Using fixed register to sync with possible call to runtime |
| // support. |
| int rMethod = targetReg(kArg1); |
| oatLockTemp(cUnit, rMethod); |
| loadCurrMethodDirect(cUnit, rMethod); |
| rBase = targetReg(kArg0); |
| oatLockTemp(cUnit, rBase); |
| loadWordDisp(cUnit, rMethod, |
| AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), |
| rBase); |
| loadWordDisp(cUnit, rBase, |
| Array::DataOffset(sizeof(Object*)).Int32Value() + |
| sizeof(int32_t*) * ssbIndex, rBase); |
| // rBase now points at appropriate static storage base (Class*) |
| // or NULL if not initialized. Check for NULL and call helper if NULL. |
| // TUNING: fast path should fall through |
| LIR* branchOver = opCmpImmBranch(cUnit, kCondNe, rBase, 0, NULL); |
| loadConstant(cUnit, targetReg(kArg0), ssbIndex); |
| callRuntimeHelperImm(cUnit, ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssbIndex, true); |
| if (cUnit->instructionSet == kMips) { |
| // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy |
| opRegCopy(cUnit, rBase, targetReg(kRet0)); |
| } |
| LIR* skipTarget = newLIR0(cUnit, kPseudoTargetLabel); |
| branchOver->target = (LIR*)skipTarget; |
| oatFreeTemp(cUnit, rMethod); |
| } |
| // rBase now holds static storage base |
| if (isLongOrDouble) { |
| rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); |
| } else { |
| rlSrc = loadValue(cUnit, rlSrc, kAnyReg); |
| } |
| //FIXME: need to generalize the barrier call |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kST); |
| } |
| if (isLongOrDouble) { |
| storeBaseDispWide(cUnit, rBase, fieldOffset, rlSrc.lowReg, |
| rlSrc.highReg); |
| } else { |
| storeWordDisp(cUnit, rBase, fieldOffset, rlSrc.lowReg); |
| } |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kSY); |
| } |
| if (isObject) { |
| markGCCard(cUnit, rlSrc.lowReg, rBase); |
| } |
| oatFreeTemp(cUnit, rBase); |
| } else { |
| oatFlushAllRegs(cUnit); // Everything to home locations |
| int setterOffset = isLongOrDouble ? ENTRYPOINT_OFFSET(pSet64Static) : |
| (isObject ? ENTRYPOINT_OFFSET(pSetObjStatic) |
| : ENTRYPOINT_OFFSET(pSet32Static)); |
| callRuntimeHelperImmRegLocation(cUnit, setterOffset, fieldIdx, rlSrc, true); |
| } |
| } |
| |
| void genSget(CompilationUnit* cUnit, uint32_t fieldIdx, RegLocation rlDest, |
| bool isLongOrDouble, bool isObject) |
| { |
| int fieldOffset; |
| int ssbIndex; |
| bool isVolatile; |
| bool isReferrersClass; |
| |
| OatCompilationUnit mUnit(cUnit->class_loader, cUnit->class_linker, |
| *cUnit->dex_file, |
| cUnit->code_item, cUnit->method_idx, |
| cUnit->access_flags); |
| |
| bool fastPath = |
| cUnit->compiler->ComputeStaticFieldInfo(fieldIdx, &mUnit, |
| fieldOffset, ssbIndex, |
| isReferrersClass, isVolatile, |
| false); |
| if (fastPath && !SLOW_FIELD_PATH) { |
| DCHECK_GE(fieldOffset, 0); |
| int rBase; |
| if (isReferrersClass) { |
| // Fast path, static storage base is this method's class |
| RegLocation rlMethod = loadCurrMethod(cUnit); |
| rBase = oatAllocTemp(cUnit); |
| loadWordDisp(cUnit, rlMethod.lowReg, |
| AbstractMethod::DeclaringClassOffset().Int32Value(), rBase); |
| } else { |
| // Medium path, static storage base in a different class which |
| // requires checks that the other class is initialized |
| DCHECK_GE(ssbIndex, 0); |
| // May do runtime call so everything to home locations. |
| oatFlushAllRegs(cUnit); |
| // Using fixed register to sync with possible call to runtime |
| // support |
| int rMethod = targetReg(kArg1); |
| oatLockTemp(cUnit, rMethod); |
| loadCurrMethodDirect(cUnit, rMethod); |
| rBase = targetReg(kArg0); |
| oatLockTemp(cUnit, rBase); |
| loadWordDisp(cUnit, rMethod, |
| AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), |
| rBase); |
| loadWordDisp(cUnit, rBase, |
| Array::DataOffset(sizeof(Object*)).Int32Value() + |
| sizeof(int32_t*) * ssbIndex, rBase); |
| // rBase now points at appropriate static storage base (Class*) |
| // or NULL if not initialized. Check for NULL and call helper if NULL. |
| // TUNING: fast path should fall through |
| LIR* branchOver = opCmpImmBranch(cUnit, kCondNe, rBase, 0, NULL); |
| callRuntimeHelperImm(cUnit, ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssbIndex, true); |
| if (cUnit->instructionSet == kMips) { |
| // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy |
| opRegCopy(cUnit, rBase, targetReg(kRet0)); |
| } |
| LIR* skipTarget = newLIR0(cUnit, kPseudoTargetLabel); |
| branchOver->target = (LIR*)skipTarget; |
| oatFreeTemp(cUnit, rMethod); |
| } |
| // rBase now holds static storage base |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true); |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kSY); |
| } |
| if (isLongOrDouble) { |
| loadBaseDispWide(cUnit, rBase, fieldOffset, rlResult.lowReg, |
| rlResult.highReg, INVALID_SREG); |
| } else { |
| loadWordDisp(cUnit, rBase, fieldOffset, rlResult.lowReg); |
| } |
| oatFreeTemp(cUnit, rBase); |
| if (isLongOrDouble) { |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } else { |
| oatFlushAllRegs(cUnit); // Everything to home locations |
| int getterOffset = isLongOrDouble ? ENTRYPOINT_OFFSET(pGet64Static) : |
| (isObject ? ENTRYPOINT_OFFSET(pGetObjStatic) |
| : ENTRYPOINT_OFFSET(pGet32Static)); |
| callRuntimeHelperImm(cUnit, getterOffset, fieldIdx, true); |
| if (isLongOrDouble) { |
| RegLocation rlResult = oatGetReturnWide(cUnit, rlDest.fp); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| RegLocation rlResult = oatGetReturn(cUnit, rlDest.fp); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } |
| } |
| |
| |
| // Debugging routine - if null target, branch to DebugMe |
| void genShowTarget(CompilationUnit* cUnit) |
| { |
| DCHECK_NE(cUnit->instructionSet, kX86) << "unimplemented genShowTarget"; |
| LIR* branchOver = opCmpImmBranch(cUnit, kCondNe, targetReg(kInvokeTgt), 0, NULL); |
| loadWordDisp(cUnit, targetReg(kSelf), ENTRYPOINT_OFFSET(pDebugMe), targetReg(kInvokeTgt)); |
| LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| branchOver->target = (LIR*)target; |
| } |
| |
| void handleSuspendLaunchpads(CompilationUnit *cUnit) |
| { |
| LIR** suspendLabel = (LIR **)cUnit->suspendLaunchpads.elemList; |
| int numElems = cUnit->suspendLaunchpads.numUsed; |
| int helperOffset = ENTRYPOINT_OFFSET(pTestSuspendFromCode); |
| for (int i = 0; i < numElems; i++) { |
| oatResetRegPool(cUnit); |
| oatResetDefTracking(cUnit); |
| LIR* lab = suspendLabel[i]; |
| LIR* resumeLab = (LIR*)lab->operands[0]; |
| cUnit->currentDalvikOffset = lab->operands[1]; |
| oatAppendLIR(cUnit, lab); |
| int rTgt = callHelperSetup(cUnit, helperOffset); |
| callHelper(cUnit, rTgt, helperOffset, true /* markSafepointPC */); |
| opUnconditionalBranch(cUnit, resumeLab); |
| } |
| } |
| |
| void handleIntrinsicLaunchpads(CompilationUnit *cUnit) |
| { |
| LIR** intrinsicLabel = (LIR **)cUnit->intrinsicLaunchpads.elemList; |
| int numElems = cUnit->intrinsicLaunchpads.numUsed; |
| for (int i = 0; i < numElems; i++) { |
| oatResetRegPool(cUnit); |
| oatResetDefTracking(cUnit); |
| LIR* lab = intrinsicLabel[i]; |
| CallInfo* info = (CallInfo*)lab->operands[0]; |
| cUnit->currentDalvikOffset = info->offset; |
| oatAppendLIR(cUnit, lab); |
| // NOTE: genInvoke handles markSafepointPC |
| genInvoke(cUnit, info); |
| LIR* resumeLab = (LIR*)lab->operands[2]; |
| if (resumeLab != NULL) { |
| opUnconditionalBranch(cUnit, resumeLab); |
| } |
| } |
| } |
| |
| void handleThrowLaunchpads(CompilationUnit *cUnit) |
| { |
| LIR** throwLabel = (LIR **)cUnit->throwLaunchpads.elemList; |
| int numElems = cUnit->throwLaunchpads.numUsed; |
| for (int i = 0; i < numElems; i++) { |
| oatResetRegPool(cUnit); |
| oatResetDefTracking(cUnit); |
| LIR* lab = throwLabel[i]; |
| cUnit->currentDalvikOffset = lab->operands[1]; |
| oatAppendLIR(cUnit, lab); |
| int funcOffset = 0; |
| int v1 = lab->operands[2]; |
| int v2 = lab->operands[3]; |
| bool targetX86 = (cUnit->instructionSet == kX86); |
| switch (lab->operands[0]) { |
| case kThrowNullPointer: |
| funcOffset = ENTRYPOINT_OFFSET(pThrowNullPointerFromCode); |
| break; |
| case kThrowArrayBounds: |
| // Move v1 (array index) to kArg0 and v2 (array length) to kArg1 |
| if (v2 != targetReg(kArg0)) { |
| opRegCopy(cUnit, targetReg(kArg0), v1); |
| if (targetX86) { |
| // x86 leaves the array pointer in v2, so load the array length that the handler expects |
| opRegMem(cUnit, kOpMov, targetReg(kArg1), v2, Array::LengthOffset().Int32Value()); |
| } else { |
| opRegCopy(cUnit, targetReg(kArg1), v2); |
| } |
| } else { |
| if (v1 == targetReg(kArg1)) { |
| // Swap v1 and v2, using kArg2 as a temp |
| opRegCopy(cUnit, targetReg(kArg2), v1); |
| if (targetX86) { |
| // x86 leaves the array pointer in v2; load the array length that the handler expects |
| opRegMem(cUnit, kOpMov, targetReg(kArg1), v2, Array::LengthOffset().Int32Value()); |
| } else { |
| opRegCopy(cUnit, targetReg(kArg1), v2); |
| } |
| opRegCopy(cUnit, targetReg(kArg0), targetReg(kArg2)); |
| } else { |
| if (targetX86) { |
| // x86 leaves the array pointer in v2; load the array length that the handler expects |
| opRegMem(cUnit, kOpMov, targetReg(kArg1), v2, Array::LengthOffset().Int32Value()); |
| } else { |
| opRegCopy(cUnit, targetReg(kArg1), v2); |
| } |
| opRegCopy(cUnit, targetReg(kArg0), v1); |
| } |
| } |
| funcOffset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode); |
| break; |
| case kThrowDivZero: |
| funcOffset = ENTRYPOINT_OFFSET(pThrowDivZeroFromCode); |
| break; |
| case kThrowNoSuchMethod: |
| opRegCopy(cUnit, targetReg(kArg0), v1); |
| funcOffset = |
| ENTRYPOINT_OFFSET(pThrowNoSuchMethodFromCode); |
| break; |
| case kThrowStackOverflow: |
| funcOffset = ENTRYPOINT_OFFSET(pThrowStackOverflowFromCode); |
| // Restore stack alignment |
| if (targetX86) { |
| opRegImm(cUnit, kOpAdd, targetReg(kSp), cUnit->frameSize); |
| } else { |
| opRegImm(cUnit, kOpAdd, targetReg(kSp), (cUnit->numCoreSpills + cUnit->numFPSpills) * 4); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0]; |
| } |
| oatClobberCalleeSave(cUnit); |
| int rTgt = callHelperSetup(cUnit, funcOffset); |
| callHelper(cUnit, rTgt, funcOffset, true /* markSafepointPC */); |
| } |
| } |
| |
| /* Needed by the Assembler */ |
| void oatSetupResourceMasks(CompilationUnit* cUnit, LIR* lir) |
| { |
| setupResourceMasks(cUnit, lir); |
| } |
| |
| bool fastInstance(CompilationUnit* cUnit, uint32_t fieldIdx, |
| int& fieldOffset, bool& isVolatile, bool isPut) |
| { |
| OatCompilationUnit mUnit(cUnit->class_loader, cUnit->class_linker, |
| *cUnit->dex_file, |
| cUnit->code_item, cUnit->method_idx, |
| cUnit->access_flags); |
| return cUnit->compiler->ComputeInstanceFieldInfo(fieldIdx, &mUnit, |
| fieldOffset, isVolatile, isPut); |
| } |
| |
| void genIGet(CompilationUnit* cUnit, uint32_t fieldIdx, int optFlags, OpSize size, |
| RegLocation rlDest, RegLocation rlObj, |
| bool isLongOrDouble, bool isObject) |
| { |
| int fieldOffset; |
| bool isVolatile; |
| |
| bool fastPath = fastInstance(cUnit, fieldIdx, fieldOffset, isVolatile, false); |
| |
| if (fastPath && !SLOW_FIELD_PATH) { |
| RegLocation rlResult; |
| RegisterClass regClass = oatRegClassBySize(size); |
| DCHECK_GE(fieldOffset, 0); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| if (isLongOrDouble) { |
| DCHECK(rlDest.wide); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, optFlags); |
| if (cUnit->instructionSet == kX86) { |
| rlResult = oatEvalLoc(cUnit, rlDest, regClass, true); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, optFlags); |
| loadBaseDispWide(cUnit, rlObj.lowReg, fieldOffset, rlResult.lowReg, |
| rlResult.highReg, rlObj.sRegLow); |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kSY); |
| } |
| } else { |
| int regPtr = oatAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset); |
| rlResult = oatEvalLoc(cUnit, rlDest, regClass, true); |
| loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg); |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kSY); |
| } |
| oatFreeTemp(cUnit, regPtr); |
| } |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| rlResult = oatEvalLoc(cUnit, rlDest, regClass, true); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, optFlags); |
| loadBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlResult.lowReg, |
| kWord, rlObj.sRegLow); |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kSY); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } else { |
| int getterOffset = isLongOrDouble ? ENTRYPOINT_OFFSET(pGet64Instance) : |
| (isObject ? ENTRYPOINT_OFFSET(pGetObjInstance) |
| : ENTRYPOINT_OFFSET(pGet32Instance)); |
| callRuntimeHelperImmRegLocation(cUnit, getterOffset, fieldIdx, rlObj, true); |
| if (isLongOrDouble) { |
| RegLocation rlResult = oatGetReturnWide(cUnit, rlDest.fp); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| RegLocation rlResult = oatGetReturn(cUnit, rlDest.fp); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } |
| } |
| |
| void genIPut(CompilationUnit* cUnit, uint32_t fieldIdx, int optFlags, OpSize size, |
| RegLocation rlSrc, RegLocation rlObj, bool isLongOrDouble, bool isObject) |
| { |
| int fieldOffset; |
| bool isVolatile; |
| |
| bool fastPath = fastInstance(cUnit, fieldIdx, fieldOffset, isVolatile, |
| true); |
| if (fastPath && !SLOW_FIELD_PATH) { |
| RegisterClass regClass = oatRegClassBySize(size); |
| DCHECK_GE(fieldOffset, 0); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| if (isLongOrDouble) { |
| int regPtr; |
| rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, optFlags); |
| regPtr = oatAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset); |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kST); |
| } |
| storeBaseDispWide(cUnit, regPtr, 0, rlSrc.lowReg, rlSrc.highReg); |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kSY); |
| } |
| oatFreeTemp(cUnit, regPtr); |
| } else { |
| rlSrc = loadValue(cUnit, rlSrc, regClass); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, optFlags); |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kST); |
| } |
| storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, kWord); |
| if (isVolatile) { |
| oatGenMemBarrier(cUnit, kSY); |
| } |
| if (isObject) { |
| markGCCard(cUnit, rlSrc.lowReg, rlObj.lowReg); |
| } |
| } |
| } else { |
| int setterOffset = isLongOrDouble ? ENTRYPOINT_OFFSET(pSet64Instance) : |
| (isObject ? ENTRYPOINT_OFFSET(pSetObjInstance) |
| : ENTRYPOINT_OFFSET(pSet32Instance)); |
| callRuntimeHelperImmRegLocationRegLocation(cUnit, setterOffset, fieldIdx, rlObj, rlSrc, true); |
| } |
| } |
| |
| void genConstClass(CompilationUnit* cUnit, uint32_t type_idx, |
| RegLocation rlDest) |
| { |
| RegLocation rlMethod = loadCurrMethod(cUnit); |
| int resReg = oatAllocTemp(cUnit); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| if (!cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx, |
| *cUnit->dex_file, |
| type_idx)) { |
| // Call out to helper which resolves type and verifies access. |
| // Resolved type returned in kRet0. |
| callRuntimeHelperImmReg(cUnit, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), |
| type_idx, rlMethod.lowReg, true); |
| RegLocation rlResult = oatGetReturn(cUnit, false); |
| storeValue(cUnit, rlDest, rlResult); |
| } else { |
| // We're don't need access checks, load type from dex cache |
| int32_t dex_cache_offset = |
| AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(); |
| loadWordDisp(cUnit, rlMethod.lowReg, dex_cache_offset, resReg); |
| int32_t offset_of_type = |
| Array::DataOffset(sizeof(Class*)).Int32Value() + (sizeof(Class*) |
| * type_idx); |
| loadWordDisp(cUnit, resReg, offset_of_type, rlResult.lowReg); |
| if (!cUnit->compiler->CanAssumeTypeIsPresentInDexCache(*cUnit->dex_file, |
| type_idx) || SLOW_TYPE_PATH) { |
| // Slow path, at runtime test if type is null and if so initialize |
| oatFlushAllRegs(cUnit); |
| LIR* branch1 = opCmpImmBranch(cUnit, kCondEq, rlResult.lowReg, 0, NULL); |
| // Resolved, store and hop over following code |
| storeValue(cUnit, rlDest, rlResult); |
| /* |
| * Because we have stores of the target value on two paths, |
| * clobber temp tracking for the destination using the ssa name |
| */ |
| oatClobberSReg(cUnit, rlDest.sRegLow); |
| LIR* branch2 = opUnconditionalBranch(cUnit,0); |
| // TUNING: move slow path to end & remove unconditional branch |
| LIR* target1 = newLIR0(cUnit, kPseudoTargetLabel); |
| // Call out to helper, which will return resolved type in kArg0 |
| callRuntimeHelperImmReg(cUnit, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, |
| rlMethod.lowReg, true); |
| RegLocation rlResult = oatGetReturn(cUnit, false); |
| storeValue(cUnit, rlDest, rlResult); |
| /* |
| * Because we have stores of the target value on two paths, |
| * clobber temp tracking for the destination using the ssa name |
| */ |
| oatClobberSReg(cUnit, rlDest.sRegLow); |
| // Rejoin code paths |
| LIR* target2 = newLIR0(cUnit, kPseudoTargetLabel); |
| branch1->target = (LIR*)target1; |
| branch2->target = (LIR*)target2; |
| } else { |
| // Fast path, we're done - just store result |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } |
| } |
| |
| void genConstString(CompilationUnit* cUnit, uint32_t string_idx, |
| RegLocation rlDest) |
| { |
| /* NOTE: Most strings should be available at compile time */ |
| int32_t offset_of_string = Array::DataOffset(sizeof(String*)).Int32Value() + |
| (sizeof(String*) * string_idx); |
| if (!cUnit->compiler->CanAssumeStringIsPresentInDexCache( |
| *cUnit->dex_file, string_idx) || SLOW_STRING_PATH) { |
| // slow path, resolve string if not in dex cache |
| oatFlushAllRegs(cUnit); |
| oatLockCallTemps(cUnit); // Using explicit registers |
| loadCurrMethodDirect(cUnit, targetReg(kArg2)); |
| loadWordDisp(cUnit, targetReg(kArg2), |
| AbstractMethod::DexCacheStringsOffset().Int32Value(), targetReg(kArg0)); |
| // Might call out to helper, which will return resolved string in kRet0 |
| int rTgt = callHelperSetup(cUnit, ENTRYPOINT_OFFSET(pResolveStringFromCode)); |
| loadWordDisp(cUnit, targetReg(kArg0), offset_of_string, targetReg(kRet0)); |
| loadConstant(cUnit, targetReg(kArg1), string_idx); |
| if (cUnit->instructionSet == kThumb2) { |
| opRegImm(cUnit, kOpCmp, targetReg(kRet0), 0); // Is resolved? |
| genBarrier(cUnit); |
| // For testing, always force through helper |
| if (!EXERCISE_SLOWEST_STRING_PATH) { |
| opIT(cUnit, kArmCondEq, "T"); |
| } |
| opRegCopy(cUnit, targetReg(kArg0), targetReg(kArg2)); // .eq |
| LIR* callInst = opReg(cUnit, kOpBlx, rTgt); // .eq, helper(Method*, string_idx) |
| markSafepointPC(cUnit, callInst); |
| oatFreeTemp(cUnit, rTgt); |
| } else if (cUnit->instructionSet == kMips) { |
| LIR* branch = opCmpImmBranch(cUnit, kCondNe, targetReg(kRet0), 0, NULL); |
| opRegCopy(cUnit, targetReg(kArg0), targetReg(kArg2)); // .eq |
| LIR* callInst = opReg(cUnit, kOpBlx, rTgt); |
| markSafepointPC(cUnit, callInst); |
| oatFreeTemp(cUnit, rTgt); |
| LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| branch->target = target; |
| } else { |
| DCHECK_EQ(cUnit->instructionSet, kX86); |
| callRuntimeHelperRegReg(cUnit, ENTRYPOINT_OFFSET(pResolveStringFromCode), targetReg(kArg2), targetReg(kArg1), true); |
| } |
| genBarrier(cUnit); |
| storeValue(cUnit, rlDest, oatGetReturn(cUnit, false)); |
| } else { |
| RegLocation rlMethod = loadCurrMethod(cUnit); |
| int resReg = oatAllocTemp(cUnit); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadWordDisp(cUnit, rlMethod.lowReg, |
| AbstractMethod::DexCacheStringsOffset().Int32Value(), resReg); |
| loadWordDisp(cUnit, resReg, offset_of_string, rlResult.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } |
| |
| /* |
| * Let helper function take care of everything. Will |
| * call Class::NewInstanceFromCode(type_idx, method); |
| */ |
| void genNewInstance(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest) |
| { |
| oatFlushAllRegs(cUnit); /* Everything to home location */ |
| // alloc will always check for resolution, do we also need to verify |
| // access because the verifier was unable to? |
| int funcOffset; |
| if (cUnit->compiler->CanAccessInstantiableTypeWithoutChecks( |
| cUnit->method_idx, *cUnit->dex_file, type_idx)) { |
| funcOffset = ENTRYPOINT_OFFSET(pAllocObjectFromCode); |
| } else { |
| funcOffset = ENTRYPOINT_OFFSET(pAllocObjectFromCodeWithAccessCheck); |
| } |
| callRuntimeHelperImmMethod(cUnit, funcOffset, type_idx, true); |
| RegLocation rlResult = oatGetReturn(cUnit, false); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| |
| void genMoveException(CompilationUnit* cUnit, RegLocation rlDest) |
| { |
| oatFlushAllRegs(cUnit); /* Everything to home location */ |
| int funcOffset = ENTRYPOINT_OFFSET(pGetAndClearException); |
| if (cUnit->instructionSet == kX86) { |
| // Runtime helper will load argument for x86. |
| callRuntimeHelperReg(cUnit, funcOffset, targetReg(kArg0), false); |
| } else { |
| callRuntimeHelperReg(cUnit, funcOffset, targetReg(kSelf), false); |
| } |
| RegLocation rlResult = oatGetReturn(cUnit, false); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| |
| void genThrow(CompilationUnit* cUnit, RegLocation rlSrc) |
| { |
| oatFlushAllRegs(cUnit); |
| callRuntimeHelperRegLocation(cUnit, ENTRYPOINT_OFFSET(pDeliverException), rlSrc, true); |
| } |
| |
| void genInstanceof(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest, |
| RegLocation rlSrc) |
| { |
| oatFlushAllRegs(cUnit); |
| // May generate a call - use explicit registers |
| oatLockCallTemps(cUnit); |
| loadCurrMethodDirect(cUnit, targetReg(kArg1)); // kArg1 <= current Method* |
| int classReg = targetReg(kArg2); // kArg2 will hold the Class* |
| if (!cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx, |
| *cUnit->dex_file, |
| type_idx)) { |
| // Check we have access to type_idx and if not throw IllegalAccessError, |
| // returns Class* in kArg0 |
| callRuntimeHelperImm(cUnit, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), |
| type_idx, true); |
| opRegCopy(cUnit, classReg, targetReg(kRet0)); // Align usage with fast path |
| loadValueDirectFixed(cUnit, rlSrc, targetReg(kArg0)); // kArg0 <= ref |
| } else { |
| // Load dex cache entry into classReg (kArg2) |
| loadValueDirectFixed(cUnit, rlSrc, targetReg(kArg0)); // kArg0 <= ref |
| loadWordDisp(cUnit, targetReg(kArg1), |
| AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), classReg); |
| int32_t offset_of_type = |
| Array::DataOffset(sizeof(Class*)).Int32Value() + (sizeof(Class*) |
| * type_idx); |
| loadWordDisp(cUnit, classReg, offset_of_type, classReg); |
| if (!cUnit->compiler->CanAssumeTypeIsPresentInDexCache( |
| *cUnit->dex_file, type_idx)) { |
| // Need to test presence of type in dex cache at runtime |
| LIR* hopBranch = opCmpImmBranch(cUnit, kCondNe, classReg, 0, NULL); |
| // Not resolved |
| // Call out to helper, which will return resolved type in kRet0 |
| callRuntimeHelperImm(cUnit, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, true); |
| opRegCopy(cUnit, targetReg(kArg2), targetReg(kRet0)); // Align usage with fast path |
| loadValueDirectFixed(cUnit, rlSrc, targetReg(kArg0)); /* reload Ref */ |
| // Rejoin code paths |
| LIR* hopTarget = newLIR0(cUnit, kPseudoTargetLabel); |
| hopBranch->target = (LIR*)hopTarget; |
| } |
| } |
| /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */ |
| RegLocation rlResult = oatGetReturn(cUnit, false); |
| if (cUnit->instructionSet == kMips) { |
| loadConstant(cUnit, rlResult.lowReg, 0); // store false result for if branch is taken |
| } |
| LIR* branch1 = opCmpImmBranch(cUnit, kCondEq, targetReg(kArg0), 0, NULL); |
| /* load object->klass_ */ |
| DCHECK_EQ(Object::ClassOffset().Int32Value(), 0); |
| loadWordDisp(cUnit, targetReg(kArg0), Object::ClassOffset().Int32Value(), targetReg(kArg1)); |
| /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */ |
| LIR* callInst; |
| LIR* branchover = NULL; |
| if (cUnit->instructionSet == kThumb2) { |
| /* Uses conditional nullification */ |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); |
| opRegReg(cUnit, kOpCmp, targetReg(kArg1), targetReg(kArg2)); // Same? |
| opIT(cUnit, kArmCondEq, "EE"); // if-convert the test |
| loadConstant(cUnit, targetReg(kArg0), 1); // .eq case - load true |
| opRegCopy(cUnit, targetReg(kArg0), targetReg(kArg2)); // .ne case - arg0 <= class |
| callInst = opReg(cUnit, kOpBlx, rTgt); // .ne case: helper(class, ref->class) |
| oatFreeTemp(cUnit, rTgt); |
| } else { |
| /* Uses branchovers */ |
| loadConstant(cUnit, rlResult.lowReg, 1); // assume true |
| branchover = opCmpBranch(cUnit, kCondEq, targetReg(kArg1), targetReg(kArg2), NULL); |
| if (cUnit->instructionSet != kX86) { |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); |
| opRegCopy(cUnit, targetReg(kArg0), targetReg(kArg2)); // .ne case - arg0 <= class |
| callInst = opReg(cUnit, kOpBlx, rTgt); // .ne case: helper(class, ref->class) |
| oatFreeTemp(cUnit, rTgt); |
| } else { |
| opRegCopy(cUnit, targetReg(kArg0), targetReg(kArg2)); |
| callInst = opThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); |
| } |
| } |
| markSafepointPC(cUnit, callInst); |
| oatClobberCalleeSave(cUnit); |
| /* branch targets here */ |
| LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| storeValue(cUnit, rlDest, rlResult); |
| branch1->target = target; |
| if (cUnit->instructionSet != kThumb2) { |
| branchover->target = target; |
| } |
| } |
| |
| void genCheckCast(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlSrc) |
| { |
| oatFlushAllRegs(cUnit); |
| // May generate a call - use explicit registers |
| oatLockCallTemps(cUnit); |
| loadCurrMethodDirect(cUnit, targetReg(kArg1)); // kArg1 <= current Method* |
| int classReg = targetReg(kArg2); // kArg2 will hold the Class* |
| if (!cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx, |
| *cUnit->dex_file, |
| type_idx)) { |
| // Check we have access to type_idx and if not throw IllegalAccessError, |
| // returns Class* in kRet0 |
| // InitializeTypeAndVerifyAccess(idx, method) |
| callRuntimeHelperImmReg(cUnit, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), |
| type_idx, targetReg(kArg1), true); |
| opRegCopy(cUnit, classReg, targetReg(kRet0)); // Align usage with fast path |
| } else { |
| // Load dex cache entry into classReg (kArg2) |
| loadWordDisp(cUnit, targetReg(kArg1), |
| AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), classReg); |
| int32_t offset_of_type = |
| Array::DataOffset(sizeof(Class*)).Int32Value() + |
| (sizeof(Class*) * type_idx); |
| loadWordDisp(cUnit, classReg, offset_of_type, classReg); |
| if (!cUnit->compiler->CanAssumeTypeIsPresentInDexCache( |
| *cUnit->dex_file, type_idx)) { |
| // Need to test presence of type in dex cache at runtime |
| LIR* hopBranch = opCmpImmBranch(cUnit, kCondNe, classReg, 0, NULL); |
| // Not resolved |
| // Call out to helper, which will return resolved type in kArg0 |
| // InitializeTypeFromCode(idx, method) |
| callRuntimeHelperImmReg(cUnit, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, targetReg(kArg1), |
| true); |
| opRegCopy(cUnit, classReg, targetReg(kRet0)); // Align usage with fast path |
| // Rejoin code paths |
| LIR* hopTarget = newLIR0(cUnit, kPseudoTargetLabel); |
| hopBranch->target = (LIR*)hopTarget; |
| } |
| } |
| // At this point, classReg (kArg2) has class |
| loadValueDirectFixed(cUnit, rlSrc, targetReg(kArg0)); // kArg0 <= ref |
| /* Null is OK - continue */ |
| LIR* branch1 = opCmpImmBranch(cUnit, kCondEq, targetReg(kArg0), 0, NULL); |
| /* load object->klass_ */ |
| DCHECK_EQ(Object::ClassOffset().Int32Value(), 0); |
| loadWordDisp(cUnit, targetReg(kArg0), Object::ClassOffset().Int32Value(), targetReg(kArg1)); |
| /* kArg1 now contains object->klass_ */ |
| LIR* branch2; |
| if (cUnit->instructionSet == kThumb2) { |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pCheckCastFromCode)); |
| opRegReg(cUnit, kOpCmp, targetReg(kArg1), classReg); |
| branch2 = opCondBranch(cUnit, kCondEq, NULL); /* If eq, trivial yes */ |
| opRegCopy(cUnit, targetReg(kArg0), targetReg(kArg1)); |
| opRegCopy(cUnit, targetReg(kArg1), targetReg(kArg2)); |
| oatClobberCalleeSave(cUnit); |
| LIR* callInst = opReg(cUnit, kOpBlx, rTgt); |
| markSafepointPC(cUnit, callInst); |
| oatFreeTemp(cUnit, rTgt); |
| } else { |
| branch2 = opCmpBranch(cUnit, kCondEq, targetReg(kArg1), classReg, NULL); |
| callRuntimeHelperRegReg(cUnit, ENTRYPOINT_OFFSET(pCheckCastFromCode), targetReg(kArg1), targetReg(kArg2), true); |
| } |
| /* branch target here */ |
| LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| branch1->target = target; |
| branch2->target = target; |
| } |
| |
| /* |
| * Generate array store |
| * |
| */ |
| void genArrayObjPut(CompilationUnit* cUnit, int optFlags, RegLocation rlArray, |
| RegLocation rlIndex, RegLocation rlSrc, int scale) |
| { |
| int lenOffset = Array::LengthOffset().Int32Value(); |
| int dataOffset = Array::DataOffset(sizeof(Object*)).Int32Value(); |
| |
| oatFlushAllRegs(cUnit); // Use explicit registers |
| oatLockCallTemps(cUnit); |
| |
| int rValue = targetReg(kArg0); // Register holding value |
| int rArrayClass = targetReg(kArg1); // Register holding array's Class |
| int rArray = targetReg(kArg2); // Register holding array |
| int rIndex = targetReg(kArg3); // Register holding index into array |
| |
| loadValueDirectFixed(cUnit, rlArray, rArray); // Grab array |
| loadValueDirectFixed(cUnit, rlSrc, rValue); // Grab value |
| loadValueDirectFixed(cUnit, rlIndex, rIndex); // Grab index |
| |
| genNullCheck(cUnit, rlArray.sRegLow, rArray, optFlags); // NPE? |
| |
| // Store of null? |
| LIR* null_value_check = opCmpImmBranch(cUnit, kCondEq, rValue, 0, NULL); |
| |
| // Get the array's class. |
| loadWordDisp(cUnit, rArray, Object::ClassOffset().Int32Value(), rArrayClass); |
| callRuntimeHelperRegReg(cUnit, ENTRYPOINT_OFFSET(pCanPutArrayElementFromCode), rValue, |
| rArrayClass, true); |
| // Redo loadValues in case they didn't survive the call. |
| loadValueDirectFixed(cUnit, rlArray, rArray); // Reload array |
| loadValueDirectFixed(cUnit, rlIndex, rIndex); // Reload index |
| loadValueDirectFixed(cUnit, rlSrc, rValue); // Reload value |
| rArrayClass = INVALID_REG; |
| |
| // Branch here if value to be stored == null |
| LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| null_value_check->target = target; |
| |
| if (cUnit->instructionSet == kX86) { |
| // make an extra temp available for card mark below |
| oatFreeTemp(cUnit, targetReg(kArg1)); |
| if (!(optFlags & MIR_IGNORE_RANGE_CHECK)) { |
| /* if (rlIndex >= [rlArray + lenOffset]) goto kThrowArrayBounds */ |
| genRegMemCheck(cUnit, kCondUge, rIndex, rArray, lenOffset, kThrowArrayBounds); |
| } |
| storeBaseIndexedDisp(cUnit, rArray, rIndex, scale, |
| dataOffset, rValue, INVALID_REG, kWord, INVALID_SREG); |
| } else { |
| bool needsRangeCheck = (!(optFlags & MIR_IGNORE_RANGE_CHECK)); |
| int regLen = INVALID_REG; |
| if (needsRangeCheck) { |
| regLen = targetReg(kArg1); |
| loadWordDisp(cUnit, rArray, lenOffset, regLen); // Get len |
| } |
| /* rPtr -> array data */ |
| int rPtr = oatAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, rPtr, rArray, dataOffset); |
| if (needsRangeCheck) { |
| genRegRegCheck(cUnit, kCondCs, rIndex, regLen, kThrowArrayBounds); |
| } |
| storeBaseIndexed(cUnit, rPtr, rIndex, rValue, scale, kWord); |
| oatFreeTemp(cUnit, rPtr); |
| } |
| oatFreeTemp(cUnit, rIndex); |
| markGCCard(cUnit, rValue, rArray); |
| } |
| |
| /* |
| * Generate array load |
| */ |
| void genArrayGet(CompilationUnit* cUnit, int optFlags, OpSize size, |
| RegLocation rlArray, RegLocation rlIndex, |
| RegLocation rlDest, int scale) |
| { |
| RegisterClass regClass = oatRegClassBySize(size); |
| int lenOffset = Array::LengthOffset().Int32Value(); |
| int dataOffset; |
| RegLocation rlResult; |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIndex = loadValue(cUnit, rlIndex, kCoreReg); |
| |
| if (size == kLong || size == kDouble) { |
| dataOffset = Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| dataOffset = Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| /* null object? */ |
| genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg, optFlags); |
| |
| if (cUnit->instructionSet == kX86) { |
| if (!(optFlags & MIR_IGNORE_RANGE_CHECK)) { |
| /* if (rlIndex >= [rlArray + lenOffset]) goto kThrowArrayBounds */ |
| genRegMemCheck(cUnit, kCondUge, rlIndex.lowReg, rlArray.lowReg, |
| lenOffset, kThrowArrayBounds); |
| } |
| if ((size == kLong) || (size == kDouble)) { |
| int regAddr = oatAllocTemp(cUnit); |
| opLea(cUnit, regAddr, rlArray.lowReg, rlIndex.lowReg, scale, dataOffset); |
| oatFreeTemp(cUnit, rlArray.lowReg); |
| oatFreeTemp(cUnit, rlIndex.lowReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, regClass, true); |
| loadBaseIndexedDisp(cUnit, regAddr, INVALID_REG, 0, 0, rlResult.lowReg, |
| rlResult.highReg, size, INVALID_SREG); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| rlResult = oatEvalLoc(cUnit, rlDest, regClass, true); |
| |
| loadBaseIndexedDisp(cUnit, rlArray.lowReg, rlIndex.lowReg, scale, |
| dataOffset, rlResult.lowReg, INVALID_REG, size, |
| INVALID_SREG); |
| |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } else { |
| int regPtr = oatAllocTemp(cUnit); |
| bool needsRangeCheck = (!(optFlags & MIR_IGNORE_RANGE_CHECK)); |
| int regLen = INVALID_REG; |
| if (needsRangeCheck) { |
| regLen = oatAllocTemp(cUnit); |
| /* Get len */ |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen); |
| } |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset); |
| oatFreeTemp(cUnit, rlArray.lowReg); |
| if ((size == kLong) || (size == kDouble)) { |
| if (scale) { |
| int rNewIndex = oatAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale); |
| opRegReg(cUnit, kOpAdd, regPtr, rNewIndex); |
| oatFreeTemp(cUnit, rNewIndex); |
| } else { |
| opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg); |
| } |
| oatFreeTemp(cUnit, rlIndex.lowReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, regClass, true); |
| |
| if (needsRangeCheck) { |
| // TODO: change kCondCS to a more meaningful name, is the sense of |
| // carry-set/clear flipped? |
| genRegRegCheck(cUnit, kCondCs, rlIndex.lowReg, regLen, kThrowArrayBounds); |
| oatFreeTemp(cUnit, regLen); |
| } |
| loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg); |
| |
| oatFreeTemp(cUnit, regPtr); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| rlResult = oatEvalLoc(cUnit, rlDest, regClass, true); |
| |
| if (needsRangeCheck) { |
| // TODO: change kCondCS to a more meaningful name, is the sense of |
| // carry-set/clear flipped? |
| genRegRegCheck(cUnit, kCondCs, rlIndex.lowReg, regLen, kThrowArrayBounds); |
| oatFreeTemp(cUnit, regLen); |
| } |
| loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg, scale, size); |
| |
| oatFreeTemp(cUnit, regPtr); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } |
| } |
| |
| /* |
| * Generate array store |
| * |
| */ |
| void genArrayPut(CompilationUnit* cUnit, int optFlags, OpSize size, |
| RegLocation rlArray, RegLocation rlIndex, |
| RegLocation rlSrc, int scale) |
| { |
| RegisterClass regClass = oatRegClassBySize(size); |
| int lenOffset = Array::LengthOffset().Int32Value(); |
| int dataOffset; |
| |
| if (size == kLong || size == kDouble) { |
| dataOffset = Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| dataOffset = Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIndex = loadValue(cUnit, rlIndex, kCoreReg); |
| int regPtr = INVALID_REG; |
| if (cUnit->instructionSet != kX86) { |
| if (oatIsTemp(cUnit, rlArray.lowReg)) { |
| oatClobber(cUnit, rlArray.lowReg); |
| regPtr = rlArray.lowReg; |
| } else { |
| regPtr = oatAllocTemp(cUnit); |
| opRegCopy(cUnit, regPtr, rlArray.lowReg); |
| } |
| } |
| |
| /* null object? */ |
| genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg, optFlags); |
| |
| if (cUnit->instructionSet == kX86) { |
| if (!(optFlags & MIR_IGNORE_RANGE_CHECK)) { |
| /* if (rlIndex >= [rlArray + lenOffset]) goto kThrowArrayBounds */ |
| genRegMemCheck(cUnit, kCondUge, rlIndex.lowReg, rlArray.lowReg, lenOffset, kThrowArrayBounds); |
| } |
| if ((size == kLong) || (size == kDouble)) { |
| rlSrc = loadValueWide(cUnit, rlSrc, regClass); |
| } else { |
| rlSrc = loadValue(cUnit, rlSrc, regClass); |
| } |
| // If the src reg can't be byte accessed, move it to a temp first. |
| if ((size == kSignedByte || size == kUnsignedByte) && rlSrc.lowReg >= 4) { |
| int temp = oatAllocTemp(cUnit); |
| opRegCopy(cUnit, temp, rlSrc.lowReg); |
| storeBaseIndexedDisp(cUnit, rlArray.lowReg, rlIndex.lowReg, scale, dataOffset, temp, |
| INVALID_REG, size, INVALID_SREG); |
| } else { |
| storeBaseIndexedDisp(cUnit, rlArray.lowReg, rlIndex.lowReg, scale, dataOffset, rlSrc.lowReg, |
| rlSrc.highReg, size, INVALID_SREG); |
| } |
| } else { |
| bool needsRangeCheck = (!(optFlags & MIR_IGNORE_RANGE_CHECK)); |
| int regLen = INVALID_REG; |
| if (needsRangeCheck) { |
| regLen = oatAllocTemp(cUnit); |
| //NOTE: max live temps(4) here. |
| /* Get len */ |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen); |
| } |
| /* regPtr -> array data */ |
| opRegImm(cUnit, kOpAdd, regPtr, dataOffset); |
| /* at this point, regPtr points to array, 2 live temps */ |
| if ((size == kLong) || (size == kDouble)) { |
| //TUNING: specific wide routine that can handle fp regs |
| if (scale) { |
| int rNewIndex = oatAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale); |
| opRegReg(cUnit, kOpAdd, regPtr, rNewIndex); |
| oatFreeTemp(cUnit, rNewIndex); |
| } else { |
| opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg); |
| } |
| rlSrc = loadValueWide(cUnit, rlSrc, regClass); |
| |
| if (needsRangeCheck) { |
| genRegRegCheck(cUnit, kCondCs, rlIndex.lowReg, regLen, kThrowArrayBounds); |
| oatFreeTemp(cUnit, regLen); |
| } |
| |
| storeBaseDispWide(cUnit, regPtr, 0, rlSrc.lowReg, rlSrc.highReg); |
| |
| oatFreeTemp(cUnit, regPtr); |
| } else { |
| rlSrc = loadValue(cUnit, rlSrc, regClass); |
| if (needsRangeCheck) { |
| genRegRegCheck(cUnit, kCondCs, rlIndex.lowReg, regLen, kThrowArrayBounds); |
| oatFreeTemp(cUnit, regLen); |
| } |
| storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg, |
| scale, size); |
| } |
| } |
| } |
| |
| void genLong3Addr(CompilationUnit* cUnit, OpKind firstOp, |
| OpKind secondOp, RegLocation rlDest, |
| RegLocation rlSrc1, RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| if (cUnit->instructionSet == kThumb2) { |
| /* |
| * NOTE: This is the one place in the code in which we might have |
| * as many as six live temporary registers. There are 5 in the normal |
| * set for Arm. Until we have spill capabilities, temporarily add |
| * lr to the temp set. It is safe to do this locally, but note that |
| * lr is used explicitly elsewhere in the code generator and cannot |
| * normally be used as a general temp register. |
| */ |
| oatMarkTemp(cUnit, targetReg(kLr)); // Add lr to the temp pool |
| oatFreeTemp(cUnit, targetReg(kLr)); // and make it available |
| } |
| rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg); |
| rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| // The longs may overlap - use intermediate temp if so |
| if ((rlResult.lowReg == rlSrc1.highReg) || (rlResult.lowReg == rlSrc2.highReg)){ |
| int tReg = oatAllocTemp(cUnit); |
| opRegRegReg(cUnit, firstOp, tReg, rlSrc1.lowReg, rlSrc2.lowReg); |
| opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg, rlSrc2.highReg); |
| opRegCopy(cUnit, rlResult.lowReg, tReg); |
| oatFreeTemp(cUnit, tReg); |
| } else { |
| opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg); |
| opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg, |
| rlSrc2.highReg); |
| } |
| /* |
| * NOTE: If rlDest refers to a frame variable in a large frame, the |
| * following storeValueWide might need to allocate a temp register. |
| * To further work around the lack of a spill capability, explicitly |
| * free any temps from rlSrc1 & rlSrc2 that aren't still live in rlResult. |
| * Remove when spill is functional. |
| */ |
| freeRegLocTemps(cUnit, rlResult, rlSrc1); |
| freeRegLocTemps(cUnit, rlResult, rlSrc2); |
| storeValueWide(cUnit, rlDest, rlResult); |
| if (cUnit->instructionSet == kThumb2) { |
| oatClobber(cUnit, targetReg(kLr)); |
| oatUnmarkTemp(cUnit, targetReg(kLr)); // Remove lr from the temp pool |
| } |
| } |
| |
| |
| bool genShiftOpLong(CompilationUnit* cUnit, Instruction::Code opcode, RegLocation rlDest, |
| RegLocation rlSrc1, RegLocation rlShift) |
| { |
| int funcOffset; |
| |
| switch (opcode) { |
| case Instruction::SHL_LONG: |
| case Instruction::SHL_LONG_2ADDR: |
| funcOffset = ENTRYPOINT_OFFSET(pShlLong); |
| break; |
| case Instruction::SHR_LONG: |
| case Instruction::SHR_LONG_2ADDR: |
| funcOffset = ENTRYPOINT_OFFSET(pShrLong); |
| break; |
| case Instruction::USHR_LONG: |
| case Instruction::USHR_LONG_2ADDR: |
| funcOffset = ENTRYPOINT_OFFSET(pUshrLong); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected case"; |
| return true; |
| } |
| oatFlushAllRegs(cUnit); /* Send everything to home location */ |
| callRuntimeHelperRegLocationRegLocation(cUnit, funcOffset, rlSrc1, rlShift, false); |
| RegLocation rlResult = oatGetReturnWide(cUnit, false); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| |
| bool genArithOpInt(CompilationUnit* cUnit, Instruction::Code opcode, RegLocation rlDest, |
| RegLocation rlSrc1, RegLocation rlSrc2) |
| { |
| OpKind op = kOpBkpt; |
| bool isDivRem = false; |
| bool checkZero = false; |
| bool unary = false; |
| RegLocation rlResult; |
| bool shiftOp = false; |
| switch (opcode) { |
| case Instruction::NEG_INT: |
| op = kOpNeg; |
| unary = true; |
| break; |
| case Instruction::NOT_INT: |
| op = kOpMvn; |
| unary = true; |
| break; |
| case Instruction::ADD_INT: |
| case Instruction::ADD_INT_2ADDR: |
| op = kOpAdd; |
| break; |
| case Instruction::SUB_INT: |
| case Instruction::SUB_INT_2ADDR: |
| op = kOpSub; |
| break; |
| case Instruction::MUL_INT: |
| case Instruction::MUL_INT_2ADDR: |
| op = kOpMul; |
| break; |
| case Instruction::DIV_INT: |
| case Instruction::DIV_INT_2ADDR: |
| checkZero = true; |
| op = kOpDiv; |
| isDivRem = true; |
| break; |
| /* NOTE: returns in kArg1 */ |
| case Instruction::REM_INT: |
| case Instruction::REM_INT_2ADDR: |
| checkZero = true; |
| op = kOpRem; |
| isDivRem = true; |
| break; |
| case Instruction::AND_INT: |
| case Instruction::AND_INT_2ADDR: |
| op = kOpAnd; |
| break; |
| case Instruction::OR_INT: |
| case Instruction::OR_INT_2ADDR: |
| op = kOpOr; |
| break; |
| case Instruction::XOR_INT: |
| case Instruction::XOR_INT_2ADDR: |
| op = kOpXor; |
| break; |
| case Instruction::SHL_INT: |
| case Instruction::SHL_INT_2ADDR: |
| shiftOp = true; |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_INT: |
| case Instruction::SHR_INT_2ADDR: |
| shiftOp = true; |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_INT: |
| case Instruction::USHR_INT_2ADDR: |
| shiftOp = true; |
| op = kOpLsr; |
| break; |
| default: |
| LOG(FATAL) << "Invalid word arith op: " << |
| (int)opcode; |
| } |
| if (!isDivRem) { |
| if (unary) { |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, op, rlResult.lowReg, rlSrc1.lowReg); |
| } else { |
| if (shiftOp) { |
| int tReg = INVALID_REG; |
| if (cUnit->instructionSet == kX86) { |
| // X86 doesn't require masking and must use ECX |
| tReg = targetReg(kCount); // rCX |
| loadValueDirectFixed(cUnit, rlSrc2, tReg); |
| } else { |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| tReg = oatAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31); |
| } |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, op, rlResult.lowReg, rlSrc1.lowReg, tReg); |
| oatFreeTemp(cUnit, tReg); |
| } else { |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, op, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg); |
| } |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| } else { |
| if (cUnit->instructionSet == kMips) { |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| if (checkZero) { |
| genImmedCheck(cUnit, kCondEq, rlSrc2.lowReg, 0, kThrowDivZero); |
| } |
| rlResult = genDivRem(cUnit, rlDest, rlSrc1.lowReg, rlSrc2.lowReg, op == kOpDiv); |
| } else { |
| int funcOffset = ENTRYPOINT_OFFSET(pIdivmod); |
| oatFlushAllRegs(cUnit); /* Send everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc2, targetReg(kArg1)); |
| int rTgt = callHelperSetup(cUnit, funcOffset); |
| loadValueDirectFixed(cUnit, rlSrc1, targetReg(kArg0)); |
| if (checkZero) { |
| genImmedCheck(cUnit, kCondEq, targetReg(kArg1), 0, kThrowDivZero); |
| } |
| // NOTE: callout here is not a safepoint |
| callHelper(cUnit, rTgt, funcOffset, false /* not a safepoint */ ); |
| if (op == kOpDiv) |
| rlResult = oatGetReturn(cUnit, false); |
| else |
| rlResult = oatGetReturnAlt(cUnit); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| return false; |
| } |
| |
| /* |
| * The following are the first-level codegen routines that analyze the format |
| * of each bytecode then either dispatch special purpose codegen routines |
| * or produce corresponding Thumb instructions directly. |
| */ |
| |
| bool isPowerOfTwo(int x) |
| { |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns true if no more than two bits are set in 'x'. |
| bool isPopCountLE2(unsigned int x) |
| { |
| x &= x - 1; |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns the index of the lowest set bit in 'x'. |
| int lowestSetBit(unsigned int x) { |
| int bit_posn = 0; |
| while ((x & 0xf) == 0) { |
| bit_posn += 4; |
| x >>= 4; |
| } |
| while ((x & 1) == 0) { |
| bit_posn++; |
| x >>= 1; |
| } |
| return bit_posn; |
| } |
| |
| // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit' |
| // and store the result in 'rlDest'. |
| bool handleEasyDivide(CompilationUnit* cUnit, Instruction::Code dalvikOpcode, |
| RegLocation rlSrc, RegLocation rlDest, int lit) |
| { |
| if ((lit < 2) || ((cUnit->instructionSet != kThumb2) && !isPowerOfTwo(lit))) { |
| return false; |
| } |
| // No divide instruction for Arm, so check for more special cases |
| if ((cUnit->instructionSet == kThumb2) && !isPowerOfTwo(lit)) { |
| return smallLiteralDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit); |
| } |
| int k = lowestSetBit(lit); |
| if (k >= 30) { |
| // Avoid special cases. |
| return false; |
| } |
| bool div = (dalvikOpcode == Instruction::DIV_INT_LIT8 || |
| dalvikOpcode == Instruction::DIV_INT_LIT16); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| if (div) { |
| int tReg = oatAllocTemp(cUnit); |
| if (lit == 2) { |
| // Division by 2 is by far the most common division by constant. |
| opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k); |
| opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg); |
| opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k); |
| } else { |
| opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31); |
| opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k); |
| opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg); |
| opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k); |
| } |
| } else { |
| int tReg1 = oatAllocTemp(cUnit); |
| int tReg2 = oatAllocTemp(cUnit); |
| if (lit == 2) { |
| opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k); |
| opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg); |
| opRegRegImm(cUnit, kOpAnd, tReg2, tReg2, lit -1); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1); |
| } else { |
| opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31); |
| opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k); |
| opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg); |
| opRegRegImm(cUnit, kOpAnd, tReg2, tReg2, lit - 1); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1); |
| } |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return true; |
| } |
| |
| // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit' |
| // and store the result in 'rlDest'. |
| bool handleEasyMultiply(CompilationUnit* cUnit, RegLocation rlSrc, |
| RegLocation rlDest, int lit) |
| { |
| // Can we simplify this multiplication? |
| bool powerOfTwo = false; |
| bool popCountLE2 = false; |
| bool powerOfTwoMinusOne = false; |
| if (lit < 2) { |
| // Avoid special cases. |
| return false; |
| } else if (isPowerOfTwo(lit)) { |
| powerOfTwo = true; |
| } else if (isPopCountLE2(lit)) { |
| popCountLE2 = true; |
| } else if (isPowerOfTwo(lit + 1)) { |
| powerOfTwoMinusOne = true; |
| } else { |
| return false; |
| } |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| if (powerOfTwo) { |
| // Shift. |
| opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg, |
| lowestSetBit(lit)); |
| } else if (popCountLE2) { |
| // Shift and add and shift. |
| int firstBit = lowestSetBit(lit); |
| int secondBit = lowestSetBit(lit ^ (1 << firstBit)); |
| genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit, |
| firstBit, secondBit); |
| } else { |
| // Reverse subtract: (src << (shift + 1)) - src. |
| DCHECK(powerOfTwoMinusOne); |
| // TUNING: rsb dst, src, src lsl#lowestSetBit(lit + 1) |
| int tReg = oatAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1)); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return true; |
| } |
| |
| bool genArithOpIntLit(CompilationUnit* cUnit, Instruction::Code opcode, |
| RegLocation rlDest, RegLocation rlSrc, int lit) |
| { |
| RegLocation rlResult; |
| OpKind op = (OpKind)0; /* Make gcc happy */ |
| int shiftOp = false; |
| bool isDiv = false; |
| |
| switch (opcode) { |
| case Instruction::RSUB_INT_LIT8: |
| case Instruction::RSUB_INT: { |
| int tReg; |
| //TUNING: add support for use of Arm rsub op |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| tReg = oatAllocTemp(cUnit); |
| loadConstant(cUnit, tReg, lit); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| } |
| |
| case Instruction::ADD_INT_LIT8: |
| case Instruction::ADD_INT_LIT16: |
| op = kOpAdd; |
| break; |
| case Instruction::MUL_INT_LIT8: |
| case Instruction::MUL_INT_LIT16: { |
| if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) { |
| return false; |
| } |
| op = kOpMul; |
| break; |
| } |
| case Instruction::AND_INT_LIT8: |
| case Instruction::AND_INT_LIT16: |
| op = kOpAnd; |
| break; |
| case Instruction::OR_INT_LIT8: |
| case Instruction::OR_INT_LIT16: |
| op = kOpOr; |
| break; |
| case Instruction::XOR_INT_LIT8: |
| case Instruction::XOR_INT_LIT16: |
| op = kOpXor; |
| break; |
| case Instruction::SHL_INT_LIT8: |
| case Instruction::SHL_INT: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_INT_LIT8: |
| case Instruction::SHR_INT: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_INT_LIT8: |
| case Instruction::USHR_INT: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpLsr; |
| break; |
| |
| case Instruction::DIV_INT_LIT8: |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::REM_INT_LIT8: |
| case Instruction::REM_INT_LIT16: { |
| if (lit == 0) { |
| genImmedCheck(cUnit, kCondAl, 0, 0, kThrowDivZero); |
| return false; |
| } |
| if (handleEasyDivide(cUnit, opcode, rlSrc, rlDest, lit)) { |
| return false; |
| } |
| if ((opcode == Instruction::DIV_INT_LIT8) || |
| (opcode == Instruction::DIV_INT_LIT16)) { |
| isDiv = true; |
| } else { |
| isDiv = false; |
| } |
| if (cUnit->instructionSet == kMips) { |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = genDivRemLit(cUnit, rlDest, rlSrc.lowReg, lit, isDiv); |
| } else { |
| oatFlushAllRegs(cUnit); /* Everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc, targetReg(kArg0)); |
| oatClobber(cUnit, targetReg(kArg0)); |
| int funcOffset = ENTRYPOINT_OFFSET(pIdivmod); |
| callRuntimeHelperRegImm(cUnit, funcOffset, targetReg(kArg0), lit, false); |
| if (isDiv) |
| rlResult = oatGetReturn(cUnit, false); |
| else |
| rlResult = oatGetReturnAlt(cUnit); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| } |
| default: |
| return true; |
| } |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| // Avoid shifts by literal 0 - no support in Thumb. Change to copy |
| if (shiftOp && (lit == 0)) { |
| opRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); |
| } else { |
| opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| bool genArithOpLong(CompilationUnit* cUnit, Instruction::Code opcode, RegLocation rlDest, |
| RegLocation rlSrc1, RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| OpKind firstOp = kOpBkpt; |
| OpKind secondOp = kOpBkpt; |
| bool callOut = false; |
| bool checkZero = false; |
| int funcOffset; |
| int retReg = targetReg(kRet0); |
| |
| switch (opcode) { |
| case Instruction::NOT_LONG: |
| rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| // Check for destructive overlap |
| if (rlResult.lowReg == rlSrc2.highReg) { |
| int tReg = oatAllocTemp(cUnit); |
| opRegCopy(cUnit, tReg, rlSrc2.highReg); |
| opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg); |
| opRegReg(cUnit, kOpMvn, rlResult.highReg, tReg); |
| oatFreeTemp(cUnit, tReg); |
| } else { |
| opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg); |
| opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg); |
| } |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| if (cUnit->instructionSet != kThumb2) { |
| return genAddLong(cUnit, rlDest, rlSrc1, rlSrc2); |
| } |
| firstOp = kOpAdd; |
| secondOp = kOpAdc; |
| break; |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| if (cUnit->instructionSet != kThumb2) { |
| return genSubLong(cUnit, rlDest, rlSrc1, rlSrc2); |
| } |
| firstOp = kOpSub; |
| secondOp = kOpSbc; |
| break; |
| case Instruction::MUL_LONG: |
| case Instruction::MUL_LONG_2ADDR: |
| callOut = true; |
| retReg = targetReg(kRet0); |
| funcOffset = ENTRYPOINT_OFFSET(pLmul); |
| break; |
| case Instruction::DIV_LONG: |
| case Instruction::DIV_LONG_2ADDR: |
| callOut = true; |
| checkZero = true; |
| retReg = targetReg(kRet0); |
| funcOffset = ENTRYPOINT_OFFSET(pLdiv); |
| break; |
| case Instruction::REM_LONG: |
| case Instruction::REM_LONG_2ADDR: |
| callOut = true; |
| checkZero = true; |
| funcOffset = ENTRYPOINT_OFFSET(pLdivmod); |
| /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */ |
| retReg = (cUnit->instructionSet == kThumb2) ? targetReg(kArg2) : targetReg(kRet0); |
| break; |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::AND_LONG: |
| if (cUnit->instructionSet == kX86) { |
| return genAndLong(cUnit, rlDest, rlSrc1, rlSrc2); |
| } |
| firstOp = kOpAnd; |
| secondOp = kOpAnd; |
| break; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| if (cUnit->instructionSet == kX86) { |
| return genOrLong(cUnit, rlDest, rlSrc1, rlSrc2); |
| } |
| firstOp = kOpOr; |
| secondOp = kOpOr; |
| break; |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| if (cUnit->instructionSet == kX86) { |
| return genXorLong(cUnit, rlDest, rlSrc1, rlSrc2); |
| } |
| firstOp = kOpXor; |
| secondOp = kOpXor; |
| break; |
| case Instruction::NEG_LONG: { |
| return genNegLong(cUnit, rlDest, rlSrc2); |
| } |
| default: |
| LOG(FATAL) << "Invalid long arith op"; |
| } |
| if (!callOut) { |
| genLong3Addr(cUnit, firstOp, secondOp, rlDest, rlSrc1, rlSrc2); |
| } else { |
| oatFlushAllRegs(cUnit); /* Send everything to home location */ |
| if (checkZero) { |
| loadValueDirectWideFixed(cUnit, rlSrc2, targetReg(kArg2), targetReg(kArg3)); |
| int rTgt = callHelperSetup(cUnit, funcOffset); |
| genDivZeroCheck(cUnit, targetReg(kArg2), targetReg(kArg3)); |
| loadValueDirectWideFixed(cUnit, rlSrc1, targetReg(kArg0), targetReg(kArg1)); |
| // NOTE: callout here is not a safepoint |
| callHelper(cUnit, rTgt, funcOffset, false /* not safepoint */); |
| } else { |
| callRuntimeHelperRegLocationRegLocation(cUnit, funcOffset, |
| rlSrc1, rlSrc2, false); |
| } |
| // Adjust return regs in to handle case of rem returning kArg2/kArg3 |
| if (retReg == targetReg(kRet0)) |
| rlResult = oatGetReturnWide(cUnit, false); |
| else |
| rlResult = oatGetReturnWideAlt(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } |
| return false; |
| } |
| |
| bool genConversionCall(CompilationUnit* cUnit, int funcOffset, |
| RegLocation rlDest, RegLocation rlSrc) |
| { |
| /* |
| * Don't optimize the register usage since it calls out to support |
| * functions |
| */ |
| oatFlushAllRegs(cUnit); /* Send everything to home location */ |
| if (rlSrc.wide) { |
| loadValueDirectWideFixed(cUnit, rlSrc, rlSrc.fp ? targetReg(kFArg0) : targetReg(kArg0), |
| rlSrc.fp ? targetReg(kFArg1) : targetReg(kArg1)); |
| } else { |
| loadValueDirectFixed(cUnit, rlSrc, rlSrc.fp ? targetReg(kFArg0) : targetReg(kArg0)); |
| } |
| callRuntimeHelperRegLocation(cUnit, funcOffset, rlSrc, false); |
| if (rlDest.wide) { |
| RegLocation rlResult; |
| rlResult = oatGetReturnWide(cUnit, rlDest.fp); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| RegLocation rlResult; |
| rlResult = oatGetReturn(cUnit, rlDest.fp); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| return false; |
| } |
| |
| void genNegFloat(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc); |
| bool genArithOpFloatPortable(CompilationUnit* cUnit, Instruction::Code opcode, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| int funcOffset; |
| |
| switch (opcode) { |
| case Instruction::ADD_FLOAT_2ADDR: |
| case Instruction::ADD_FLOAT: |
| funcOffset = ENTRYPOINT_OFFSET(pFadd); |
| break; |
| case Instruction::SUB_FLOAT_2ADDR: |
| case Instruction::SUB_FLOAT: |
| funcOffset = ENTRYPOINT_OFFSET(pFsub); |
| break; |
| case Instruction::DIV_FLOAT_2ADDR: |
| case Instruction::DIV_FLOAT: |
| funcOffset = ENTRYPOINT_OFFSET(pFdiv); |
| break; |
| case Instruction::MUL_FLOAT_2ADDR: |
| case Instruction::MUL_FLOAT: |
| funcOffset = ENTRYPOINT_OFFSET(pFmul); |
| break; |
| case Instruction::REM_FLOAT_2ADDR: |
| case Instruction::REM_FLOAT: |
| funcOffset = ENTRYPOINT_OFFSET(pFmodf); |
| break; |
| case Instruction::NEG_FLOAT: { |
| genNegFloat(cUnit, rlDest, rlSrc1); |
| return false; |
| } |
| default: |
| return true; |
| } |
| oatFlushAllRegs(cUnit); /* Send everything to home location */ |
| callRuntimeHelperRegLocationRegLocation(cUnit, funcOffset, rlSrc1, rlSrc2, false); |
| rlResult = oatGetReturn(cUnit, true); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| void genNegDouble(CompilationUnit* cUnit, RegLocation rlDst, RegLocation rlSrc); |
| bool genArithOpDoublePortable(CompilationUnit* cUnit, Instruction::Code opcode, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| int funcOffset; |
| |
| switch (opcode) { |
| case Instruction::ADD_DOUBLE_2ADDR: |
| case Instruction::ADD_DOUBLE: |
| funcOffset = ENTRYPOINT_OFFSET(pDadd); |
| break; |
| case Instruction::SUB_DOUBLE_2ADDR: |
| case Instruction::SUB_DOUBLE: |
| funcOffset = ENTRYPOINT_OFFSET(pDsub); |
| break; |
| case Instruction::DIV_DOUBLE_2ADDR: |
| case Instruction::DIV_DOUBLE: |
| funcOffset = ENTRYPOINT_OFFSET(pDdiv); |
| break; |
| case Instruction::MUL_DOUBLE_2ADDR: |
| case Instruction::MUL_DOUBLE: |
| funcOffset = ENTRYPOINT_OFFSET(pDmul); |
| break; |
| case Instruction::REM_DOUBLE_2ADDR: |
| case Instruction::REM_DOUBLE: |
| funcOffset = ENTRYPOINT_OFFSET(pFmod); |
| break; |
| case Instruction::NEG_DOUBLE: { |
| genNegDouble(cUnit, rlDest, rlSrc1); |
| return false; |
| } |
| default: |
| return true; |
| } |
| oatFlushAllRegs(cUnit); /* Send everything to home location */ |
| callRuntimeHelperRegLocationRegLocation(cUnit, funcOffset, rlSrc1, rlSrc2, false); |
| rlResult = oatGetReturnWide(cUnit, true); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| bool genConversionPortable(CompilationUnit* cUnit, Instruction::Code opcode, |
| RegLocation rlDest, RegLocation rlSrc) |
| { |
| |
| switch (opcode) { |
| case Instruction::INT_TO_FLOAT: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pI2f), |
| rlDest, rlSrc); |
| case Instruction::FLOAT_TO_INT: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pF2iz), |
| rlDest, rlSrc); |
| case Instruction::DOUBLE_TO_FLOAT: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pD2f), |
| rlDest, rlSrc); |
| case Instruction::FLOAT_TO_DOUBLE: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pF2d), |
| rlDest, rlSrc); |
| case Instruction::INT_TO_DOUBLE: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pI2d), |
| rlDest, rlSrc); |
| case Instruction::DOUBLE_TO_INT: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pD2iz), |
| rlDest, rlSrc); |
| case Instruction::FLOAT_TO_LONG: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pF2l), |
| rlDest, rlSrc); |
| case Instruction::LONG_TO_FLOAT: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pL2f), |
| rlDest, rlSrc); |
| case Instruction::DOUBLE_TO_LONG: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pD2l), |
| rlDest, rlSrc); |
| case Instruction::LONG_TO_DOUBLE: |
| return genConversionCall(cUnit, ENTRYPOINT_OFFSET(pL2d), |
| rlDest, rlSrc); |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| /* Check if we need to check for pending suspend request */ |
| void genSuspendTest(CompilationUnit* cUnit, int optFlags) |
| { |
| if (NO_SUSPEND || (optFlags & MIR_IGNORE_SUSPEND_CHECK)) { |
| return; |
| } |
| oatFlushAllRegs(cUnit); |
| LIR* branch = opTestSuspend(cUnit, NULL); |
| LIR* retLab = newLIR0(cUnit, kPseudoTargetLabel); |
| LIR* target = rawLIR(cUnit, cUnit->currentDalvikOffset, kPseudoSuspendTarget, |
| (intptr_t)retLab, cUnit->currentDalvikOffset); |
| branch->target = (LIR*)target; |
| oatInsertGrowableList(cUnit, &cUnit->suspendLaunchpads, (intptr_t)target); |
| } |
| |
| /* Check if we need to check for pending suspend request */ |
| void genSuspendTestAndBranch(CompilationUnit* cUnit, int optFlags, LIR* target) |
| { |
| if (NO_SUSPEND || (optFlags & MIR_IGNORE_SUSPEND_CHECK)) { |
| opUnconditionalBranch(cUnit, target); |
| return; |
| } |
| opTestSuspend(cUnit, target); |
| LIR* launchPad = rawLIR(cUnit, cUnit->currentDalvikOffset, kPseudoSuspendTarget, (intptr_t)target, |
| cUnit->currentDalvikOffset); |
| oatFlushAllRegs(cUnit); |
| opUnconditionalBranch(cUnit, launchPad); |
| oatInsertGrowableList(cUnit, &cUnit->suspendLaunchpads, (intptr_t)launchPad); |
| } |
| |
| } // namespace art |