blob: a703e86ea16b5c15c1950779de8c636621334680 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_SPACE_LARGE_OBJECT_SPACE_H_
#define ART_RUNTIME_GC_SPACE_LARGE_OBJECT_SPACE_H_
#include "gc/accounting/gc_allocator.h"
#include "dlmalloc_space.h"
#include "safe_map.h"
#include "space.h"
#include <set>
#include <vector>
namespace art {
namespace gc {
namespace space {
// Abstraction implemented by all large object spaces.
class LargeObjectSpace : public DiscontinuousSpace, public AllocSpace {
public:
virtual SpaceType GetType() const {
return kSpaceTypeLargeObjectSpace;
}
virtual void SwapBitmaps();
virtual void CopyLiveToMarked();
virtual void Walk(DlMallocSpace::WalkCallback, void* arg) = 0;
virtual ~LargeObjectSpace() {}
uint64_t GetBytesAllocated() const {
return num_bytes_allocated_;
}
uint64_t GetObjectsAllocated() const {
return num_objects_allocated_;
}
uint64_t GetTotalBytesAllocated() const {
return total_bytes_allocated_;
}
uint64_t GetTotalObjectsAllocated() const {
return total_objects_allocated_;
}
size_t FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs);
protected:
explicit LargeObjectSpace(const std::string& name);
// Approximate number of bytes which have been allocated into the space.
size_t num_bytes_allocated_;
size_t num_objects_allocated_;
size_t total_bytes_allocated_;
size_t total_objects_allocated_;
friend class Space;
private:
DISALLOW_COPY_AND_ASSIGN(LargeObjectSpace);
};
// A discontinuous large object space implemented by individual mmap/munmap calls.
class LargeObjectMapSpace : public LargeObjectSpace {
public:
// Creates a large object space. Allocations into the large object space use memory maps instead
// of malloc.
static LargeObjectMapSpace* Create(const std::string& name);
// Return the storage space required by obj.
size_t AllocationSize(const mirror::Object* obj);
mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated);
size_t Free(Thread* self, mirror::Object* ptr);
void Walk(DlMallocSpace::WalkCallback, void* arg) LOCKS_EXCLUDED(lock_);
// TODO: disabling thread safety analysis as this may be called when we already hold lock_.
bool Contains(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS;
private:
explicit LargeObjectMapSpace(const std::string& name);
virtual ~LargeObjectMapSpace() {}
// Used to ensure mutual exclusion when the allocation spaces data structures are being modified.
mutable Mutex lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
std::vector<mirror::Object*,
accounting::GCAllocator<mirror::Object*> > large_objects_ GUARDED_BY(lock_);
typedef SafeMap<mirror::Object*, MemMap*, std::less<mirror::Object*>,
accounting::GCAllocator<std::pair<const mirror::Object*, MemMap*> > > MemMaps;
MemMaps mem_maps_ GUARDED_BY(lock_);
};
// A continuous large object space with a free-list to handle holes.
class FreeListSpace : public LargeObjectSpace {
public:
virtual ~FreeListSpace();
static FreeListSpace* Create(const std::string& name, byte* requested_begin, size_t capacity);
size_t AllocationSize(const mirror::Object* obj) EXCLUSIVE_LOCKS_REQUIRED(lock_);
mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated);
size_t Free(Thread* self, mirror::Object* obj);
bool Contains(const mirror::Object* obj) const;
void Walk(DlMallocSpace::WalkCallback callback, void* arg) LOCKS_EXCLUDED(lock_);
// Address at which the space begins.
byte* Begin() const {
return begin_;
}
// Address at which the space ends, which may vary as the space is filled.
byte* End() const {
return end_;
}
// Current size of space
size_t Size() const {
return End() - Begin();
}
void Dump(std::ostream& os) const;
private:
static const size_t kAlignment = kPageSize;
class AllocationHeader {
public:
// Returns the allocation size, includes the header.
size_t AllocationSize() const {
return alloc_size_;
}
// Updates the allocation size in the header, the allocation size includes the header itself.
void SetAllocationSize(size_t size) {
DCHECK(IsAligned<kPageSize>(size));
alloc_size_ = size;
}
bool IsFree() const {
return AllocationSize() == 0;
}
// Returns the previous free allocation header by using the prev_free_ member to figure out
// where it is. If prev free is 0 then we just return ourself.
AllocationHeader* GetPrevFreeAllocationHeader() {
return reinterpret_cast<AllocationHeader*>(reinterpret_cast<uintptr_t>(this) - prev_free_);
}
// Returns the address of the object associated with this allocation header.
mirror::Object* GetObjectAddress() {
return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
}
// Returns the next allocation header after the object associated with this allocation header.
AllocationHeader* GetNextAllocationHeader() {
DCHECK_NE(alloc_size_, 0U);
return reinterpret_cast<AllocationHeader*>(reinterpret_cast<uintptr_t>(this) + alloc_size_);
}
// Returns how many free bytes there is before the block.
size_t GetPrevFree() const {
return prev_free_;
}
// Update the size of the free block prior to the allocation.
void SetPrevFree(size_t prev_free) {
DCHECK(IsAligned<kPageSize>(prev_free));
prev_free_ = prev_free;
}
// Finds and returns the next non free allocation header after ourself.
// TODO: Optimize, currently O(n) for n free following pages.
AllocationHeader* GetNextNonFree();
// Used to implement best fit object allocation. Each allocation has an AllocationHeader which
// contains the size of the previous free block preceding it. Implemented in such a way that we
// can also find the iterator for any allocation header pointer.
class SortByPrevFree {
public:
bool operator()(const AllocationHeader* a, const AllocationHeader* b) const {
if (a->GetPrevFree() < b->GetPrevFree()) return true;
if (a->GetPrevFree() > b->GetPrevFree()) return false;
if (a->AllocationSize() < b->AllocationSize()) return true;
if (a->AllocationSize() > b->AllocationSize()) return false;
return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
}
};
private:
// Contains the size of the previous free block, if 0 then the memory preceding us is an
// allocation.
size_t prev_free_;
// Allocation size of this object, 0 means that the allocation header is free memory.
size_t alloc_size_;
friend class FreeListSpace;
};
FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end);
// Removes header from the free blocks set by finding the corresponding iterator and erasing it.
void RemoveFreePrev(AllocationHeader* header) EXCLUSIVE_LOCKS_REQUIRED(lock_);
// Finds the allocation header corresponding to obj.
AllocationHeader* GetAllocationHeader(const mirror::Object* obj);
typedef std::set<AllocationHeader*, AllocationHeader::SortByPrevFree,
accounting::GCAllocator<AllocationHeader*> > FreeBlocks;
byte* const begin_;
byte* const end_;
// There is not footer for any allocations at the end of the space, so we keep track of how much
// free space there is at the end manually.
UniquePtr<MemMap> mem_map_;
Mutex lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
size_t free_end_ GUARDED_BY(lock_);
FreeBlocks free_blocks_ GUARDED_BY(lock_);
};
} // namespace space
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_SPACE_LARGE_OBJECT_SPACE_H_