blob: a5a8d7edfe0b4159e65330ce2bf09e7d1bc7538e [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../../compiler_internals.h"
#include "mips_lir.h"
#include "../ralloc_util.h"
#include "../codegen_util.h"
#include <string>
namespace art {
static int coreRegs[] = {r_ZERO, r_AT, r_V0, r_V1, r_A0, r_A1, r_A2, r_A3,
r_T0, r_T1, r_T2, r_T3, r_T4, r_T5, r_T6, r_T7,
r_S0, r_S1, r_S2, r_S3, r_S4, r_S5, r_S6, r_S7, r_T8,
r_T9, r_K0, r_K1, r_GP, r_SP, r_FP, r_RA};
static int reservedRegs[] = {r_ZERO, r_AT, r_S0, r_S1, r_K0, r_K1, r_GP, r_SP,
r_RA};
static int coreTemps[] = {r_V0, r_V1, r_A0, r_A1, r_A2, r_A3, r_T0, r_T1, r_T2,
r_T3, r_T4, r_T5, r_T6, r_T7, r_T8};
#ifdef __mips_hard_float
static int fpRegs[] = {r_F0, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7,
r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15};
static int fpTemps[] = {r_F0, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7,
r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15};
#endif
RegLocation locCReturn()
{
RegLocation res = MIPS_LOC_C_RETURN;
return res;
}
RegLocation locCReturnWide()
{
RegLocation res = MIPS_LOC_C_RETURN_WIDE;
return res;
}
RegLocation locCReturnFloat()
{
RegLocation res = MIPS_LOC_C_RETURN_FLOAT;
return res;
}
RegLocation locCReturnDouble()
{
RegLocation res = MIPS_LOC_C_RETURN_DOUBLE;
return res;
}
// Return a target-dependent special register.
int targetReg(SpecialTargetRegister reg) {
int res = INVALID_REG;
switch (reg) {
case kSelf: res = rMIPS_SELF; break;
case kSuspend: res = rMIPS_SUSPEND; break;
case kLr: res = rMIPS_LR; break;
case kPc: res = rMIPS_PC; break;
case kSp: res = rMIPS_SP; break;
case kArg0: res = rMIPS_ARG0; break;
case kArg1: res = rMIPS_ARG1; break;
case kArg2: res = rMIPS_ARG2; break;
case kArg3: res = rMIPS_ARG3; break;
case kFArg0: res = rMIPS_FARG0; break;
case kFArg1: res = rMIPS_FARG1; break;
case kFArg2: res = rMIPS_FARG2; break;
case kFArg3: res = rMIPS_FARG3; break;
case kRet0: res = rMIPS_RET0; break;
case kRet1: res = rMIPS_RET1; break;
case kInvokeTgt: res = rMIPS_INVOKE_TGT; break;
case kCount: res = rMIPS_COUNT; break;
}
return res;
}
// Create a double from a pair of singles.
int s2d(int lowReg, int highReg)
{
return MIPS_S2D(lowReg, highReg);
}
// Is reg a single or double?
bool fpReg(int reg)
{
return MIPS_FPREG(reg);
}
// Is reg a single?
bool singleReg(int reg)
{
return MIPS_SINGLEREG(reg);
}
// Is reg a double?
bool doubleReg(int reg)
{
return MIPS_DOUBLEREG(reg);
}
// Return mask to strip off fp reg flags and bias.
uint32_t fpRegMask()
{
return MIPS_FP_REG_MASK;
}
// True if both regs single, both core or both double.
bool sameRegType(int reg1, int reg2)
{
return (MIPS_REGTYPE(reg1) == MIPS_REGTYPE(reg2));
}
/*
* Decode the register id.
*/
uint64_t getRegMaskCommon(CompilationUnit* cUnit, int reg)
{
uint64_t seed;
int shift;
int regId;
regId = reg & 0x1f;
/* Each double register is equal to a pair of single-precision FP registers */
seed = MIPS_DOUBLEREG(reg) ? 3 : 1;
/* FP register starts at bit position 16 */
shift = MIPS_FPREG(reg) ? kMipsFPReg0 : 0;
/* Expand the double register id into single offset */
shift += regId;
return (seed << shift);
}
uint64_t getPCUseDefEncoding()
{
return ENCODE_MIPS_REG_PC;
}
void setupTargetResourceMasks(CompilationUnit* cUnit, LIR* lir)
{
DCHECK_EQ(cUnit->instructionSet, kMips);
// Mips-specific resource map setup here.
uint64_t flags = EncodingMap[lir->opcode].flags;
if (flags & REG_DEF_SP) {
lir->defMask |= ENCODE_MIPS_REG_SP;
}
if (flags & REG_USE_SP) {
lir->useMask |= ENCODE_MIPS_REG_SP;
}
if (flags & REG_DEF_LR) {
lir->defMask |= ENCODE_MIPS_REG_LR;
}
}
/* For dumping instructions */
#define MIPS_REG_COUNT 32
static const char *mipsRegName[MIPS_REG_COUNT] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"
};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.c.
*/
std::string buildInsnString(const char *fmt, LIR *lir, unsigned char* baseAddr)
{
std::string buf;
int i;
const char *fmtEnd = &fmt[strlen(fmt)];
char tbuf[256];
char nc;
while (fmt < fmtEnd) {
int operand;
if (*fmt == '!') {
fmt++;
DCHECK_LT(fmt, fmtEnd);
nc = *fmt++;
if (nc=='!') {
strcpy(tbuf, "!");
} else {
DCHECK_LT(fmt, fmtEnd);
DCHECK_LT((unsigned)(nc-'0'), 4u);
operand = lir->operands[nc-'0'];
switch (*fmt++) {
case 'b':
strcpy(tbuf,"0000");
for (i=3; i>= 0; i--) {
tbuf[i] += operand & 1;
operand >>= 1;
}
break;
case 's':
sprintf(tbuf,"$f%d",operand & MIPS_FP_REG_MASK);
break;
case 'S':
DCHECK_EQ(((operand & MIPS_FP_REG_MASK) & 1), 0);
sprintf(tbuf,"$f%d",operand & MIPS_FP_REG_MASK);
break;
case 'h':
sprintf(tbuf,"%04x", operand);
break;
case 'M':
case 'd':
sprintf(tbuf,"%d", operand);
break;
case 'D':
sprintf(tbuf,"%d", operand+1);
break;
case 'E':
sprintf(tbuf,"%d", operand*4);
break;
case 'F':
sprintf(tbuf,"%d", operand*2);
break;
case 't':
sprintf(tbuf,"0x%08x (L%p)", (int) baseAddr + lir->offset + 4 +
(operand << 2), lir->target);
break;
case 'T':
sprintf(tbuf,"0x%08x", (int) (operand << 2));
break;
case 'u': {
int offset_1 = lir->operands[0];
int offset_2 = NEXT_LIR(lir)->operands[0];
intptr_t target =
((((intptr_t) baseAddr + lir->offset + 4) & ~3) +
(offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc;
sprintf(tbuf, "%p", (void *) target);
break;
}
/* Nothing to print for BLX_2 */
case 'v':
strcpy(tbuf, "see above");
break;
case 'r':
DCHECK(operand >= 0 && operand < MIPS_REG_COUNT);
strcpy(tbuf, mipsRegName[operand]);
break;
case 'N':
// Placeholder for delay slot handling
strcpy(tbuf, "; nop");
break;
default:
strcpy(tbuf,"DecodeError");
break;
}
buf += tbuf;
}
} else {
buf += *fmt++;
}
}
return buf;
}
// FIXME: need to redo resource maps for MIPS - fix this at that time
void oatDumpResourceMask(LIR *lir, uint64_t mask, const char *prefix)
{
char buf[256];
buf[0] = 0;
LIR *mipsLIR = (LIR *) lir;
if (mask == ENCODE_ALL) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kMipsRegEnd; i++) {
if (mask & (1ULL << i)) {
sprintf(num, "%d ", i);
strcat(buf, num);
}
}
if (mask & ENCODE_CCODE) {
strcat(buf, "cc ");
}
if (mask & ENCODE_FP_STATUS) {
strcat(buf, "fpcc ");
}
/* Memory bits */
if (mipsLIR && (mask & ENCODE_DALVIK_REG)) {
sprintf(buf + strlen(buf), "dr%d%s", mipsLIR->aliasInfo & 0xffff,
(mipsLIR->aliasInfo & 0x80000000) ? "(+1)" : "");
}
if (mask & ENCODE_LITERAL) {
strcat(buf, "lit ");
}
if (mask & ENCODE_HEAP_REF) {
strcat(buf, "heap ");
}
if (mask & ENCODE_MUST_NOT_ALIAS) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
/*
* TUNING: is leaf? Can't just use "hasInvoke" to determine as some
* instructions might call out to C/assembly helper functions. Until
* machinery is in place, always spill lr.
*/
void oatAdjustSpillMask(CompilationUnit* cUnit)
{
cUnit->coreSpillMask |= (1 << r_RA);
cUnit->numCoreSpills++;
}
/*
* Mark a callee-save fp register as promoted. Note that
* vpush/vpop uses contiguous register lists so we must
* include any holes in the mask. Associate holes with
* Dalvik register INVALID_VREG (0xFFFFU).
*/
void oatMarkPreservedSingle(CompilationUnit* cUnit, int sReg, int reg)
{
LOG(FATAL) << "No support yet for promoted FP regs";
}
void oatFlushRegWide(CompilationUnit* cUnit, int reg1, int reg2)
{
RegisterInfo* info1 = oatGetRegInfo(cUnit, reg1);
RegisterInfo* info2 = oatGetRegInfo(cUnit, reg2);
DCHECK(info1 && info2 && info1->pair && info2->pair &&
(info1->partner == info2->reg) &&
(info2->partner == info1->reg));
if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
if (!(info1->isTemp && info2->isTemp)) {
/* Should not happen. If it does, there's a problem in evalLoc */
LOG(FATAL) << "Long half-temp, half-promoted";
}
info1->dirty = false;
info2->dirty = false;
if (SRegToVReg(cUnit, info2->sReg) < SRegToVReg(cUnit, info1->sReg))
info1 = info2;
int vReg = SRegToVReg(cUnit, info1->sReg);
storeBaseDispWide(cUnit, rMIPS_SP, oatVRegOffset(cUnit, vReg), info1->reg, info1->partner);
}
}
void oatFlushReg(CompilationUnit* cUnit, int reg)
{
RegisterInfo* info = oatGetRegInfo(cUnit, reg);
if (info->live && info->dirty) {
info->dirty = false;
int vReg = SRegToVReg(cUnit, info->sReg);
storeBaseDisp(cUnit, rMIPS_SP, oatVRegOffset(cUnit, vReg), reg, kWord);
}
}
/* Give access to the target-dependent FP register encoding to common code */
bool oatIsFpReg(int reg) {
return MIPS_FPREG(reg);
}
uint32_t oatFpRegMask() {
return MIPS_FP_REG_MASK;
}
/* Clobber all regs that might be used by an external C call */
extern void oatClobberCalleeSave(CompilationUnit *cUnit)
{
oatClobber(cUnit, r_ZERO);
oatClobber(cUnit, r_AT);
oatClobber(cUnit, r_V0);
oatClobber(cUnit, r_V1);
oatClobber(cUnit, r_A0);
oatClobber(cUnit, r_A1);
oatClobber(cUnit, r_A2);
oatClobber(cUnit, r_A3);
oatClobber(cUnit, r_T0);
oatClobber(cUnit, r_T1);
oatClobber(cUnit, r_T2);
oatClobber(cUnit, r_T3);
oatClobber(cUnit, r_T4);
oatClobber(cUnit, r_T5);
oatClobber(cUnit, r_T6);
oatClobber(cUnit, r_T7);
oatClobber(cUnit, r_T8);
oatClobber(cUnit, r_T9);
oatClobber(cUnit, r_K0);
oatClobber(cUnit, r_K1);
oatClobber(cUnit, r_GP);
oatClobber(cUnit, r_FP);
oatClobber(cUnit, r_RA);
oatClobber(cUnit, r_F0);
oatClobber(cUnit, r_F1);
oatClobber(cUnit, r_F2);
oatClobber(cUnit, r_F3);
oatClobber(cUnit, r_F4);
oatClobber(cUnit, r_F5);
oatClobber(cUnit, r_F6);
oatClobber(cUnit, r_F7);
oatClobber(cUnit, r_F8);
oatClobber(cUnit, r_F9);
oatClobber(cUnit, r_F10);
oatClobber(cUnit, r_F11);
oatClobber(cUnit, r_F12);
oatClobber(cUnit, r_F13);
oatClobber(cUnit, r_F14);
oatClobber(cUnit, r_F15);
}
extern RegLocation oatGetReturnWideAlt(CompilationUnit* cUnit)
{
UNIMPLEMENTED(FATAL) << "No oatGetReturnWideAlt for MIPS";
RegLocation res = locCReturnWide();
return res;
}
extern RegLocation oatGetReturnAlt(CompilationUnit* cUnit)
{
UNIMPLEMENTED(FATAL) << "No oatGetReturnAlt for MIPS";
RegLocation res = locCReturn();
return res;
}
extern RegisterInfo* oatGetRegInfo(CompilationUnit* cUnit, int reg)
{
return MIPS_FPREG(reg) ? &cUnit->regPool->FPRegs[reg & MIPS_FP_REG_MASK]
: &cUnit->regPool->coreRegs[reg];
}
/* To be used when explicitly managing register use */
extern void oatLockCallTemps(CompilationUnit* cUnit)
{
oatLockTemp(cUnit, rMIPS_ARG0);
oatLockTemp(cUnit, rMIPS_ARG1);
oatLockTemp(cUnit, rMIPS_ARG2);
oatLockTemp(cUnit, rMIPS_ARG3);
}
/* To be used when explicitly managing register use */
extern void oatFreeCallTemps(CompilationUnit* cUnit)
{
oatFreeTemp(cUnit, rMIPS_ARG0);
oatFreeTemp(cUnit, rMIPS_ARG1);
oatFreeTemp(cUnit, rMIPS_ARG2);
oatFreeTemp(cUnit, rMIPS_ARG3);
}
/* Convert an instruction to a NOP */
void oatNopLIR( LIR* lir)
{
((LIR*)lir)->flags.isNop = true;
}
/*
* Determine the initial instruction set to be used for this trace.
* Later components may decide to change this.
*/
InstructionSet oatInstructionSet()
{
return kMips;
}
/* Architecture-specific initializations and checks go here */
bool oatArchVariantInit(void)
{
return true;
}
void oatGenMemBarrier(CompilationUnit *cUnit, int barrierKind)
{
#if ANDROID_SMP != 0
newLIR1(cUnit, kMipsSync, barrierKind);
#endif
}
/*
* Alloc a pair of core registers, or a double. Low reg in low byte,
* high reg in next byte.
*/
int oatAllocTypedTempPair(CompilationUnit *cUnit, bool fpHint,
int regClass)
{
int highReg;
int lowReg;
int res = 0;
#ifdef __mips_hard_float
if (((regClass == kAnyReg) && fpHint) || (regClass == kFPReg)) {
lowReg = oatAllocTempDouble(cUnit);
highReg = lowReg + 1;
res = (lowReg & 0xff) | ((highReg & 0xff) << 8);
return res;
}
#endif
lowReg = oatAllocTemp(cUnit);
highReg = oatAllocTemp(cUnit);
res = (lowReg & 0xff) | ((highReg & 0xff) << 8);
return res;
}
int oatAllocTypedTemp(CompilationUnit *cUnit, bool fpHint, int regClass)
{
#ifdef __mips_hard_float
if (((regClass == kAnyReg) && fpHint) || (regClass == kFPReg))
{
return oatAllocTempFloat(cUnit);
}
#endif
return oatAllocTemp(cUnit);
}
void oatInitializeRegAlloc(CompilationUnit* cUnit)
{
int numRegs = sizeof(coreRegs)/sizeof(*coreRegs);
int numReserved = sizeof(reservedRegs)/sizeof(*reservedRegs);
int numTemps = sizeof(coreTemps)/sizeof(*coreTemps);
#ifdef __mips_hard_float
int numFPRegs = sizeof(fpRegs)/sizeof(*fpRegs);
int numFPTemps = sizeof(fpTemps)/sizeof(*fpTemps);
#else
int numFPRegs = 0;
int numFPTemps = 0;
#endif
RegisterPool *pool = (RegisterPool *)oatNew(cUnit, sizeof(*pool), true,
kAllocRegAlloc);
cUnit->regPool = pool;
pool->numCoreRegs = numRegs;
pool->coreRegs = (RegisterInfo *)
oatNew(cUnit, numRegs * sizeof(*cUnit->regPool->coreRegs),
true, kAllocRegAlloc);
pool->numFPRegs = numFPRegs;
pool->FPRegs = (RegisterInfo *)
oatNew(cUnit, numFPRegs * sizeof(*cUnit->regPool->FPRegs), true,
kAllocRegAlloc);
oatInitPool(pool->coreRegs, coreRegs, pool->numCoreRegs);
oatInitPool(pool->FPRegs, fpRegs, pool->numFPRegs);
// Keep special registers from being allocated
for (int i = 0; i < numReserved; i++) {
if (NO_SUSPEND && (reservedRegs[i] == rMIPS_SUSPEND)) {
//To measure cost of suspend check
continue;
}
oatMarkInUse(cUnit, reservedRegs[i]);
}
// Mark temp regs - all others not in use can be used for promotion
for (int i = 0; i < numTemps; i++) {
oatMarkTemp(cUnit, coreTemps[i]);
}
for (int i = 0; i < numFPTemps; i++) {
oatMarkTemp(cUnit, fpTemps[i]);
}
// Construct the alias map.
cUnit->phiAliasMap = (int*)oatNew(cUnit, cUnit->numSSARegs *
sizeof(cUnit->phiAliasMap[0]), false,
kAllocDFInfo);
for (int i = 0; i < cUnit->numSSARegs; i++) {
cUnit->phiAliasMap[i] = i;
}
for (MIR* phi = cUnit->phiList; phi; phi = phi->meta.phiNext) {
int defReg = phi->ssaRep->defs[0];
for (int i = 0; i < phi->ssaRep->numUses; i++) {
for (int j = 0; j < cUnit->numSSARegs; j++) {
if (cUnit->phiAliasMap[j] == phi->ssaRep->uses[i]) {
cUnit->phiAliasMap[j] = defReg;
}
}
}
}
}
void freeRegLocTemps(CompilationUnit* cUnit, RegLocation rlKeep,
RegLocation rlFree)
{
if ((rlFree.lowReg != rlKeep.lowReg) && (rlFree.lowReg != rlKeep.highReg) &&
(rlFree.highReg != rlKeep.lowReg) && (rlFree.highReg != rlKeep.highReg)) {
// No overlap, free both
oatFreeTemp(cUnit, rlFree.lowReg);
oatFreeTemp(cUnit, rlFree.highReg);
}
}
/*
* In the Arm code a it is typical to use the link register
* to hold the target address. However, for Mips we must
* ensure that all branch instructions can be restarted if
* there is a trap in the shadow. Allocate a temp register.
*/
int loadHelper(CompilationUnit* cUnit, int offset)
{
loadWordDisp(cUnit, rMIPS_SELF, offset, r_T9);
return r_T9;
}
void spillCoreRegs(CompilationUnit* cUnit)
{
if (cUnit->numCoreSpills == 0) {
return;
}
uint32_t mask = cUnit->coreSpillMask;
int offset = cUnit->numCoreSpills * 4;
opRegImm(cUnit, kOpSub, rMIPS_SP, offset);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
offset -= 4;
storeWordDisp(cUnit, rMIPS_SP, offset, reg);
}
}
}
void unSpillCoreRegs(CompilationUnit* cUnit)
{
if (cUnit->numCoreSpills == 0) {
return;
}
uint32_t mask = cUnit->coreSpillMask;
int offset = cUnit->frameSize;
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
offset -= 4;
loadWordDisp(cUnit, rMIPS_SP, offset, reg);
}
}
opRegImm(cUnit, kOpAdd, rMIPS_SP, cUnit->frameSize);
}
/*
* Nop any unconditional branches that go to the next instruction.
* Note: new redundant branches may be inserted later, and we'll
* use a check in final instruction assembly to nop those out.
*/
void removeRedundantBranches(CompilationUnit* cUnit)
{
LIR* thisLIR;
for (thisLIR = (LIR*) cUnit->firstLIRInsn;
thisLIR != (LIR*) cUnit->lastLIRInsn;
thisLIR = NEXT_LIR(thisLIR)) {
/* Branch to the next instruction */
if (thisLIR->opcode == kMipsB) {
LIR* nextLIR = thisLIR;
while (true) {
nextLIR = NEXT_LIR(nextLIR);
/*
* Is the branch target the next instruction?
*/
if (nextLIR == (LIR*) thisLIR->target) {
thisLIR->flags.isNop = true;
break;
}
/*
* Found real useful stuff between the branch and the target.
* Need to explicitly check the lastLIRInsn here because it
* might be the last real instruction.
*/
if (!isPseudoOpcode(nextLIR->opcode) ||
(nextLIR = (LIR*) cUnit->lastLIRInsn))
break;
}
}
}
}
/* Common initialization routine for an architecture family */
bool oatArchInit()
{
int i;
for (i = 0; i < kMipsLast; i++) {
if (EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << EncodingMap[i].name <<
" is wrong: expecting " << i << ", seeing " <<
(int)EncodingMap[i].opcode;
}
}
return oatArchVariantInit();
}
} // namespace art