blob: 069def60f9205961f32c631458c01d43e6a83904 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <vector>
#include "base/logging.h"
#include "base/macros.h"
#include "calling_convention.h"
#include "class_linker.h"
#include "compiled_method.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "disassembler.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "jni_internal.h"
#include "utils/assembler.h"
#include "utils/managed_register.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/mips/managed_register_mips.h"
#include "utils/x86/managed_register_x86.h"
#include "thread.h"
#include "UniquePtr.h"
#define __ jni_asm->
namespace art {
static void CopyParameter(Assembler* jni_asm,
ManagedRuntimeCallingConvention* mr_conv,
JniCallingConvention* jni_conv,
size_t frame_size, size_t out_arg_size);
static void SetNativeParameter(Assembler* jni_asm,
JniCallingConvention* jni_conv,
ManagedRegister in_reg);
// Generate the JNI bridge for the given method, general contract:
// - Arguments are in the managed runtime format, either on stack or in
// registers, a reference to the method object is supplied as part of this
// convention.
//
CompiledMethod* ArtJniCompileMethodInternal(CompilerDriver& compiler,
uint32_t access_flags, uint32_t method_idx,
const DexFile& dex_file) {
const bool is_native = (access_flags & kAccNative) != 0;
CHECK(is_native);
const bool is_static = (access_flags & kAccStatic) != 0;
const bool is_synchronized = (access_flags & kAccSynchronized) != 0;
const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
InstructionSet instruction_set = compiler.GetInstructionSet();
if (instruction_set == kThumb2) {
instruction_set = kArm;
}
// Calling conventions used to iterate over parameters to method
UniquePtr<JniCallingConvention> main_jni_conv(
JniCallingConvention::Create(is_static, is_synchronized, shorty, instruction_set));
bool reference_return = main_jni_conv->IsReturnAReference();
UniquePtr<ManagedRuntimeCallingConvention> mr_conv(
ManagedRuntimeCallingConvention::Create(is_static, is_synchronized, shorty, instruction_set));
// Calling conventions to call into JNI method "end" possibly passing a returned reference, the
// method and the current thread.
size_t jni_end_arg_count = 0;
if (reference_return) { jni_end_arg_count++; }
if (is_synchronized) { jni_end_arg_count++; }
const char* jni_end_shorty = jni_end_arg_count == 0 ? "I"
: (jni_end_arg_count == 1 ? "II" : "III");
UniquePtr<JniCallingConvention> end_jni_conv(
JniCallingConvention::Create(is_static, is_synchronized, jni_end_shorty, instruction_set));
// Assembler that holds generated instructions
UniquePtr<Assembler> jni_asm(Assembler::Create(instruction_set));
bool should_disassemble = false;
// Offsets into data structures
// TODO: if cross compiling these offsets are for the host not the target
const Offset functions(OFFSETOF_MEMBER(JNIEnvExt, functions));
const Offset monitor_enter(OFFSETOF_MEMBER(JNINativeInterface, MonitorEnter));
const Offset monitor_exit(OFFSETOF_MEMBER(JNINativeInterface, MonitorExit));
// 1. Build the frame saving all callee saves
const size_t frame_size(main_jni_conv->FrameSize());
const std::vector<ManagedRegister>& callee_save_regs = main_jni_conv->CalleeSaveRegisters();
__ BuildFrame(frame_size, mr_conv->MethodRegister(), callee_save_regs, mr_conv->EntrySpills());
// 2. Set up the StackIndirectReferenceTable
mr_conv->ResetIterator(FrameOffset(frame_size));
main_jni_conv->ResetIterator(FrameOffset(0));
__ StoreImmediateToFrame(main_jni_conv->SirtNumRefsOffset(),
main_jni_conv->ReferenceCount(),
mr_conv->InterproceduralScratchRegister());
__ CopyRawPtrFromThread(main_jni_conv->SirtLinkOffset(),
Thread::TopSirtOffset(),
mr_conv->InterproceduralScratchRegister());
__ StoreStackOffsetToThread(Thread::TopSirtOffset(),
main_jni_conv->SirtOffset(),
mr_conv->InterproceduralScratchRegister());
// 3. Place incoming reference arguments into SIRT
main_jni_conv->Next(); // Skip JNIEnv*
// 3.5. Create Class argument for static methods out of passed method
if (is_static) {
FrameOffset sirt_offset = main_jni_conv->CurrentParamSirtEntryOffset();
// Check sirt offset is within frame
CHECK_LT(sirt_offset.Uint32Value(), frame_size);
__ LoadRef(main_jni_conv->InterproceduralScratchRegister(),
mr_conv->MethodRegister(), mirror::ArtMethod::DeclaringClassOffset());
__ VerifyObject(main_jni_conv->InterproceduralScratchRegister(), false);
__ StoreRef(sirt_offset, main_jni_conv->InterproceduralScratchRegister());
main_jni_conv->Next(); // in SIRT so move to next argument
}
while (mr_conv->HasNext()) {
CHECK(main_jni_conv->HasNext());
bool ref_param = main_jni_conv->IsCurrentParamAReference();
CHECK(!ref_param || mr_conv->IsCurrentParamAReference());
// References need placing in SIRT and the entry value passing
if (ref_param) {
// Compute SIRT entry, note null is placed in the SIRT but its boxed value
// must be NULL
FrameOffset sirt_offset = main_jni_conv->CurrentParamSirtEntryOffset();
// Check SIRT offset is within frame and doesn't run into the saved segment state
CHECK_LT(sirt_offset.Uint32Value(), frame_size);
CHECK_NE(sirt_offset.Uint32Value(),
main_jni_conv->SavedLocalReferenceCookieOffset().Uint32Value());
bool input_in_reg = mr_conv->IsCurrentParamInRegister();
bool input_on_stack = mr_conv->IsCurrentParamOnStack();
CHECK(input_in_reg || input_on_stack);
if (input_in_reg) {
ManagedRegister in_reg = mr_conv->CurrentParamRegister();
__ VerifyObject(in_reg, mr_conv->IsCurrentArgPossiblyNull());
__ StoreRef(sirt_offset, in_reg);
} else if (input_on_stack) {
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
__ VerifyObject(in_off, mr_conv->IsCurrentArgPossiblyNull());
__ CopyRef(sirt_offset, in_off,
mr_conv->InterproceduralScratchRegister());
}
}
mr_conv->Next();
main_jni_conv->Next();
}
// 4. Write out the end of the quick frames.
__ StoreStackPointerToThread(Thread::TopOfManagedStackOffset());
__ StoreImmediateToThread(Thread::TopOfManagedStackPcOffset(), 0,
mr_conv->InterproceduralScratchRegister());
// 5. Move frame down to allow space for out going args.
const size_t main_out_arg_size = main_jni_conv->OutArgSize();
const size_t end_out_arg_size = end_jni_conv->OutArgSize();
const size_t max_out_arg_size = std::max(main_out_arg_size, end_out_arg_size);
__ IncreaseFrameSize(max_out_arg_size);
// 6. Call into appropriate JniMethodStart passing Thread* so that transition out of Runnable
// can occur. The result is the saved JNI local state that is restored by the exit call. We
// abuse the JNI calling convention here, that is guaranteed to support passing 2 pointer
// arguments.
ThreadOffset jni_start = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(pJniMethodStartSynchronized)
: QUICK_ENTRYPOINT_OFFSET(pJniMethodStart);
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
FrameOffset locked_object_sirt_offset(0);
if (is_synchronized) {
// Pass object for locking.
main_jni_conv->Next(); // Skip JNIEnv.
locked_object_sirt_offset = main_jni_conv->CurrentParamSirtEntryOffset();
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
if (main_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = main_jni_conv->CurrentParamStackOffset();
__ CreateSirtEntry(out_off, locked_object_sirt_offset,
mr_conv->InterproceduralScratchRegister(),
false);
} else {
ManagedRegister out_reg = main_jni_conv->CurrentParamRegister();
__ CreateSirtEntry(out_reg, locked_object_sirt_offset,
ManagedRegister::NoRegister(), false);
}
main_jni_conv->Next();
}
if (main_jni_conv->IsCurrentParamInRegister()) {
__ GetCurrentThread(main_jni_conv->CurrentParamRegister());
__ Call(main_jni_conv->CurrentParamRegister(), Offset(jni_start),
main_jni_conv->InterproceduralScratchRegister());
} else {
__ GetCurrentThread(main_jni_conv->CurrentParamStackOffset(),
main_jni_conv->InterproceduralScratchRegister());
__ Call(ThreadOffset(jni_start), main_jni_conv->InterproceduralScratchRegister());
}
if (is_synchronized) { // Check for exceptions from monitor enter.
__ ExceptionPoll(main_jni_conv->InterproceduralScratchRegister(), main_out_arg_size);
}
FrameOffset saved_cookie_offset = main_jni_conv->SavedLocalReferenceCookieOffset();
__ Store(saved_cookie_offset, main_jni_conv->IntReturnRegister(), 4);
// 7. Iterate over arguments placing values from managed calling convention in
// to the convention required for a native call (shuffling). For references
// place an index/pointer to the reference after checking whether it is
// NULL (which must be encoded as NULL).
// Note: we do this prior to materializing the JNIEnv* and static's jclass to
// give as many free registers for the shuffle as possible
mr_conv->ResetIterator(FrameOffset(frame_size+main_out_arg_size));
uint32_t args_count = 0;
while (mr_conv->HasNext()) {
args_count++;
mr_conv->Next();
}
// Do a backward pass over arguments, so that the generated code will be "mov
// R2, R3; mov R1, R2" instead of "mov R1, R2; mov R2, R3."
// TODO: A reverse iterator to improve readability.
for (uint32_t i = 0; i < args_count; ++i) {
mr_conv->ResetIterator(FrameOffset(frame_size + main_out_arg_size));
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
main_jni_conv->Next(); // Skip JNIEnv*.
if (is_static) {
main_jni_conv->Next(); // Skip Class for now.
}
// Skip to the argument we're interested in.
for (uint32_t j = 0; j < args_count - i - 1; ++j) {
mr_conv->Next();
main_jni_conv->Next();
}
CopyParameter(jni_asm.get(), mr_conv.get(), main_jni_conv.get(), frame_size, main_out_arg_size);
}
if (is_static) {
// Create argument for Class
mr_conv->ResetIterator(FrameOffset(frame_size+main_out_arg_size));
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
main_jni_conv->Next(); // Skip JNIEnv*
FrameOffset sirt_offset = main_jni_conv->CurrentParamSirtEntryOffset();
if (main_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = main_jni_conv->CurrentParamStackOffset();
__ CreateSirtEntry(out_off, sirt_offset,
mr_conv->InterproceduralScratchRegister(),
false);
} else {
ManagedRegister out_reg = main_jni_conv->CurrentParamRegister();
__ CreateSirtEntry(out_reg, sirt_offset,
ManagedRegister::NoRegister(), false);
}
}
// 8. Create 1st argument, the JNI environment ptr.
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
// Register that will hold local indirect reference table
if (main_jni_conv->IsCurrentParamInRegister()) {
ManagedRegister jni_env = main_jni_conv->CurrentParamRegister();
DCHECK(!jni_env.Equals(main_jni_conv->InterproceduralScratchRegister()));
__ LoadRawPtrFromThread(jni_env, Thread::JniEnvOffset());
} else {
FrameOffset jni_env = main_jni_conv->CurrentParamStackOffset();
__ CopyRawPtrFromThread(jni_env, Thread::JniEnvOffset(),
main_jni_conv->InterproceduralScratchRegister());
}
// 9. Plant call to native code associated with method.
__ Call(main_jni_conv->MethodStackOffset(), mirror::ArtMethod::NativeMethodOffset(),
mr_conv->InterproceduralScratchRegister());
// 10. Fix differences in result widths.
if (instruction_set == kX86) {
if (main_jni_conv->GetReturnType() == Primitive::kPrimByte ||
main_jni_conv->GetReturnType() == Primitive::kPrimShort) {
__ SignExtend(main_jni_conv->ReturnRegister(),
Primitive::ComponentSize(main_jni_conv->GetReturnType()));
} else if (main_jni_conv->GetReturnType() == Primitive::kPrimBoolean ||
main_jni_conv->GetReturnType() == Primitive::kPrimChar) {
__ ZeroExtend(main_jni_conv->ReturnRegister(),
Primitive::ComponentSize(main_jni_conv->GetReturnType()));
}
}
// 11. Save return value
FrameOffset return_save_location = main_jni_conv->ReturnValueSaveLocation();
if (main_jni_conv->SizeOfReturnValue() != 0 && !reference_return) {
if (instruction_set == kMips && main_jni_conv->GetReturnType() == Primitive::kPrimDouble &&
return_save_location.Uint32Value() % 8 != 0) {
// Ensure doubles are 8-byte aligned for MIPS
return_save_location = FrameOffset(return_save_location.Uint32Value() + kPointerSize);
}
CHECK_LT(return_save_location.Uint32Value(), frame_size+main_out_arg_size);
__ Store(return_save_location, main_jni_conv->ReturnRegister(), main_jni_conv->SizeOfReturnValue());
}
// 12. Call into JNI method end possibly passing a returned reference, the method and the current
// thread.
end_jni_conv->ResetIterator(FrameOffset(end_out_arg_size));
ThreadOffset jni_end(-1);
if (reference_return) {
// Pass result.
jni_end = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(pJniMethodEndWithReferenceSynchronized)
: QUICK_ENTRYPOINT_OFFSET(pJniMethodEndWithReference);
SetNativeParameter(jni_asm.get(), end_jni_conv.get(), end_jni_conv->ReturnRegister());
end_jni_conv->Next();
} else {
jni_end = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(pJniMethodEndSynchronized)
: QUICK_ENTRYPOINT_OFFSET(pJniMethodEnd);
}
// Pass saved local reference state.
if (end_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = end_jni_conv->CurrentParamStackOffset();
__ Copy(out_off, saved_cookie_offset, end_jni_conv->InterproceduralScratchRegister(), 4);
} else {
ManagedRegister out_reg = end_jni_conv->CurrentParamRegister();
__ Load(out_reg, saved_cookie_offset, 4);
}
end_jni_conv->Next();
if (is_synchronized) {
// Pass object for unlocking.
if (end_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = end_jni_conv->CurrentParamStackOffset();
__ CreateSirtEntry(out_off, locked_object_sirt_offset,
end_jni_conv->InterproceduralScratchRegister(),
false);
} else {
ManagedRegister out_reg = end_jni_conv->CurrentParamRegister();
__ CreateSirtEntry(out_reg, locked_object_sirt_offset,
ManagedRegister::NoRegister(), false);
}
end_jni_conv->Next();
}
if (end_jni_conv->IsCurrentParamInRegister()) {
__ GetCurrentThread(end_jni_conv->CurrentParamRegister());
__ Call(end_jni_conv->CurrentParamRegister(), Offset(jni_end),
end_jni_conv->InterproceduralScratchRegister());
} else {
__ GetCurrentThread(end_jni_conv->CurrentParamStackOffset(),
end_jni_conv->InterproceduralScratchRegister());
__ Call(ThreadOffset(jni_end), end_jni_conv->InterproceduralScratchRegister());
}
// 13. Reload return value
if (main_jni_conv->SizeOfReturnValue() != 0 && !reference_return) {
__ Load(mr_conv->ReturnRegister(), return_save_location, mr_conv->SizeOfReturnValue());
}
// 14. Move frame up now we're done with the out arg space.
__ DecreaseFrameSize(max_out_arg_size);
// 15. Process pending exceptions from JNI call or monitor exit.
__ ExceptionPoll(main_jni_conv->InterproceduralScratchRegister(), 0);
// 16. Remove activation - no need to restore callee save registers because we didn't clobber
// them.
__ RemoveFrame(frame_size, std::vector<ManagedRegister>());
// 17. Finalize code generation
__ EmitSlowPaths();
size_t cs = __ CodeSize();
std::vector<uint8_t> managed_code(cs);
MemoryRegion code(&managed_code[0], managed_code.size());
__ FinalizeInstructions(code);
if (should_disassemble) {
UniquePtr<Disassembler> disassembler(Disassembler::Create(instruction_set));
disassembler->Dump(LOG(INFO), &managed_code[0], &managed_code[managed_code.size()]);
}
return new CompiledMethod(instruction_set,
managed_code,
frame_size,
main_jni_conv->CoreSpillMask(),
main_jni_conv->FpSpillMask());
}
// Copy a single parameter from the managed to the JNI calling convention
static void CopyParameter(Assembler* jni_asm,
ManagedRuntimeCallingConvention* mr_conv,
JniCallingConvention* jni_conv,
size_t frame_size, size_t out_arg_size) {
bool input_in_reg = mr_conv->IsCurrentParamInRegister();
bool output_in_reg = jni_conv->IsCurrentParamInRegister();
FrameOffset sirt_offset(0);
bool null_allowed = false;
bool ref_param = jni_conv->IsCurrentParamAReference();
CHECK(!ref_param || mr_conv->IsCurrentParamAReference());
// input may be in register, on stack or both - but not none!
CHECK(input_in_reg || mr_conv->IsCurrentParamOnStack());
if (output_in_reg) { // output shouldn't straddle registers and stack
CHECK(!jni_conv->IsCurrentParamOnStack());
} else {
CHECK(jni_conv->IsCurrentParamOnStack());
}
// References need placing in SIRT and the entry address passing
if (ref_param) {
null_allowed = mr_conv->IsCurrentArgPossiblyNull();
// Compute SIRT offset. Note null is placed in the SIRT but the jobject
// passed to the native code must be null (not a pointer into the SIRT
// as with regular references).
sirt_offset = jni_conv->CurrentParamSirtEntryOffset();
// Check SIRT offset is within frame.
CHECK_LT(sirt_offset.Uint32Value(), (frame_size + out_arg_size));
}
if (input_in_reg && output_in_reg) {
ManagedRegister in_reg = mr_conv->CurrentParamRegister();
ManagedRegister out_reg = jni_conv->CurrentParamRegister();
if (ref_param) {
__ CreateSirtEntry(out_reg, sirt_offset, in_reg, null_allowed);
} else {
if (!mr_conv->IsCurrentParamOnStack()) {
// regular non-straddling move
__ Move(out_reg, in_reg, mr_conv->CurrentParamSize());
} else {
UNIMPLEMENTED(FATAL); // we currently don't expect to see this case
}
}
} else if (!input_in_reg && !output_in_reg) {
FrameOffset out_off = jni_conv->CurrentParamStackOffset();
if (ref_param) {
__ CreateSirtEntry(out_off, sirt_offset, mr_conv->InterproceduralScratchRegister(),
null_allowed);
} else {
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
__ Copy(out_off, in_off, mr_conv->InterproceduralScratchRegister(), param_size);
}
} else if (!input_in_reg && output_in_reg) {
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
ManagedRegister out_reg = jni_conv->CurrentParamRegister();
// Check that incoming stack arguments are above the current stack frame.
CHECK_GT(in_off.Uint32Value(), frame_size);
if (ref_param) {
__ CreateSirtEntry(out_reg, sirt_offset, ManagedRegister::NoRegister(), null_allowed);
} else {
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
__ Load(out_reg, in_off, param_size);
}
} else {
CHECK(input_in_reg && !output_in_reg);
ManagedRegister in_reg = mr_conv->CurrentParamRegister();
FrameOffset out_off = jni_conv->CurrentParamStackOffset();
// Check outgoing argument is within frame
CHECK_LT(out_off.Uint32Value(), frame_size);
if (ref_param) {
// TODO: recycle value in in_reg rather than reload from SIRT
__ CreateSirtEntry(out_off, sirt_offset, mr_conv->InterproceduralScratchRegister(),
null_allowed);
} else {
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
if (!mr_conv->IsCurrentParamOnStack()) {
// regular non-straddling store
__ Store(out_off, in_reg, param_size);
} else {
// store where input straddles registers and stack
CHECK_EQ(param_size, 8u);
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
__ StoreSpanning(out_off, in_reg, in_off, mr_conv->InterproceduralScratchRegister());
}
}
}
}
static void SetNativeParameter(Assembler* jni_asm,
JniCallingConvention* jni_conv,
ManagedRegister in_reg) {
if (jni_conv->IsCurrentParamOnStack()) {
FrameOffset dest = jni_conv->CurrentParamStackOffset();
__ StoreRawPtr(dest, in_reg);
} else {
if (!jni_conv->CurrentParamRegister().Equals(in_reg)) {
__ Move(jni_conv->CurrentParamRegister(), in_reg, jni_conv->CurrentParamSize());
}
}
}
} // namespace art
extern "C" art::CompiledMethod* ArtQuickJniCompileMethod(art::CompilerDriver& compiler,
uint32_t access_flags, uint32_t method_idx,
const art::DexFile& dex_file) {
return ArtJniCompileMethodInternal(compiler, access_flags, method_idx, dex_file);
}