blob: d88e0348104f554de9fe61d0a1b980053d24b6d3 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_arm64.h"
#include "arch/arm64/instruction_set_features_arm64.h"
#include "art_method.h"
#include "code_generator_arm64.h"
#include "common_arm64.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "heap_poisoning.h"
#include "intrinsics.h"
#include "lock_word.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/reference.h"
#include "mirror/string-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "thread-current-inl.h"
#include "utils/arm64/assembler_arm64.h"
using namespace vixl::aarch64; // NOLINT(build/namespaces)
// TODO(VIXL): Make VIXL compile with -Wshadow.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#include "aarch64/disasm-aarch64.h"
#include "aarch64/macro-assembler-aarch64.h"
#pragma GCC diagnostic pop
namespace art {
namespace arm64 {
using helpers::DRegisterFrom;
using helpers::FPRegisterFrom;
using helpers::HeapOperand;
using helpers::LocationFrom;
using helpers::OperandFrom;
using helpers::RegisterFrom;
using helpers::SRegisterFrom;
using helpers::WRegisterFrom;
using helpers::XRegisterFrom;
using helpers::HRegisterFrom;
using helpers::InputRegisterAt;
using helpers::OutputRegister;
namespace {
ALWAYS_INLINE inline MemOperand AbsoluteHeapOperandFrom(Location location, size_t offset = 0) {
return MemOperand(XRegisterFrom(location), offset);
}
} // namespace
MacroAssembler* IntrinsicCodeGeneratorARM64::GetVIXLAssembler() {
return codegen_->GetVIXLAssembler();
}
ArenaAllocator* IntrinsicCodeGeneratorARM64::GetAllocator() {
return codegen_->GetGraph()->GetAllocator();
}
#define __ codegen->GetVIXLAssembler()->
static void MoveFromReturnRegister(Location trg,
DataType::Type type,
CodeGeneratorARM64* codegen) {
if (!trg.IsValid()) {
DCHECK(type == DataType::Type::kVoid);
return;
}
DCHECK_NE(type, DataType::Type::kVoid);
if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
Register trg_reg = RegisterFrom(trg, type);
Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type);
__ Mov(trg_reg, res_reg, kDiscardForSameWReg);
} else {
VRegister trg_reg = FPRegisterFrom(trg, type);
VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type);
__ Fmov(trg_reg, res_reg);
}
}
static void MoveArguments(HInvoke* invoke, CodeGeneratorARM64* codegen) {
InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
}
// Slow-path for fallback (calling the managed code to handle the intrinsic) in an intrinsified
// call. This will copy the arguments into the positions for a regular call.
//
// Note: The actual parameters are required to be in the locations given by the invoke's location
// summary. If an intrinsic modifies those locations before a slowpath call, they must be
// restored!
class IntrinsicSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit IntrinsicSlowPathARM64(HInvoke* invoke)
: SlowPathCodeARM64(invoke), invoke_(invoke) { }
void EmitNativeCode(CodeGenerator* codegen_in) override {
CodeGeneratorARM64* codegen = down_cast<CodeGeneratorARM64*>(codegen_in);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, invoke_->GetLocations());
MoveArguments(invoke_, codegen);
{
// Ensure that between the BLR (emitted by Generate*Call) and RecordPcInfo there
// are no pools emitted.
vixl::EmissionCheckScope guard(codegen->GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
if (invoke_->IsInvokeStaticOrDirect()) {
codegen->GenerateStaticOrDirectCall(
invoke_->AsInvokeStaticOrDirect(), LocationFrom(kArtMethodRegister), this);
} else {
codegen->GenerateVirtualCall(
invoke_->AsInvokeVirtual(), LocationFrom(kArtMethodRegister), this);
}
}
// Copy the result back to the expected output.
Location out = invoke_->GetLocations()->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
MoveFromReturnRegister(out, invoke_->GetType(), codegen);
}
RestoreLiveRegisters(codegen, invoke_->GetLocations());
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "IntrinsicSlowPathARM64"; }
private:
// The instruction where this slow path is happening.
HInvoke* const invoke_;
DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathARM64);
};
// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
class ReadBarrierSystemArrayCopySlowPathARM64 : public SlowPathCodeARM64 {
public:
ReadBarrierSystemArrayCopySlowPathARM64(HInstruction* instruction, Location tmp)
: SlowPathCodeARM64(instruction), tmp_(tmp) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
}
void EmitNativeCode(CodeGenerator* codegen_in) override {
CodeGeneratorARM64* codegen = down_cast<CodeGeneratorARM64*>(codegen_in);
LocationSummary* locations = instruction_->GetLocations();
DCHECK(locations->CanCall());
DCHECK(instruction_->IsInvokeStaticOrDirect())
<< "Unexpected instruction in read barrier arraycopy slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
const int32_t element_size = DataType::Size(DataType::Type::kReference);
Register src_curr_addr = XRegisterFrom(locations->GetTemp(0));
Register dst_curr_addr = XRegisterFrom(locations->GetTemp(1));
Register src_stop_addr = XRegisterFrom(locations->GetTemp(2));
Register tmp_reg = WRegisterFrom(tmp_);
__ Bind(GetEntryLabel());
vixl::aarch64::Label slow_copy_loop;
__ Bind(&slow_copy_loop);
__ Ldr(tmp_reg, MemOperand(src_curr_addr, element_size, PostIndex));
codegen->GetAssembler()->MaybeUnpoisonHeapReference(tmp_reg);
// TODO: Inline the mark bit check before calling the runtime?
// tmp_reg = ReadBarrier::Mark(tmp_reg);
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
// (See ReadBarrierMarkSlowPathARM64::EmitNativeCode for more
// explanations.)
DCHECK_NE(tmp_.reg(), LR);
DCHECK_NE(tmp_.reg(), WSP);
DCHECK_NE(tmp_.reg(), WZR);
// IP0 is used internally by the ReadBarrierMarkRegX entry point
// as a temporary (and not preserved). It thus cannot be used by
// any live register in this slow path.
DCHECK_NE(LocationFrom(src_curr_addr).reg(), IP0);
DCHECK_NE(LocationFrom(dst_curr_addr).reg(), IP0);
DCHECK_NE(LocationFrom(src_stop_addr).reg(), IP0);
DCHECK_NE(tmp_.reg(), IP0);
DCHECK(0 <= tmp_.reg() && tmp_.reg() < kNumberOfWRegisters) << tmp_.reg();
// TODO: Load the entrypoint once before the loop, instead of
// loading it at every iteration.
int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(tmp_.reg());
// This runtime call does not require a stack map.
codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
codegen->GetAssembler()->MaybePoisonHeapReference(tmp_reg);
__ Str(tmp_reg, MemOperand(dst_curr_addr, element_size, PostIndex));
__ Cmp(src_curr_addr, src_stop_addr);
__ B(&slow_copy_loop, ne);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathARM64"; }
private:
Location tmp_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARM64);
};
#undef __
bool IntrinsicLocationsBuilderARM64::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
if (res == nullptr) {
return false;
}
return res->Intrinsified();
}
#define __ masm->
static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, MacroAssembler* masm) {
Location input = locations->InAt(0);
Location output = locations->Out();
__ Fmov(is64bit ? XRegisterFrom(output) : WRegisterFrom(output),
is64bit ? DRegisterFrom(input) : SRegisterFrom(input));
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, MacroAssembler* masm) {
Location input = locations->InAt(0);
Location output = locations->Out();
__ Fmov(is64bit ? DRegisterFrom(output) : SRegisterFrom(output),
is64bit ? XRegisterFrom(input) : WRegisterFrom(input));
}
void IntrinsicLocationsBuilderARM64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetVIXLAssembler());
}
void IntrinsicCodeGeneratorARM64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetVIXLAssembler());
}
void IntrinsicCodeGeneratorARM64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetVIXLAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
static void CreateIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
static void GenReverseBytes(LocationSummary* locations,
DataType::Type type,
MacroAssembler* masm) {
Location in = locations->InAt(0);
Location out = locations->Out();
switch (type) {
case DataType::Type::kInt16:
__ Rev16(WRegisterFrom(out), WRegisterFrom(in));
__ Sxth(WRegisterFrom(out), WRegisterFrom(out));
break;
case DataType::Type::kInt32:
case DataType::Type::kInt64:
__ Rev(RegisterFrom(out, type), RegisterFrom(in, type));
break;
default:
LOG(FATAL) << "Unexpected size for reverse-bytes: " << type;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderARM64::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitIntegerReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitLongReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitLongReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitShortReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetVIXLAssembler());
}
static void GenNumberOfLeadingZeros(LocationSummary* locations,
DataType::Type type,
MacroAssembler* masm) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
Location in = locations->InAt(0);
Location out = locations->Out();
__ Clz(RegisterFrom(out, type), RegisterFrom(in, type));
}
void IntrinsicLocationsBuilderARM64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeros(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeros(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler());
}
static void GenNumberOfTrailingZeros(LocationSummary* locations,
DataType::Type type,
MacroAssembler* masm) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
Location in = locations->InAt(0);
Location out = locations->Out();
__ Rbit(RegisterFrom(out, type), RegisterFrom(in, type));
__ Clz(RegisterFrom(out, type), RegisterFrom(out, type));
}
void IntrinsicLocationsBuilderARM64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeros(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeros(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler());
}
static void GenReverse(LocationSummary* locations,
DataType::Type type,
MacroAssembler* masm) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
Location in = locations->InAt(0);
Location out = locations->Out();
__ Rbit(RegisterFrom(out, type), RegisterFrom(in, type));
}
void IntrinsicLocationsBuilderARM64::VisitIntegerReverse(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitIntegerReverse(HInvoke* invoke) {
GenReverse(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitLongReverse(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitLongReverse(HInvoke* invoke) {
GenReverse(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler());
}
static void GenBitCount(HInvoke* instr, DataType::Type type, MacroAssembler* masm) {
DCHECK(DataType::IsIntOrLongType(type)) << type;
DCHECK_EQ(instr->GetType(), DataType::Type::kInt32);
DCHECK_EQ(DataType::Kind(instr->InputAt(0)->GetType()), type);
UseScratchRegisterScope temps(masm);
Register src = InputRegisterAt(instr, 0);
Register dst = RegisterFrom(instr->GetLocations()->Out(), type);
VRegister fpr = (type == DataType::Type::kInt64) ? temps.AcquireD() : temps.AcquireS();
__ Fmov(fpr, src);
__ Cnt(fpr.V8B(), fpr.V8B());
__ Addv(fpr.B(), fpr.V8B());
__ Fmov(dst, fpr);
}
void IntrinsicLocationsBuilderARM64::VisitLongBitCount(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitLongBitCount(HInvoke* invoke) {
GenBitCount(invoke, DataType::Type::kInt64, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitIntegerBitCount(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitIntegerBitCount(HInvoke* invoke) {
GenBitCount(invoke, DataType::Type::kInt32, GetVIXLAssembler());
}
static void GenHighestOneBit(HInvoke* invoke, DataType::Type type, MacroAssembler* masm) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
UseScratchRegisterScope temps(masm);
Register src = InputRegisterAt(invoke, 0);
Register dst = RegisterFrom(invoke->GetLocations()->Out(), type);
Register temp = (type == DataType::Type::kInt64) ? temps.AcquireX() : temps.AcquireW();
size_t high_bit = (type == DataType::Type::kInt64) ? 63u : 31u;
size_t clz_high_bit = (type == DataType::Type::kInt64) ? 6u : 5u;
__ Clz(temp, src);
__ Mov(dst, UINT64_C(1) << high_bit); // MOV (bitmask immediate)
__ Bic(dst, dst, Operand(temp, LSL, high_bit - clz_high_bit)); // Clear dst if src was 0.
__ Lsr(dst, dst, temp);
}
void IntrinsicLocationsBuilderARM64::VisitIntegerHighestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitIntegerHighestOneBit(HInvoke* invoke) {
GenHighestOneBit(invoke, DataType::Type::kInt32, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitLongHighestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitLongHighestOneBit(HInvoke* invoke) {
GenHighestOneBit(invoke, DataType::Type::kInt64, GetVIXLAssembler());
}
static void GenLowestOneBit(HInvoke* invoke, DataType::Type type, MacroAssembler* masm) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
UseScratchRegisterScope temps(masm);
Register src = InputRegisterAt(invoke, 0);
Register dst = RegisterFrom(invoke->GetLocations()->Out(), type);
Register temp = (type == DataType::Type::kInt64) ? temps.AcquireX() : temps.AcquireW();
__ Neg(temp, src);
__ And(dst, temp, src);
}
void IntrinsicLocationsBuilderARM64::VisitIntegerLowestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitIntegerLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(invoke, DataType::Type::kInt32, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitLongLowestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitLongLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(invoke, DataType::Type::kInt64, GetVIXLAssembler());
}
static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
}
void IntrinsicLocationsBuilderARM64::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
MacroAssembler* masm = GetVIXLAssembler();
__ Fsqrt(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0)));
}
void IntrinsicLocationsBuilderARM64::VisitMathCeil(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathCeil(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
MacroAssembler* masm = GetVIXLAssembler();
__ Frintp(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0)));
}
void IntrinsicLocationsBuilderARM64::VisitMathFloor(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathFloor(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
MacroAssembler* masm = GetVIXLAssembler();
__ Frintm(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0)));
}
void IntrinsicLocationsBuilderARM64::VisitMathRint(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathRint(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
MacroAssembler* masm = GetVIXLAssembler();
__ Frintn(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0)));
}
static void CreateFPToIntPlusFPTempLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
}
static void GenMathRound(HInvoke* invoke, bool is_double, vixl::aarch64::MacroAssembler* masm) {
// Java 8 API definition for Math.round():
// Return the closest long or int to the argument, with ties rounding to positive infinity.
//
// There is no single instruction in ARMv8 that can support the above definition.
// We choose to use FCVTAS here, because it has closest semantic.
// FCVTAS performs rounding to nearest integer, ties away from zero.
// For most inputs (positive values, zero or NaN), this instruction is enough.
// We only need a few handling code after FCVTAS if the input is negative half value.
//
// The reason why we didn't choose FCVTPS instruction here is that
// although it performs rounding toward positive infinity, it doesn't perform rounding to nearest.
// For example, FCVTPS(-1.9) = -1 and FCVTPS(1.1) = 2.
// If we were using this instruction, for most inputs, more handling code would be needed.
LocationSummary* l = invoke->GetLocations();
VRegister in_reg = is_double ? DRegisterFrom(l->InAt(0)) : SRegisterFrom(l->InAt(0));
VRegister tmp_fp = is_double ? DRegisterFrom(l->GetTemp(0)) : SRegisterFrom(l->GetTemp(0));
Register out_reg = is_double ? XRegisterFrom(l->Out()) : WRegisterFrom(l->Out());
vixl::aarch64::Label done;
// Round to nearest integer, ties away from zero.
__ Fcvtas(out_reg, in_reg);
// For positive values, zero or NaN inputs, rounding is done.
__ Tbz(out_reg, out_reg.GetSizeInBits() - 1, &done);
// Handle input < 0 cases.
// If input is negative but not a tie, previous result (round to nearest) is valid.
// If input is a negative tie, out_reg += 1.
__ Frinta(tmp_fp, in_reg);
__ Fsub(tmp_fp, in_reg, tmp_fp);
__ Fcmp(tmp_fp, 0.5);
__ Cinc(out_reg, out_reg, eq);
__ Bind(&done);
}
void IntrinsicLocationsBuilderARM64::VisitMathRoundDouble(HInvoke* invoke) {
CreateFPToIntPlusFPTempLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathRoundDouble(HInvoke* invoke) {
GenMathRound(invoke, /* is_double= */ true, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitMathRoundFloat(HInvoke* invoke) {
CreateFPToIntPlusFPTempLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathRoundFloat(HInvoke* invoke) {
GenMathRound(invoke, /* is_double= */ false, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMemoryPeekByte(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
__ Ldrsb(WRegisterFrom(invoke->GetLocations()->Out()),
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
}
void IntrinsicLocationsBuilderARM64::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMemoryPeekIntNative(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
__ Ldr(WRegisterFrom(invoke->GetLocations()->Out()),
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
}
void IntrinsicLocationsBuilderARM64::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMemoryPeekLongNative(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
__ Ldr(XRegisterFrom(invoke->GetLocations()->Out()),
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
}
void IntrinsicLocationsBuilderARM64::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMemoryPeekShortNative(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
__ Ldrsh(WRegisterFrom(invoke->GetLocations()->Out()),
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
}
static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
void IntrinsicLocationsBuilderARM64::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMemoryPokeByte(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
__ Strb(WRegisterFrom(invoke->GetLocations()->InAt(1)),
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
}
void IntrinsicLocationsBuilderARM64::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMemoryPokeIntNative(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
__ Str(WRegisterFrom(invoke->GetLocations()->InAt(1)),
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
}
void IntrinsicLocationsBuilderARM64::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMemoryPokeLongNative(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
__ Str(XRegisterFrom(invoke->GetLocations()->InAt(1)),
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
}
void IntrinsicLocationsBuilderARM64::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMemoryPokeShortNative(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
__ Strh(WRegisterFrom(invoke->GetLocations()->InAt(1)),
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
}
void IntrinsicLocationsBuilderARM64::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM64::VisitThreadCurrentThread(HInvoke* invoke) {
codegen_->Load(DataType::Type::kReference, WRegisterFrom(invoke->GetLocations()->Out()),
MemOperand(tr, Thread::PeerOffset<kArm64PointerSize>().Int32Value()));
}
static void GenUnsafeGet(HInvoke* invoke,
DataType::Type type,
bool is_volatile,
CodeGeneratorARM64* codegen) {
LocationSummary* locations = invoke->GetLocations();
DCHECK((type == DataType::Type::kInt32) ||
(type == DataType::Type::kInt64) ||
(type == DataType::Type::kReference));
Location base_loc = locations->InAt(1);
Register base = WRegisterFrom(base_loc); // Object pointer.
Location offset_loc = locations->InAt(2);
Register offset = XRegisterFrom(offset_loc); // Long offset.
Location trg_loc = locations->Out();
Register trg = RegisterFrom(trg_loc, type);
if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// UnsafeGetObject/UnsafeGetObjectVolatile with Baker's read barrier case.
Register temp = WRegisterFrom(locations->GetTemp(0));
MacroAssembler* masm = codegen->GetVIXLAssembler();
// Piggy-back on the field load path using introspection for the Baker read barrier.
__ Add(temp, base, offset.W()); // Offset should not exceed 32 bits.
codegen->GenerateFieldLoadWithBakerReadBarrier(invoke,
trg_loc,
base,
MemOperand(temp.X()),
/* needs_null_check= */ false,
is_volatile);
} else {
// Other cases.
MemOperand mem_op(base.X(), offset);
if (is_volatile) {
codegen->LoadAcquire(invoke, trg, mem_op, /* needs_null_check= */ true);
} else {
codegen->Load(type, trg, mem_op);
}
if (type == DataType::Type::kReference) {
DCHECK(trg.IsW());
codegen->MaybeGenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0u, offset_loc);
}
}
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
bool can_call = kEmitCompilerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
// We need a temporary register for the read barrier load in order to use
// CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier().
locations->AddTemp(FixedTempLocation());
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(),
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_);
}
static void CreateIntIntIntIntToVoid(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(allocator_, invoke);
}
static void GenUnsafePut(HInvoke* invoke,
DataType::Type type,
bool is_volatile,
bool is_ordered,
CodeGeneratorARM64* codegen) {
LocationSummary* locations = invoke->GetLocations();
MacroAssembler* masm = codegen->GetVIXLAssembler();
Register base = WRegisterFrom(locations->InAt(1)); // Object pointer.
Register offset = XRegisterFrom(locations->InAt(2)); // Long offset.
Register value = RegisterFrom(locations->InAt(3), type);
Register source = value;
MemOperand mem_op(base.X(), offset);
{
// We use a block to end the scratch scope before the write barrier, thus
// freeing the temporary registers so they can be used in `MarkGCCard`.
UseScratchRegisterScope temps(masm);
if (kPoisonHeapReferences && type == DataType::Type::kReference) {
DCHECK(value.IsW());
Register temp = temps.AcquireW();
__ Mov(temp.W(), value.W());
codegen->GetAssembler()->PoisonHeapReference(temp.W());
source = temp;
}
if (is_volatile || is_ordered) {
codegen->StoreRelease(invoke, type, source, mem_op, /* needs_null_check= */ false);
} else {
codegen->Store(type, source, mem_op);
}
}
if (type == DataType::Type::kReference) {
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(base, value, value_can_be_null);
}
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kInt32,
/* is_volatile= */ false,
/* is_ordered= */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kInt32,
/* is_volatile= */ false,
/* is_ordered= */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kInt32,
/* is_volatile= */ true,
/* is_ordered= */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kReference,
/* is_volatile= */ false,
/* is_ordered= */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kReference,
/* is_volatile= */ false,
/* is_ordered= */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kReference,
/* is_volatile= */ true,
/* is_ordered= */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kInt64,
/* is_volatile= */ false,
/* is_ordered= */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kInt64,
/* is_volatile= */ false,
/* is_ordered= */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke,
DataType::Type::kInt64,
/* is_volatile= */ true,
/* is_ordered= */ false,
codegen_);
}
static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator,
HInvoke* invoke,
DataType::Type type) {
bool can_call = kEmitCompilerReadBarrier &&
kUseBakerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
if (can_call) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// We need two non-scratch temporary registers for (Baker) read barrier.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
}
class BakerReadBarrierCasSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit BakerReadBarrierCasSlowPathARM64(HInvoke* invoke)
: SlowPathCodeARM64(invoke) {}
const char* GetDescription() const override { return "BakerReadBarrierCasSlowPathARM64"; }
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
Arm64Assembler* assembler = arm64_codegen->GetAssembler();
MacroAssembler* masm = assembler->GetVIXLAssembler();
__ Bind(GetEntryLabel());
// Get the locations.
LocationSummary* locations = instruction_->GetLocations();
Register base = WRegisterFrom(locations->InAt(1)); // Object pointer.
Register offset = XRegisterFrom(locations->InAt(2)); // Long offset.
Register expected = WRegisterFrom(locations->InAt(3)); // Expected.
Register value = WRegisterFrom(locations->InAt(4)); // Value.
Register old_value = WRegisterFrom(locations->GetTemp(0)); // The old value from main path.
Register marked = WRegisterFrom(locations->GetTemp(1)); // The marked old value.
// Mark the `old_value` from the main path and compare with `expected`. This clobbers the
// `tmp_ptr` scratch register but we do not want to allocate another non-scratch temporary.
arm64_codegen->GenerateUnsafeCasOldValueMovWithBakerReadBarrier(marked, old_value);
__ Cmp(marked, expected);
__ B(GetExitLabel(), ne); // If taken, Z=false indicates failure.
// The `old_value` we have read did not match `expected` (which is always a to-space reference)
// but after the read barrier in GenerateUnsafeCasOldValueMovWithBakerReadBarrier() the marked
// to-space value matched, so the `old_value` must be a from-space reference to the same
// object. Do the same CAS loop as the main path but check for both `expected` and the unmarked
// old value representing the to-space and from-space references for the same object.
UseScratchRegisterScope temps(masm);
Register tmp_ptr = temps.AcquireX();
Register tmp = temps.AcquireSameSizeAs(value);
// Recalculate the `tmp_ptr` clobbered above.
__ Add(tmp_ptr, base.X(), Operand(offset));
// do {
// tmp_value = [tmp_ptr];
// } while ((tmp_value == expected || tmp == old_value) && failure([tmp_ptr] <- r_new_value));
// result = (tmp_value == expected || tmp == old_value);
vixl::aarch64::Label loop_head;
__ Bind(&loop_head);
__ Ldaxr(tmp, MemOperand(tmp_ptr));
assembler->MaybeUnpoisonHeapReference(tmp);
__ Cmp(tmp, expected);
__ Ccmp(tmp, old_value, ZFlag, ne);
__ B(GetExitLabel(), ne); // If taken, Z=false indicates failure.
assembler->MaybePoisonHeapReference(value);
__ Stlxr(tmp.W(), value, MemOperand(tmp_ptr));
assembler->MaybeUnpoisonHeapReference(value);
__ Cbnz(tmp.W(), &loop_head);
// Z=true from the above CMP+CCMP indicates success.
__ B(GetExitLabel());
}
};
static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorARM64* codegen) {
Arm64Assembler* assembler = codegen->GetAssembler();
MacroAssembler* masm = assembler->GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
Register out = WRegisterFrom(locations->Out()); // Boolean result.
Register base = WRegisterFrom(locations->InAt(1)); // Object pointer.
Register offset = XRegisterFrom(locations->InAt(2)); // Long offset.
Register expected = RegisterFrom(locations->InAt(3), type); // Expected.
Register value = RegisterFrom(locations->InAt(4), type); // Value.
// This needs to be before the temp registers, as MarkGCCard also uses VIXL temps.
if (type == DataType::Type::kReference) {
// Mark card for object assuming new value is stored.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(base, value, value_can_be_null);
}
UseScratchRegisterScope temps(masm);
Register tmp_ptr = temps.AcquireX(); // Pointer to actual memory.
Register old_value; // Value in memory.
vixl::aarch64::Label exit_loop_label;
vixl::aarch64::Label* exit_loop = &exit_loop_label;
vixl::aarch64::Label* failure = &exit_loop_label;
if (kEmitCompilerReadBarrier && type == DataType::Type::kReference) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(kUseBakerReadBarrier);
BakerReadBarrierCasSlowPathARM64* slow_path =
new (codegen->GetScopedAllocator()) BakerReadBarrierCasSlowPathARM64(invoke);
codegen->AddSlowPath(slow_path);
exit_loop = slow_path->GetExitLabel();
failure = slow_path->GetEntryLabel();
// We need to store the `old_value` in a non-scratch register to make sure
// the Baker read barrier in the slow path does not clobber it.
old_value = WRegisterFrom(locations->GetTemp(0));
} else {
old_value = temps.AcquireSameSizeAs(value);
}
__ Add(tmp_ptr, base.X(), Operand(offset));
// do {
// tmp_value = [tmp_ptr];
// } while (tmp_value == expected && failure([tmp_ptr] <- r_new_value));
// result = tmp_value == expected;
vixl::aarch64::Label loop_head;
__ Bind(&loop_head);
__ Ldaxr(old_value, MemOperand(tmp_ptr));
if (type == DataType::Type::kReference) {
assembler->MaybeUnpoisonHeapReference(old_value);
}
__ Cmp(old_value, expected);
__ B(failure, ne);
if (type == DataType::Type::kReference) {
assembler->MaybePoisonHeapReference(value);
}
__ Stlxr(old_value.W(), value, MemOperand(tmp_ptr)); // Reuse `old_value` for STLXR result.
if (type == DataType::Type::kReference) {
assembler->MaybeUnpoisonHeapReference(value);
}
__ Cbnz(old_value.W(), &loop_head);
__ Bind(exit_loop);
__ Cset(out, eq);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(allocator_, invoke, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeCASLong(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(allocator_, invoke, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderARM64::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CreateIntIntIntIntIntToInt(allocator_, invoke, DataType::Type::kReference);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeCASInt(HInvoke* invoke) {
GenCas(invoke, DataType::Type::kInt32, codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeCASLong(HInvoke* invoke) {
GenCas(invoke, DataType::Type::kInt64, codegen_);
}
void IntrinsicCodeGeneratorARM64::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
GenCas(invoke, DataType::Type::kReference, codegen_);
}
void IntrinsicLocationsBuilderARM64::VisitStringCompareTo(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke,
invoke->InputAt(1)->CanBeNull()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
// Need temporary registers for String compression's feature.
if (mirror::kUseStringCompression) {
locations->AddTemp(Location::RequiresRegister());
}
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM64::VisitStringCompareTo(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
Register str = InputRegisterAt(invoke, 0);
Register arg = InputRegisterAt(invoke, 1);
DCHECK(str.IsW());
DCHECK(arg.IsW());
Register out = OutputRegister(invoke);
Register temp0 = WRegisterFrom(locations->GetTemp(0));
Register temp1 = WRegisterFrom(locations->GetTemp(1));
Register temp2 = WRegisterFrom(locations->GetTemp(2));
Register temp3;
if (mirror::kUseStringCompression) {
temp3 = WRegisterFrom(locations->GetTemp(3));
}
vixl::aarch64::Label loop;
vixl::aarch64::Label find_char_diff;
vixl::aarch64::Label end;
vixl::aarch64::Label different_compression;
// Get offsets of count and value fields within a string object.
const int32_t count_offset = mirror::String::CountOffset().Int32Value();
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Take slow path and throw if input can be and is null.
SlowPathCodeARM64* slow_path = nullptr;
const bool can_slow_path = invoke->InputAt(1)->CanBeNull();
if (can_slow_path) {
slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke);
codegen_->AddSlowPath(slow_path);
__ Cbz(arg, slow_path->GetEntryLabel());
}
// Reference equality check, return 0 if same reference.
__ Subs(out, str, arg);
__ B(&end, eq);
if (mirror::kUseStringCompression) {
// Load `count` fields of this and argument strings.
__ Ldr(temp3, HeapOperand(str, count_offset));
__ Ldr(temp2, HeapOperand(arg, count_offset));
// Clean out compression flag from lengths.
__ Lsr(temp0, temp3, 1u);
__ Lsr(temp1, temp2, 1u);
} else {
// Load lengths of this and argument strings.
__ Ldr(temp0, HeapOperand(str, count_offset));
__ Ldr(temp1, HeapOperand(arg, count_offset));
}
// out = length diff.
__ Subs(out, temp0, temp1);
// temp0 = min(len(str), len(arg)).
__ Csel(temp0, temp1, temp0, ge);
// Shorter string is empty?
__ Cbz(temp0, &end);
if (mirror::kUseStringCompression) {
// Check if both strings using same compression style to use this comparison loop.
__ Eor(temp2, temp2, Operand(temp3));
// Interleave with compression flag extraction which is needed for both paths
// and also set flags which is needed only for the different compressions path.
__ Ands(temp3.W(), temp3.W(), Operand(1));
__ Tbnz(temp2, 0, &different_compression); // Does not use flags.
}
// Store offset of string value in preparation for comparison loop.
__ Mov(temp1, value_offset);
if (mirror::kUseStringCompression) {
// For string compression, calculate the number of bytes to compare (not chars).
// This could in theory exceed INT32_MAX, so treat temp0 as unsigned.
__ Lsl(temp0, temp0, temp3);
}
UseScratchRegisterScope scratch_scope(masm);
Register temp4 = scratch_scope.AcquireX();
// Assertions that must hold in order to compare strings 8 bytes at a time.
DCHECK_ALIGNED(value_offset, 8);
static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded");
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
// Promote temp2 to an X reg, ready for LDR.
temp2 = temp2.X();
// Loop to compare 4x16-bit characters at a time (ok because of string data alignment).
__ Bind(&loop);
__ Ldr(temp4, MemOperand(str.X(), temp1.X()));
__ Ldr(temp2, MemOperand(arg.X(), temp1.X()));
__ Cmp(temp4, temp2);
__ B(ne, &find_char_diff);
__ Add(temp1, temp1, char_size * 4);
// With string compression, we have compared 8 bytes, otherwise 4 chars.
__ Subs(temp0, temp0, (mirror::kUseStringCompression) ? 8 : 4);
__ B(&loop, hi);
__ B(&end);
// Promote temp1 to an X reg, ready for EOR.
temp1 = temp1.X();
// Find the single character difference.
__ Bind(&find_char_diff);
// Get the bit position of the first character that differs.
__ Eor(temp1, temp2, temp4);
__ Rbit(temp1, temp1);
__ Clz(temp1, temp1);
// If the number of chars remaining <= the index where the difference occurs (0-3), then
// the difference occurs outside the remaining string data, so just return length diff (out).
// Unlike ARM, we're doing the comparison in one go here, without the subtraction at the
// find_char_diff_2nd_cmp path, so it doesn't matter whether the comparison is signed or
// unsigned when string compression is disabled.
// When it's enabled, the comparison must be unsigned.
__ Cmp(temp0, Operand(temp1.W(), LSR, (mirror::kUseStringCompression) ? 3 : 4));
__ B(ls, &end);
// Extract the characters and calculate the difference.
if (mirror:: kUseStringCompression) {
__ Bic(temp1, temp1, 0x7);
__ Bic(temp1, temp1, Operand(temp3.X(), LSL, 3u));
} else {
__ Bic(temp1, temp1, 0xf);
}
__ Lsr(temp2, temp2, temp1);
__ Lsr(temp4, temp4, temp1);
if (mirror::kUseStringCompression) {
// Prioritize the case of compressed strings and calculate such result first.
__ Uxtb(temp1, temp4);
__ Sub(out, temp1.W(), Operand(temp2.W(), UXTB));
__ Tbz(temp3, 0u, &end); // If actually compressed, we're done.
}
__ Uxth(temp4, temp4);
__ Sub(out, temp4.W(), Operand(temp2.W(), UXTH));
if (mirror::kUseStringCompression) {
__ B(&end);
__ Bind(&different_compression);
// Comparison for different compression style.
const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
DCHECK_EQ(c_char_size, 1u);
temp1 = temp1.W();
temp2 = temp2.W();
temp4 = temp4.W();
// `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer.
// Note that flags have been set by the `str` compression flag extraction to `temp3`
// before branching to the `different_compression` label.
__ Csel(temp1, str, arg, eq); // Pointer to the compressed string.
__ Csel(temp2, str, arg, ne); // Pointer to the uncompressed string.
// We want to free up the temp3, currently holding `str` compression flag, for comparison.
// So, we move it to the bottom bit of the iteration count `temp0` which we then need to treat
// as unsigned. Start by freeing the bit with a LSL and continue further down by a SUB which
// will allow `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition.
__ Lsl(temp0, temp0, 1u);
// Adjust temp1 and temp2 from string pointers to data pointers.
__ Add(temp1, temp1, Operand(value_offset));
__ Add(temp2, temp2, Operand(value_offset));
// Complete the move of the compression flag.
__ Sub(temp0, temp0, Operand(temp3));
vixl::aarch64::Label different_compression_loop;
vixl::aarch64::Label different_compression_diff;
__ Bind(&different_compression_loop);
__ Ldrb(temp4, MemOperand(temp1.X(), c_char_size, PostIndex));
__ Ldrh(temp3, MemOperand(temp2.X(), char_size, PostIndex));
__ Subs(temp4, temp4, Operand(temp3));
__ B(&different_compression_diff, ne);
__ Subs(temp0, temp0, 2);
__ B(&different_compression_loop, hi);
__ B(&end);
// Calculate the difference.
__ Bind(&different_compression_diff);
__ Tst(temp0, Operand(1));
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ Cneg(out, temp4, ne);
}
__ Bind(&end);
if (can_slow_path) {
__ Bind(slow_path->GetExitLabel());
}
}
// The cut off for unrolling the loop in String.equals() intrinsic for const strings.
// The normal loop plus the pre-header is 9 instructions without string compression and 12
// instructions with string compression. We can compare up to 8 bytes in 4 instructions
// (LDR+LDR+CMP+BNE) and up to 16 bytes in 5 instructions (LDP+LDP+CMP+CCMP+BNE). Allow up
// to 10 instructions for the unrolled loop.
constexpr size_t kShortConstStringEqualsCutoffInBytes = 32;
static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) {
if (candidate->IsLoadString()) {
HLoadString* load_string = candidate->AsLoadString();
const DexFile& dex_file = load_string->GetDexFile();
return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length);
}
return nullptr;
}
void IntrinsicLocationsBuilderARM64::VisitStringEquals(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// For the generic implementation and for long const strings we need a temporary.
// We do not need it for short const strings, up to 8 bytes, see code generation below.
uint32_t const_string_length = 0u;
const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length);
if (const_string == nullptr) {
const_string = GetConstString(invoke->InputAt(1), &const_string_length);
}
bool is_compressed =
mirror::kUseStringCompression &&
const_string != nullptr &&
mirror::String::DexFileStringAllASCII(const_string, const_string_length);
if (const_string == nullptr || const_string_length > (is_compressed ? 8u : 4u)) {
locations->AddTemp(Location::RequiresRegister());
}
// TODO: If the String.equals() is used only for an immediately following HIf, we can
// mark it as emitted-at-use-site and emit branches directly to the appropriate blocks.
// Then we shall need an extra temporary register instead of the output register.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM64::VisitStringEquals(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
Register str = WRegisterFrom(locations->InAt(0));
Register arg = WRegisterFrom(locations->InAt(1));
Register out = XRegisterFrom(locations->Out());
UseScratchRegisterScope scratch_scope(masm);
Register temp = scratch_scope.AcquireW();
Register temp1 = scratch_scope.AcquireW();
vixl::aarch64::Label loop;
vixl::aarch64::Label end;
vixl::aarch64::Label return_true;
vixl::aarch64::Label return_false;
// Get offsets of count, value, and class fields within a string object.
const int32_t count_offset = mirror::String::CountOffset().Int32Value();
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
const int32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
StringEqualsOptimizations optimizations(invoke);
if (!optimizations.GetArgumentNotNull()) {
// Check if input is null, return false if it is.
__ Cbz(arg, &return_false);
}
// Reference equality check, return true if same reference.
__ Cmp(str, arg);
__ B(&return_true, eq);
if (!optimizations.GetArgumentIsString()) {
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
//
// As the String class is expected to be non-movable, we can read the class
// field from String.equals' arguments without read barriers.
AssertNonMovableStringClass();
// /* HeapReference<Class> */ temp = str->klass_
__ Ldr(temp, MemOperand(str.X(), class_offset));
// /* HeapReference<Class> */ temp1 = arg->klass_
__ Ldr(temp1, MemOperand(arg.X(), class_offset));
// Also, because we use the previously loaded class references only in the
// following comparison, we don't need to unpoison them.
__ Cmp(temp, temp1);
__ B(&return_false, ne);
}
// Check if one of the inputs is a const string. Do not special-case both strings
// being const, such cases should be handled by constant folding if needed.
uint32_t const_string_length = 0u;
const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length);
if (const_string == nullptr) {
const_string = GetConstString(invoke->InputAt(1), &const_string_length);
if (const_string != nullptr) {
std::swap(str, arg); // Make sure the const string is in `str`.
}
}
bool is_compressed =
mirror::kUseStringCompression &&
const_string != nullptr &&
mirror::String::DexFileStringAllASCII(const_string, const_string_length);
if (const_string != nullptr) {
// Load `count` field of the argument string and check if it matches the const string.
// Also compares the compression style, if differs return false.
__ Ldr(temp, MemOperand(arg.X(), count_offset));
// Temporarily release temp1 as we may not be able to embed the flagged count in CMP immediate.
scratch_scope.Release(temp1);
__ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed)));
temp1 = scratch_scope.AcquireW();
__ B(&return_false, ne);
} else {
// Load `count` fields of this and argument strings.
__ Ldr(temp, MemOperand(str.X(), count_offset));
__ Ldr(temp1, MemOperand(arg.X(), count_offset));
// Check if `count` fields are equal, return false if they're not.
// Also compares the compression style, if differs return false.
__ Cmp(temp, temp1);
__ B(&return_false, ne);
}
// Assertions that must hold in order to compare strings 8 bytes at a time.
// Ok to do this because strings are zero-padded to kObjectAlignment.
DCHECK_ALIGNED(value_offset, 8);
static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded");
if (const_string != nullptr &&
const_string_length <= (is_compressed ? kShortConstStringEqualsCutoffInBytes
: kShortConstStringEqualsCutoffInBytes / 2u)) {
// Load and compare the contents. Though we know the contents of the short const string
// at compile time, materializing constants may be more code than loading from memory.
int32_t offset = value_offset;
size_t remaining_bytes =
RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 8u);
temp = temp.X();
temp1 = temp1.X();
while (remaining_bytes > sizeof(uint64_t)) {
Register temp2 = XRegisterFrom(locations->GetTemp(0));
__ Ldp(temp, temp1, MemOperand(str.X(), offset));
__ Ldp(temp2, out, MemOperand(arg.X(), offset));
__ Cmp(temp, temp2);
__ Ccmp(temp1, out, NoFlag, eq);
__ B(&return_false, ne);
offset += 2u * sizeof(uint64_t);
remaining_bytes -= 2u * sizeof(uint64_t);
}
if (remaining_bytes != 0u) {
__ Ldr(temp, MemOperand(str.X(), offset));
__ Ldr(temp1, MemOperand(arg.X(), offset));
__ Cmp(temp, temp1);
__ B(&return_false, ne);
}
} else {
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ Cbz(temp, &return_true);
if (mirror::kUseStringCompression) {
// For string compression, calculate the number of bytes to compare (not chars).
// This could in theory exceed INT32_MAX, so treat temp as unsigned.
__ And(temp1, temp, Operand(1)); // Extract compression flag.
__ Lsr(temp, temp, 1u); // Extract length.
__ Lsl(temp, temp, temp1); // Calculate number of bytes to compare.
}
// Store offset of string value in preparation for comparison loop
__ Mov(temp1, value_offset);
temp1 = temp1.X();
Register temp2 = XRegisterFrom(locations->GetTemp(0));
// Loop to compare strings 8 bytes at a time starting at the front of the string.
__ Bind(&loop);
__ Ldr(out, MemOperand(str.X(), temp1));
__ Ldr(temp2, MemOperand(arg.X(), temp1));
__ Add(temp1, temp1, Operand(sizeof(uint64_t)));
__ Cmp(out, temp2);
__ B(&return_false, ne);
// With string compression, we have compared 8 bytes, otherwise 4 chars.
__ Sub(temp, temp, Operand(mirror::kUseStringCompression ? 8 : 4), SetFlags);
__ B(&loop, hi);
}
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ Mov(out, 1);
__ B(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ Mov(out, 0);
__ Bind(&end);
}
static void GenerateVisitStringIndexOf(HInvoke* invoke,
MacroAssembler* masm,
CodeGeneratorARM64* codegen,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCodeARM64* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > 0xFFFFU) {
// Always needs the slow-path. We could directly dispatch to it, but this case should be
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke);
codegen->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != DataType::Type::kUint16) {
Register char_reg = WRegisterFrom(locations->InAt(1));
__ Tst(char_reg, 0xFFFF0000);
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke);
codegen->AddSlowPath(slow_path);
__ B(ne, slow_path->GetEntryLabel());
}
if (start_at_zero) {
// Start-index = 0.
Register tmp_reg = WRegisterFrom(locations->GetTemp(0));
__ Mov(tmp_reg, 0);
}
codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderARM64::VisitStringIndexOf(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
// best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt32));
// Need to send start_index=0.
locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
}
void IntrinsicCodeGeneratorARM64::VisitStringIndexOf(HInvoke* invoke) {
GenerateVisitStringIndexOf(invoke, GetVIXLAssembler(), codegen_, /* start_at_zero= */ true);
}
void IntrinsicLocationsBuilderARM64::VisitStringIndexOfAfter(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
// best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt32));
}
void IntrinsicCodeGeneratorARM64::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateVisitStringIndexOf(invoke, GetVIXLAssembler(), codegen_, /* start_at_zero= */ false);
}
void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
}
void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromBytes(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
Register byte_array = WRegisterFrom(locations->InAt(0));
__ Cmp(byte_array, 0);
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke);
codegen_->AddSlowPath(slow_path);
__ B(eq, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
}
void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
}
void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
}
void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromString(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
Register string_to_copy = WRegisterFrom(locations->InAt(0));
__ Cmp(string_to_copy, 0);
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke);
codegen_->AddSlowPath(slow_path);
__ B(eq, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
__ Bind(slow_path->GetExitLabel());
}
static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->GetType()));
LocationSummary* const locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType()));
}
static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(1)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->GetType()));
LocationSummary* const locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType()));
}
static void GenFPToFPCall(HInvoke* invoke,
CodeGeneratorARM64* codegen,
QuickEntrypointEnum entry) {
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderARM64::VisitMathCos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathCos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCos);
}
void IntrinsicLocationsBuilderARM64::VisitMathSin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathSin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSin);
}
void IntrinsicLocationsBuilderARM64::VisitMathAcos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathAcos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAcos);
}
void IntrinsicLocationsBuilderARM64::VisitMathAsin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathAsin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAsin);
}
void IntrinsicLocationsBuilderARM64::VisitMathAtan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathAtan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan);
}
void IntrinsicLocationsBuilderARM64::VisitMathCbrt(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathCbrt(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
}
void IntrinsicLocationsBuilderARM64::VisitMathCosh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathCosh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCosh);
}
void IntrinsicLocationsBuilderARM64::VisitMathExp(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathExp(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExp);
}
void IntrinsicLocationsBuilderARM64::VisitMathExpm1(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathExpm1(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
}
void IntrinsicLocationsBuilderARM64::VisitMathLog(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathLog(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog);
}
void IntrinsicLocationsBuilderARM64::VisitMathLog10(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathLog10(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog10);
}
void IntrinsicLocationsBuilderARM64::VisitMathSinh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathSinh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSinh);
}
void IntrinsicLocationsBuilderARM64::VisitMathTan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathTan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTan);
}
void IntrinsicLocationsBuilderARM64::VisitMathTanh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathTanh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTanh);
}
void IntrinsicLocationsBuilderARM64::VisitMathAtan2(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathAtan2(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan2);
}
void IntrinsicLocationsBuilderARM64::VisitMathPow(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathPow(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickPow);
}
void IntrinsicLocationsBuilderARM64::VisitMathHypot(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathHypot(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickHypot);
}
void IntrinsicLocationsBuilderARM64::VisitMathNextAfter(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitMathNextAfter(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
}
void IntrinsicLocationsBuilderARM64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
// Location of data in char array buffer.
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
// Location of char array data in string.
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
// void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin);
// Since getChars() calls getCharsNoCheck() - we use registers rather than constants.
Register srcObj = XRegisterFrom(locations->InAt(0));
Register srcBegin = XRegisterFrom(locations->InAt(1));
Register srcEnd = XRegisterFrom(locations->InAt(2));
Register dstObj = XRegisterFrom(locations->InAt(3));
Register dstBegin = XRegisterFrom(locations->InAt(4));
Register src_ptr = XRegisterFrom(locations->GetTemp(0));
Register num_chr = XRegisterFrom(locations->GetTemp(1));
Register tmp1 = XRegisterFrom(locations->GetTemp(2));
UseScratchRegisterScope temps(masm);
Register dst_ptr = temps.AcquireX();
Register tmp2 = temps.AcquireX();
vixl::aarch64::Label done;
vixl::aarch64::Label compressed_string_vector_loop;
vixl::aarch64::Label compressed_string_remainder;
__ Sub(num_chr, srcEnd, srcBegin);
// Early out for valid zero-length retrievals.
__ Cbz(num_chr, &done);
// dst address start to copy to.
__ Add(dst_ptr, dstObj, Operand(data_offset));
__ Add(dst_ptr, dst_ptr, Operand(dstBegin, LSL, 1));
// src address to copy from.
__ Add(src_ptr, srcObj, Operand(value_offset));
vixl::aarch64::Label compressed_string_preloop;
if (mirror::kUseStringCompression) {
// Location of count in string.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
// String's length.
__ Ldr(tmp2, MemOperand(srcObj, count_offset));
__ Tbz(tmp2, 0, &compressed_string_preloop);
}
__ Add(src_ptr, src_ptr, Operand(srcBegin, LSL, 1));
// Do the copy.
vixl::aarch64::Label loop;
vixl::aarch64::Label remainder;
// Save repairing the value of num_chr on the < 8 character path.
__ Subs(tmp1, num_chr, 8);
__ B(lt, &remainder);
// Keep the result of the earlier subs, we are going to fetch at least 8 characters.
__ Mov(num_chr, tmp1);
// Main loop used for longer fetches loads and stores 8x16-bit characters at a time.
// (Unaligned addresses are acceptable here and not worth inlining extra code to rectify.)
__ Bind(&loop);
__ Ldp(tmp1, tmp2, MemOperand(src_ptr, char_size * 8, PostIndex));
__ Subs(num_chr, num_chr, 8);
__ Stp(tmp1, tmp2, MemOperand(dst_ptr, char_size * 8, PostIndex));
__ B(ge, &loop);
__ Adds(num_chr, num_chr, 8);
__ B(eq, &done);
// Main loop for < 8 character case and remainder handling. Loads and stores one
// 16-bit Java character at a time.
__ Bind(&remainder);
__ Ldrh(tmp1, MemOperand(src_ptr, char_size, PostIndex));
__ Subs(num_chr, num_chr, 1);
__ Strh(tmp1, MemOperand(dst_ptr, char_size, PostIndex));
__ B(gt, &remainder);
__ B(&done);
if (mirror::kUseStringCompression) {
// For compressed strings, acquire a SIMD temporary register.
VRegister vtmp1 = temps.AcquireVRegisterOfSize(kQRegSize);
const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
DCHECK_EQ(c_char_size, 1u);
__ Bind(&compressed_string_preloop);
__ Add(src_ptr, src_ptr, Operand(srcBegin));
// Save repairing the value of num_chr on the < 8 character path.
__ Subs(tmp1, num_chr, 8);
__ B(lt, &compressed_string_remainder);
// Keep the result of the earlier subs, we are going to fetch at least 8 characters.
__ Mov(num_chr, tmp1);
// Main loop for compressed src, copying 8 characters (8-bit) to (16-bit) at a time.
// Uses SIMD instructions.
__ Bind(&compressed_string_vector_loop);
__ Ld1(vtmp1.V8B(), MemOperand(src_ptr, c_char_size * 8, PostIndex));
__ Subs(num_chr, num_chr, 8);
__ Uxtl(vtmp1.V8H(), vtmp1.V8B());
__ St1(vtmp1.V8H(), MemOperand(dst_ptr, char_size * 8, PostIndex));
__ B(ge, &compressed_string_vector_loop);
__ Adds(num_chr, num_chr, 8);
__ B(eq, &done);
// Loop for < 8 character case and remainder handling with a compressed src.
// Copies 1 character (8-bit) to (16-bit) at a time.
__ Bind(&compressed_string_remainder);
__ Ldrb(tmp1, MemOperand(src_ptr, c_char_size, PostIndex));
__ Strh(tmp1, MemOperand(dst_ptr, char_size, PostIndex));
__ Subs(num_chr, num_chr, Operand(1));
__ B(gt, &compressed_string_remainder);
}
__ Bind(&done);
}
// Mirrors ARRAYCOPY_SHORT_CHAR_ARRAY_THRESHOLD in libcore, so we can choose to use the native
// implementation there for longer copy lengths.
static constexpr int32_t kSystemArrayCopyCharThreshold = 32;
static void SetSystemArrayCopyLocationRequires(LocationSummary* locations,
uint32_t at,
HInstruction* input) {
HIntConstant* const_input = input->AsIntConstant();
if (const_input != nullptr && !vixl::aarch64::Assembler::IsImmAddSub(const_input->GetValue())) {
locations->SetInAt(at, Location::RequiresRegister());
} else {
locations->SetInAt(at, Location::RegisterOrConstant(input));
}
}
void IntrinsicLocationsBuilderARM64::VisitSystemArrayCopyChar(HInvoke* invoke) {
// Check to see if we have known failures that will cause us to have to bail out
// to the runtime, and just generate the runtime call directly.
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dst_pos = invoke->InputAt(3)->AsIntConstant();
// The positions must be non-negative.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dst_pos != nullptr && dst_pos->GetValue() < 0)) {
// We will have to fail anyways.
return;
}
// The length must be >= 0 and not so long that we would (currently) prefer libcore's
// native implementation.
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0 || len > kSystemArrayCopyCharThreshold) {
// Just call as normal.
return;
}
}
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
// arraycopy(char[] src, int src_pos, char[] dst, int dst_pos, int length).
locations->SetInAt(0, Location::RequiresRegister());
SetSystemArrayCopyLocationRequires(locations, 1, invoke->InputAt(1));
locations->SetInAt(2, Location::RequiresRegister());
SetSystemArrayCopyLocationRequires(locations, 3, invoke->InputAt(3));
SetSystemArrayCopyLocationRequires(locations, 4, invoke->InputAt(4));
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
static void CheckSystemArrayCopyPosition(MacroAssembler* masm,
const Location& pos,
const Register& input,
const Location& length,
SlowPathCodeARM64* slow_path,
const Register& temp,
bool length_is_input_length = false) {
const int32_t length_offset = mirror::Array::LengthOffset().Int32Value();
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
if (pos_const == 0) {
if (!length_is_input_length) {
// Check that length(input) >= length.
__ Ldr(temp, MemOperand(input, length_offset));
__ Cmp(temp, OperandFrom(length, DataType::Type::kInt32));
__ B(slow_path->GetEntryLabel(), lt);
}
} else {
// Check that length(input) >= pos.
__ Ldr(temp, MemOperand(input, length_offset));
__ Subs(temp, temp, pos_const);
__ B(slow_path->GetEntryLabel(), lt);
// Check that (length(input) - pos) >= length.
__ Cmp(temp, OperandFrom(length, DataType::Type::kInt32));
__ B(slow_path->GetEntryLabel(), lt);
}
} else if (length_is_input_length) {
// The only way the copy can succeed is if pos is zero.
__ Cbnz(WRegisterFrom(pos), slow_path->GetEntryLabel());
} else {
// Check that pos >= 0.
Register pos_reg = WRegisterFrom(pos);
__ Tbnz(pos_reg, pos_reg.GetSizeInBits() - 1, slow_path->GetEntryLabel());
// Check that pos <= length(input) && (length(input) - pos) >= length.
__ Ldr(temp, MemOperand(input, length_offset));
__ Subs(temp, temp, pos_reg);
// Ccmp if length(input) >= pos, else definitely bail to slow path (N!=V == lt).
__ Ccmp(temp, OperandFrom(length, DataType::Type::kInt32), NFlag, ge);
__ B(slow_path->GetEntryLabel(), lt);
}
}
// Compute base source address, base destination address, and end
// source address for System.arraycopy* intrinsics in `src_base`,
// `dst_base` and `src_end` respectively.
static void GenSystemArrayCopyAddresses(MacroAssembler* masm,
DataType::Type type,
const Register& src,
const Location& src_pos,
const Register& dst,
const Location& dst_pos,
const Location& copy_length,
const Register& src_base,
const Register& dst_base,
const Register& src_end) {
// This routine is used by the SystemArrayCopy and the SystemArrayCopyChar intrinsics.
DCHECK(type == DataType::Type::kReference || type == DataType::Type::kUint16)
<< "Unexpected element type: " << type;
const int32_t element_size = DataType::Size(type);
const int32_t element_size_shift = DataType::SizeShift(type);
const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
if (src_pos.IsConstant()) {
int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ Add(src_base, src, element_size * constant + data_offset);
} else {
__ Add(src_base, src, data_offset);
__ Add(src_base, src_base, Operand(XRegisterFrom(src_pos), LSL, element_size_shift));
}
if (dst_pos.IsConstant()) {
int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue();
__ Add(dst_base, dst, element_size * constant + data_offset);
} else {
__ Add(dst_base, dst, data_offset);
__ Add(dst_base, dst_base, Operand(XRegisterFrom(dst_pos), LSL, element_size_shift));
}
if (copy_length.IsConstant()) {
int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue();
__ Add(src_end, src_base, element_size * constant);
} else {
__ Add(src_end, src_base, Operand(XRegisterFrom(copy_length), LSL, element_size_shift));
}
}
void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopyChar(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
Register src = XRegisterFrom(locations->InAt(0));
Location src_pos = locations->InAt(1);
Register dst = XRegisterFrom(locations->InAt(2));
Location dst_pos = locations->InAt(3);
Location length = locations->InAt(4);
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke);
codegen_->AddSlowPath(slow_path);
// If source and destination are the same, take the slow path. Overlapping copy regions must be
// copied in reverse and we can't know in all cases if it's needed.
__ Cmp(src, dst);
__ B(slow_path->GetEntryLabel(), eq);
// Bail out if the source is null.
__ Cbz(src, slow_path->GetEntryLabel());
// Bail out if the destination is null.
__ Cbz(dst, slow_path->GetEntryLabel());
if (!length.IsConstant()) {
// Merge the following two comparisons into one:
// If the length is negative, bail out (delegate to libcore's native implementation).
// If the length > 32 then (currently) prefer libcore's native implementation.
__ Cmp(WRegisterFrom(length), kSystemArrayCopyCharThreshold);
__ B(slow_path->GetEntryLabel(), hi);
} else {
// We have already checked in the LocationsBuilder for the constant case.
DCHECK_GE(length.GetConstant()->AsIntConstant()->GetValue(), 0);
DCHECK_LE(length.GetConstant()->AsIntConstant()->GetValue(), 32);
}
Register src_curr_addr = WRegisterFrom(locations->GetTemp(0));
Register dst_curr_addr = WRegisterFrom(locations->GetTemp(1));
Register src_stop_addr = WRegisterFrom(locations->GetTemp(2));
CheckSystemArrayCopyPosition(masm,
src_pos,
src,
length,
slow_path,
src_curr_addr,
false);
CheckSystemArrayCopyPosition(masm,
dst_pos,
dst,
length,
slow_path,
src_curr_addr,
false);
src_curr_addr = src_curr_addr.X();
dst_curr_addr = dst_curr_addr.X();
src_stop_addr = src_stop_addr.X();
GenSystemArrayCopyAddresses(masm,
DataType::Type::kUint16,
src,
src_pos,
dst,
dst_pos,
length,
src_curr_addr,
dst_curr_addr,
src_stop_addr);
// Iterate over the arrays and do a raw copy of the chars.
const int32_t char_size = DataType::Size(DataType::Type::kUint16);
UseScratchRegisterScope temps(masm);
Register tmp = temps.AcquireW();
vixl::aarch64::Label loop, done;
__ Bind(&loop);
__ Cmp(src_curr_addr, src_stop_addr);
__ B(&done, eq);
__ Ldrh(tmp, MemOperand(src_curr_addr, char_size, PostIndex));
__ Strh(tmp, MemOperand(dst_curr_addr, char_size, PostIndex));
__ B(&loop);
__ Bind(&done);
__ Bind(slow_path->GetExitLabel());
}
// We can choose to use the native implementation there for longer copy lengths.
static constexpr int32_t kSystemArrayCopyThreshold = 128;
// CodeGenerator::CreateSystemArrayCopyLocationSummary use three temporary registers.
// We want to use two temporary registers in order to reduce the register pressure in arm64.
// So we don't use the CodeGenerator::CreateSystemArrayCopyLocationSummary.
void IntrinsicLocationsBuilderARM64::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
// Check to see if we have known failures that will cause us to have to bail out
// to the runtime, and just generate the runtime call directly.
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
// The positions must be non-negative.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
// We will have to fail anyways.
return;
}
// The length must be >= 0.
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0 || len >= kSystemArrayCopyThreshold) {
// Just call as normal.
return;
}
}
SystemArrayCopyOptimizations optimizations(invoke);
if (optimizations.GetDestinationIsSource()) {
if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
// We only support backward copying if source and destination are the same.
return;
}
}
if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
// We currently don't intrinsify primitive copying.
return;
}
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
// arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
locations->SetInAt(0, Location::RequiresRegister());
SetSystemArrayCopyLocationRequires(locations, 1, invoke->InputAt(1));
locations->SetInAt(2, Location::RequiresRegister());
SetSystemArrayCopyLocationRequires(locations, 3, invoke->InputAt(3));
SetSystemArrayCopyLocationRequires(locations, 4, invoke->InputAt(4));
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// Temporary register IP0, obtained from the VIXL scratch register
// pool, cannot be used in ReadBarrierSystemArrayCopySlowPathARM64
// (because that register is clobbered by ReadBarrierMarkRegX
// entry points). It cannot be used in calls to
// CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier
// either. For these reasons, get a third extra temporary register
// from the register allocator.
locations->AddTemp(Location::RequiresRegister());
} else {
// Cases other than Baker read barriers: the third temporary will
// be acquired from the VIXL scratch register pool.
}
}
void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
Register src = XRegisterFrom(locations->InAt(0));
Location src_pos = locations->InAt(1);
Register dest = XRegisterFrom(locations->InAt(2));
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
Register temp1 = WRegisterFrom(locations->GetTemp(0));
Location temp1_loc = LocationFrom(temp1);
Register temp2 = WRegisterFrom(locations->GetTemp(1));
Location temp2_loc = LocationFrom(temp2);
SlowPathCodeARM64* intrinsic_slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke);
codegen_->AddSlowPath(intrinsic_slow_path);
vixl::aarch64::Label conditions_on_positions_validated;
SystemArrayCopyOptimizations optimizations(invoke);
// If source and destination are the same, we go to slow path if we need to do
// forward copying.
if (src_pos.IsConstant()) {
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
if (optimizations.GetDestinationIsSource()) {
// Checked when building locations.
DCHECK_GE(src_pos_constant, dest_pos_constant);
} else if (src_pos_constant < dest_pos_constant) {
__ Cmp(src, dest);
__ B(intrinsic_slow_path->GetEntryLabel(), eq);
}
// Checked when building locations.
DCHECK(!optimizations.GetDestinationIsSource()
|| (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue()));
} else {
if (!optimizations.GetDestinationIsSource()) {
__ Cmp(src, dest);
__ B(&conditions_on_positions_validated, ne);
}
__ Cmp(WRegisterFrom(dest_pos), src_pos_constant);
__ B(intrinsic_slow_path->GetEntryLabel(), gt);
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ Cmp(src, dest);
__ B(&conditions_on_positions_validated, ne);
}
__ Cmp(RegisterFrom(src_pos, invoke->InputAt(1)->GetType()),
OperandFrom(dest_pos, invoke->InputAt(3)->GetType()));
__ B(intrinsic_slow_path->GetEntryLabel(), lt);
}
__ Bind(&conditions_on_positions_validated);
if (!optimizations.GetSourceIsNotNull()) {
// Bail out if the source is null.
__ Cbz(src, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
// Bail out if the destination is null.
__ Cbz(dest, intrinsic_slow_path->GetEntryLabel());
}
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant() &&
!optimizations.GetCountIsSourceLength() &&
!optimizations.GetCountIsDestinationLength()) {
// Merge the following two comparisons into one:
// If the length is negative, bail out (delegate to libcore's native implementation).
// If the length >= 128 then (currently) prefer native implementation.
__ Cmp(WRegisterFrom(length), kSystemArrayCopyThreshold);
__ B(intrinsic_slow_path->GetEntryLabel(), hs);
}
// Validity checks: source.
CheckSystemArrayCopyPosition(masm,
src_pos,
src,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsSourceLength());
// Validity checks: dest.
CheckSystemArrayCopyPosition(masm,
dest_pos,
dest,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsDestinationLength());
{
// We use a block to end the scratch scope before the write barrier, thus
// freeing the temporary registers so they can be used in `MarkGCCard`.
UseScratchRegisterScope temps(masm);
Location temp3_loc; // Used only for Baker read barrier.
Register temp3;
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
temp3_loc = locations->GetTemp(2);
temp3 = WRegisterFrom(temp3_loc);
} else {
temp3 = temps.AcquireW();
}
if (!optimizations.GetDoesNotNeedTypeCheck()) {
// Check whether all elements of the source array are assignable to the component
// type of the destination array. We do two checks: the classes are the same,
// or the destination is Object[]. If none of these checks succeed, we go to the
// slow path.
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
// /* HeapReference<Class> */ temp1 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
temp1_loc,
src.W(),
class_offset,
temp3_loc,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
// Bail out if the source is not a non primitive array.
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
temp1_loc,
temp1,
component_offset,
temp3_loc,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
__ Cbz(temp1, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp1` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
// /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_);
__ Ldrh(temp1, HeapOperand(temp1, primitive_offset));
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
}
// /* HeapReference<Class> */ temp1 = dest->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
temp1_loc,
dest.W(),
class_offset,
temp3_loc,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
// Bail out if the destination is not a non primitive array.
//
// Register `temp1` is not trashed by the read barrier emitted
// by GenerateFieldLoadWithBakerReadBarrier below, as that
// method produces a call to a ReadBarrierMarkRegX entry point,
// which saves all potentially live registers, including
// temporaries such a `temp1`.
// /* HeapReference<Class> */ temp2 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
temp2_loc,
temp1,
component_offset,
temp3_loc,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
__ Cbz(temp2, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp2` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
// /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
__ Ldrh(temp2, HeapOperand(temp2, primitive_offset));
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel());
}
// For the same reason given earlier, `temp1` is not trashed by the
// read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
// /* HeapReference<Class> */ temp2 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
temp2_loc,
src.W(),
class_offset,
temp3_loc,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
// Note: if heap poisoning is on, we are comparing two unpoisoned references here.
__ Cmp(temp1, temp2);
if (optimizations.GetDestinationIsTypedObjectArray()) {
vixl::aarch64::Label do_copy;
__ B(&do_copy, eq);
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
temp1_loc,
temp1,
component_offset,
temp3_loc,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
// /* HeapReference<Class> */ temp1 = temp1->super_class_
// We do not need to emit a read barrier for the following
// heap reference load, as `temp1` is only used in a
// comparison with null below, and this reference is not
// kept afterwards.
__ Ldr(temp1, HeapOperand(temp1, super_offset));
__ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ B(intrinsic_slow_path->GetEntryLabel(), ne);
}
} else {
// Non read barrier code.
// /* HeapReference<Class> */ temp1 = dest->klass_
__ Ldr(temp1, MemOperand(dest, class_offset));
// /* HeapReference<Class> */ temp2 = src->klass_
__ Ldr(temp2, MemOperand(src, class_offset));
bool did_unpoison = false;
if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
!optimizations.GetSourceIsNonPrimitiveArray()) {
// One or two of the references need to be unpoisoned. Unpoison them
// both to make the identity check valid.
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1);
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp2);
did_unpoison = true;
}
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
// Bail out if the destination is not a non primitive array.
// /* HeapReference<Class> */ temp3 = temp1->component_type_
__ Ldr(temp3, HeapOperand(temp1, component_offset));
__ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp3);
// /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
__ Ldrh(temp3, HeapOperand(temp3, primitive_offset));
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
// Bail out if the source is not a non primitive array.
// /* HeapReference<Class> */ temp3 = temp2->component_type_
__ Ldr(temp3, HeapOperand(temp2, component_offset));
__ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp3);
// /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
__ Ldrh(temp3, HeapOperand(temp3, primitive_offset));
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
}
__ Cmp(temp1, temp2);
if (optimizations.GetDestinationIsTypedObjectArray()) {
vixl::aarch64::Label do_copy;
__ B(&do_copy, eq);
if (!did_unpoison) {
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1);
}
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ Ldr(temp1, HeapOperand(temp1, component_offset));
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->super_class_
__ Ldr(temp1, HeapOperand(temp1, super_offset));
// No need to unpoison the result, we're comparing against null.
__ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ B(intrinsic_slow_path->GetEntryLabel(), ne);
}
}
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
// Bail out if the source is not a non primitive array.
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
temp1_loc,
src.W(),
class_offset,
temp3_loc,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
// /* HeapReference<Class> */ temp2 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
temp2_loc,
temp1,
component_offset,
temp3_loc,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
__ Cbz(temp2, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp2` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ temp1 = src->klass_
__ Ldr(temp1, HeapOperand(src.W(), class_offset));
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp2 = temp1->component_type_
__ Ldr(temp2, HeapOperand(temp1, component_offset));
__ Cbz(temp2, intrinsic_slow_path->GetEntryLabel());
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp2);
}
// /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
__ Ldrh(temp2, HeapOperand(temp2, primitive_offset));
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel());
}
if (length.IsConstant() && length.GetConstant()->AsIntConstant()->GetValue() == 0) {
// Null constant length: not need to emit the loop code at all.
} else {
Register src_curr_addr = temp1.X();
Register dst_curr_addr = temp2.X();
Register src_stop_addr = temp3.X();
vixl::aarch64::Label done;
const DataType::Type type = DataType::Type::kReference;
const int32_t element_size = DataType::Size(type);
if (length.IsRegister()) {
// Don't enter the copy loop if the length is null.
__ Cbz(WRegisterFrom(length), &done);
}
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// TODO: Also convert this intrinsic to the IsGcMarking strategy?
// SystemArrayCopy implementation for Baker read barriers (see
// also CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier):
//
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// do {
// *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
// } while (src_ptr != end_ptr)
// } else {
// // Fast-path copy.
// do {
// *dest_ptr++ = *src_ptr++;
// } while (src_ptr != end_ptr)
// }
// Make sure `tmp` is not IP0, as it is clobbered by
// ReadBarrierMarkRegX entry points in
// ReadBarrierSystemArrayCopySlowPathARM64.
DCHECK(temps.IsAvailable(ip0));
temps.Exclude(ip0);
Register tmp = temps.AcquireW();
DCHECK_NE(LocationFrom(tmp).reg(), IP0);
// Put IP0 back in the pool so that VIXL has at least one
// scratch register available to emit macro-instructions (note
// that IP1 is already used for `tmp`). Indeed some
// macro-instructions used in GenSystemArrayCopyAddresses
// (invoked hereunder) may require a scratch register (for
// instance to emit a load with a large constant offset).
temps.Include(ip0);
// /* int32_t */ monitor = src->monitor_
__ Ldr(tmp, HeapOperand(src.W(), monitor_offset));
// /* LockWord */ lock_word = LockWord(monitor)
static_assert(sizeof(LockWord) == sizeof(int32_t),
"art::LockWord and int32_t have different sizes.");
// Introduce a dependency on the lock_word including rb_state,
// to prevent load-load reordering, and without using
// a memory barrier (which would be more expensive).
// `src` is unchanged by this operation, but its value now depends
// on `tmp`.
__ Add(src.X(), src.X(), Operand(tmp.X(), LSR, 32));
// Compute base source address, base destination address, and end
// source address for System.arraycopy* intrinsics in `src_base`,
// `dst_base` and `src_end` respectively.
// Note that `src_curr_addr` is computed from from `src` (and
// `src_pos`) here, and thus honors the artificial dependency
// of `src` on `tmp`.
GenSystemArrayCopyAddresses(masm,
type,
src,
src_pos,
dest,
dest_pos,
length,
src_curr_addr,
dst_curr_addr,
src_stop_addr);
// Slow path used to copy array when `src` is gray.
SlowPathCodeARM64* read_barrier_slow_path =
new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathARM64(
invoke, LocationFrom(tmp));
codegen_->AddSlowPath(read_barrier_slow_path);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Tbnz(tmp, LockWord::kReadBarrierStateShift, read_barrier_slow_path->GetEntryLabel());
// Fast-path copy.
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
vixl::aarch64::Label loop;
__ Bind(&loop);
__ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
__ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
__ Cmp(src_curr_addr, src_stop_addr);
__ B(&loop, ne);
__ Bind(read_barrier_slow_path->GetExitLabel());
} else {
// Non read barrier code.
// Compute base source address, base destination address, and end
// source address for System.arraycopy* intrinsics in `src_base`,
// `dst_base` and `src_end` respectively.
GenSystemArrayCopyAddresses(masm,
type,
src,
src_pos,
dest,
dest_pos,
length,
src_curr_addr,
dst_curr_addr,
src_stop_addr);
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
vixl::aarch64::Label loop;
__ Bind(&loop);
{
Register tmp = temps.AcquireW();
__ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
__ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
}
__ Cmp(src_curr_addr, src_stop_addr);
__ B(&loop, ne);
}
__ Bind(&done);
}
}
// We only need one card marking on the destination array.
codegen_->MarkGCCard(dest.W(), Register(), /* value_can_be_null= */ false);
__ Bind(intrinsic_slow_path->GetExitLabel());
}
static void GenIsInfinite(LocationSummary* locations,
bool is64bit,
MacroAssembler* masm) {
Operand infinity;
Operand tst_mask;
Register out;
if (is64bit) {
infinity = kPositiveInfinityDouble;
tst_mask = MaskLeastSignificant<uint64_t>(63);
out = XRegisterFrom(locations->Out());
} else {
infinity = kPositiveInfinityFloat;
tst_mask = MaskLeastSignificant<uint32_t>(31);
out = WRegisterFrom(locations->Out());
}
MoveFPToInt(locations, is64bit, masm);
// Checks whether exponent bits are all 1 and fraction bits are all 0.
__ Eor(out, out, infinity);
// TST bitmask is used to mask out the sign bit: either 0x7fffffff or 0x7fffffffffffffff
// depending on is64bit.
__ Tst(out, tst_mask);
__ Cset(out, eq);
}
void IntrinsicLocationsBuilderARM64::VisitFloatIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitFloatIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), /* is64bit= */ false, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitDoubleIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitDoubleIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), /* is64bit= */ true, GetVIXLAssembler());
}
void IntrinsicLocationsBuilderARM64::VisitIntegerValueOf(HInvoke* invoke) {
InvokeRuntimeCallingConvention calling_convention;
IntrinsicVisitor::ComputeIntegerValueOfLocations(
invoke,
codegen_,
calling_convention.GetReturnLocation(DataType::Type::kReference),
Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
}
void IntrinsicCodeGeneratorARM64::VisitIntegerValueOf(HInvoke* invoke) {
IntrinsicVisitor::IntegerValueOfInfo info =
IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions());
LocationSummary* locations = invoke->GetLocations();
MacroAssembler* masm = GetVIXLAssembler();
Register out = RegisterFrom(locations->Out(), DataType::Type::kReference);
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireW();
if (invoke->InputAt(0)->IsConstant()) {
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
if (static_cast<uint32_t>(value - info.low) < info.length) {
// Just embed the j.l.Integer in the code.
DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference);
codegen_->LoadBootImageAddress(out, info.value_boot_image_reference);
} else {
DCHECK(locations->CanCall());
// Allocate and initialize a new j.l.Integer.
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
// JIT object table.
codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
info.integer_boot_image_offset);
__ Mov(temp.W(), value);
__ Str(temp.W(), HeapOperand(out.W(), info.value_offset));
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
// one.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
} else {
DCHECK(locations->CanCall());
Register in = RegisterFrom(locations->InAt(0), DataType::Type::kInt32);
// Check bounds of our cache.
__ Add(out.W(), in.W(), -info.low);
__ Cmp(out.W(), info.length);
vixl::aarch64::Label allocate, done;
__ B(&allocate, hs);
// If the value is within the bounds, load the j.l.Integer directly from the array.
codegen_->LoadBootImageAddress(temp, info.array_data_boot_image_reference);
MemOperand source = HeapOperand(
temp, out.X(), LSL, DataType::SizeShift(DataType::Type::kReference));
codegen_->Load(DataType::Type::kReference, out, source);
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(out);
__ B(&done);
__ Bind(&allocate);
// Otherwise allocate and initialize a new j.l.Integer.
codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
info.integer_boot_image_offset);
__ Str(in.W(), HeapOperand(out.W(), info.value_offset));
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
// one.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
__ Bind(&done);
}
}
void IntrinsicLocationsBuilderARM64::VisitThreadInterrupted(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM64::VisitThreadInterrupted(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
Register out = RegisterFrom(invoke->GetLocations()->Out(), DataType::Type::kInt32);
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireX();
__ Add(temp, tr, Thread::InterruptedOffset<kArm64PointerSize>().Int32Value());
__ Ldar(out.W(), MemOperand(temp));
vixl::aarch64::Label done;
__ Cbz(out.W(), &done);
__ Stlr(wzr, MemOperand(temp));
__ Bind(&done);
}
void IntrinsicLocationsBuilderARM64::VisitReachabilityFence(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
}
void IntrinsicCodeGeneratorARM64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
void IntrinsicLocationsBuilderARM64::VisitCRC32Update(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasCRC()) {
return;
}
LocationSummary* locations = new (allocator_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
// Lower the invoke of CRC32.update(int crc, int b).
void IntrinsicCodeGeneratorARM64::VisitCRC32Update(HInvoke* invoke) {
DCHECK(codegen_->GetInstructionSetFeatures().HasCRC());
MacroAssembler* masm = GetVIXLAssembler();
Register crc = InputRegisterAt(invoke, 0);
Register val = InputRegisterAt(invoke, 1);
Register out = OutputRegister(invoke);
// The general algorithm of the CRC32 calculation is:
// crc = ~crc
// result = crc32_for_byte(crc, b)
// crc = ~result
// It is directly lowered to three instructions.
UseScratchRegisterScope temps(masm);
Register tmp = temps.AcquireSameSizeAs(out);
__ Mvn(tmp, crc);
__ Crc32b(tmp, tmp, val);
__ Mvn(out, tmp);
}
// Generate code using CRC32 instructions which calculates
// a CRC32 value of a byte.
//
// Parameters:
// masm - VIXL macro assembler
// crc - a register holding an initial CRC value
// ptr - a register holding a memory address of bytes
// length - a register holding a number of bytes to process
// out - a register to put a result of calculation
static void GenerateCodeForCalculationCRC32ValueOfBytes(MacroAssembler* masm,
const Register& crc,
const Register& ptr,
const Register& length,
const Register& out) {
// The algorithm of CRC32 of bytes is:
// crc = ~crc
// process a few first bytes to make the array 8-byte aligned
// while array has 8 bytes do:
// crc = crc32_of_8bytes(crc, 8_bytes(array))
// if array has 4 bytes:
// crc = crc32_of_4bytes(crc, 4_bytes(array))
// if array has 2 bytes:
// crc = crc32_of_2bytes(crc, 2_bytes(array))
// if array has a byte:
// crc = crc32_of_byte(crc, 1_byte(array))
// crc = ~crc
vixl::aarch64::Label loop, done;
vixl::aarch64::Label process_4bytes, process_2bytes, process_1byte;
vixl::aarch64::Label aligned2, aligned4, aligned8;
// Use VIXL scratch registers as the VIXL macro assembler won't use them in
// instructions below.
UseScratchRegisterScope temps(masm);
Register len = temps.AcquireW();
Register array_elem = temps.AcquireW();
__ Mvn(out, crc);
__ Mov(len, length);
__ Tbz(ptr, 0, &aligned2);
__ Subs(len, len, 1);
__ B(&done, lo);
__ Ldrb(array_elem, MemOperand(ptr, 1, PostIndex));
__ Crc32b(out, out, array_elem);
__ Bind(&aligned2);
__ Tbz(ptr, 1, &aligned4);
__ Subs(len, len, 2);
__ B(&process_1byte, lo);
__ Ldrh(array_elem, MemOperand(ptr, 2, PostIndex));
__ Crc32h(out, out, array_elem);
__ Bind(&aligned4);
__ Tbz(ptr, 2, &aligned8);
__ Subs(len, len, 4);
__ B(&process_2bytes, lo);
__ Ldr(array_elem, MemOperand(ptr, 4, PostIndex));
__ Crc32w(out, out, array_elem);
__ Bind(&aligned8);
__ Subs(len, len, 8);
// If len < 8 go to process data by 4 bytes, 2 bytes and a byte.
__ B(&process_4bytes, lo);
// The main loop processing data by 8 bytes.
__ Bind(&loop);
__ Ldr(array_elem.X(), MemOperand(ptr, 8, PostIndex));
__ Subs(len, len, 8);
__ Crc32x(out, out, array_elem.X());
// if len >= 8, process the next 8 bytes.
__ B(&loop, hs);
// Process the data which is less than 8 bytes.
// The code generated below works with values of len
// which come in the range [-8, 0].
// The first three bits are used to detect whether 4 bytes or 2 bytes or
// a byte can be processed.
// The checking order is from bit 2 to bit 0:
// bit 2 is set: at least 4 bytes available
// bit 1 is set: at least 2 bytes available
// bit 0 is set: at least a byte available
__ Bind(&process_4bytes);
// Goto process_2bytes if less than four bytes available
__ Tbz(len, 2, &process_2bytes);
__ Ldr(array_elem, MemOperand(ptr, 4, PostIndex));
__ Crc32w(out, out, array_elem);
__ Bind(&process_2bytes);
// Goto process_1bytes if less than two bytes available
__ Tbz(len, 1, &process_1byte);
__ Ldrh(array_elem, MemOperand(ptr, 2, PostIndex));
__ Crc32h(out, out, array_elem);
__ Bind(&process_1byte);
// Goto done if no bytes available
__ Tbz(len, 0, &done);
__ Ldrb(array_elem, MemOperand(ptr));
__ Crc32b(out, out, array_elem);
__ Bind(&done);
__ Mvn(out, out);
}
// The threshold for sizes of arrays to use the library provided implementation
// of CRC32.updateBytes instead of the intrinsic.
static constexpr int32_t kCRC32UpdateBytesThreshold = 64 * 1024;
void IntrinsicLocationsBuilderARM64::VisitCRC32UpdateBytes(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasCRC()) {
return;
}
LocationSummary* locations =
new (allocator_) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RegisterOrConstant(invoke->InputAt(2)));
locations->SetInAt(3, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
// Lower the invoke of CRC32.updateBytes(int crc, byte[] b, int off, int len)
//
// Note: The intrinsic is not used if len exceeds a threshold.
void IntrinsicCodeGeneratorARM64::VisitCRC32UpdateBytes(HInvoke* invoke) {
DCHECK(codegen_->GetInstructionSetFeatures().HasCRC());
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke);
codegen_->AddSlowPath(slow_path);
Register length = WRegisterFrom(locations->InAt(3));
__ Cmp(length, kCRC32UpdateBytesThreshold);
__ B(slow_path->GetEntryLabel(), hi);
const uint32_t array_data_offset =
mirror::Array::DataOffset(Primitive::kPrimByte).Uint32Value();
Register ptr = XRegisterFrom(locations->GetTemp(0));
Register array = XRegisterFrom(locations->InAt(1));
Location offset = locations->InAt(2);
if (offset.IsConstant()) {
int32_t offset_value = offset.GetConstant()->AsIntConstant()->GetValue();
__ Add(ptr, array, array_data_offset + offset_value);
} else {
__ Add(ptr, array, array_data_offset);
__ Add(ptr, ptr, XRegisterFrom(offset));
}
Register crc = WRegisterFrom(locations->InAt(0));
Register out = WRegisterFrom(locations->Out());
GenerateCodeForCalculationCRC32ValueOfBytes(masm, crc, ptr, length, out);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderARM64::VisitCRC32UpdateByteBuffer(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasCRC()) {
return;
}
LocationSummary* locations =
new (allocator_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
// Lower the invoke of CRC32.updateByteBuffer(int crc, long addr, int off, int len)
//
// There is no need to generate code checking if addr is 0.
// The method updateByteBuffer is a private method of java.util.zip.CRC32.
// This guarantees no calls outside of the CRC32 class.
// An address of DirectBuffer is always passed to the call of updateByteBuffer.
// It might be an implementation of an empty DirectBuffer which can use a zero
// address but it must have the length to be zero. The current generated code
// correctly works with the zero length.
void IntrinsicCodeGeneratorARM64::VisitCRC32UpdateByteBuffer(HInvoke* invoke) {
DCHECK(codegen_->GetInstructionSetFeatures().HasCRC());
MacroAssembler* masm = GetVIXLAssembler();
LocationSummary* locations = invoke->GetLocations();
Register addr = XRegisterFrom(locations->InAt(1));
Register ptr = XRegisterFrom(locations->GetTemp(0));
__ Add(ptr, addr, XRegisterFrom(locations->InAt(2)));
Register crc = WRegisterFrom(locations->InAt(0));
Register length = WRegisterFrom(locations->InAt(3));
Register out = WRegisterFrom(locations->Out());
GenerateCodeForCalculationCRC32ValueOfBytes(masm, crc, ptr, length, out);
}
void IntrinsicLocationsBuilderARM64::VisitFP16ToFloat(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
LocationSummary* locations = new (allocator_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
void IntrinsicCodeGeneratorARM64::VisitFP16ToFloat(HInvoke* invoke) {
DCHECK(codegen_->GetInstructionSetFeatures().HasFP16());
MacroAssembler* masm = GetVIXLAssembler();
UseScratchRegisterScope scratch_scope(masm);
Register bits = InputRegisterAt(invoke, 0);
VRegister out = SRegisterFrom(invoke->GetLocations()->Out());
VRegister half = scratch_scope.AcquireH();
__ Fmov(half, bits); // ARMv8.2
__ Fcvt(out, half);
}
void IntrinsicLocationsBuilderARM64::VisitFP16ToHalf(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
LocationSummary* locations = new (allocator_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM64::VisitFP16ToHalf(HInvoke* invoke) {
DCHECK(codegen_->GetInstructionSetFeatures().HasFP16());
MacroAssembler* masm = GetVIXLAssembler();
UseScratchRegisterScope scratch_scope(masm);
VRegister in = SRegisterFrom(invoke->GetLocations()->InAt(0));
VRegister half = scratch_scope.AcquireH();
Register out = WRegisterFrom(invoke->GetLocations()->Out());
__ Fcvt(half, in);
__ Fmov(out, half);
__ Sxth(out, out); // sign extend due to returning a short type.
}
template<typename OP>
void GenerateFP16Round(HInvoke* invoke,
CodeGeneratorARM64* const codegen_,
MacroAssembler* masm,
const OP roundOp) {
DCHECK(codegen_->GetInstructionSetFeatures().HasFP16());
LocationSummary* locations = invoke->GetLocations();
UseScratchRegisterScope scratch_scope(masm);
Register out = WRegisterFrom(locations->Out());
VRegister half = scratch_scope.AcquireH();
__ Fmov(half, WRegisterFrom(locations->InAt(0)));
roundOp(half, half);
__ Fmov(out, half);
__ Sxth(out, out);
}
void IntrinsicLocationsBuilderARM64::VisitFP16Floor(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitFP16Floor(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
auto roundOp = [masm](const VRegister& out, const VRegister& in) {
__ Frintm(out, in); // Round towards Minus infinity
};
GenerateFP16Round(invoke, codegen_, masm, roundOp);
}
void IntrinsicLocationsBuilderARM64::VisitFP16Ceil(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitFP16Ceil(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
auto roundOp = [masm](const VRegister& out, const VRegister& in) {
__ Frintp(out, in); // Round towards Plus infinity
};
GenerateFP16Round(invoke, codegen_, masm, roundOp);
}
void IntrinsicLocationsBuilderARM64::VisitFP16Rint(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorARM64::VisitFP16Rint(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
auto roundOp = [masm](const VRegister& out, const VRegister& in) {
__ Frintn(out, in); // Round to nearest, with ties to even
};
GenerateFP16Round(invoke, codegen_, masm, roundOp);
}
template<typename OP>
void GenerateFP16Compare(HInvoke* invoke,
CodeGeneratorARM64* codegen,
MacroAssembler* masm,
const OP compareOp) {
DCHECK(codegen->GetInstructionSetFeatures().HasFP16());
LocationSummary* locations = invoke->GetLocations();
Register out = WRegisterFrom(locations->Out());
VRegister half0 = HRegisterFrom(locations->GetTemp(0));
VRegister half1 = HRegisterFrom(locations->GetTemp(1));
__ Fmov(half0, WRegisterFrom(locations->InAt(0)));
__ Fmov(half1, WRegisterFrom(locations->InAt(1)));
compareOp(out, half0, half1);
}
static inline void GenerateFP16Compare(HInvoke* invoke,
CodeGeneratorARM64* codegen,
MacroAssembler* masm,
vixl::aarch64::Condition cond) {
auto compareOp = [masm, cond](const Register out, const VRegister& in0, const VRegister& in1) {
__ Fcmp(in0, in1);
__ Cset(out, cond);
};
GenerateFP16Compare(invoke, codegen, masm, compareOp);
}
void IntrinsicLocationsBuilderARM64::VisitFP16Greater(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
CreateIntIntToIntLocations(allocator_, invoke);
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
void IntrinsicCodeGeneratorARM64::VisitFP16Greater(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
GenerateFP16Compare(invoke, codegen_, masm, gt);
}
void IntrinsicLocationsBuilderARM64::VisitFP16GreaterEquals(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
CreateIntIntToIntLocations(allocator_, invoke);
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
void IntrinsicCodeGeneratorARM64::VisitFP16GreaterEquals(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
GenerateFP16Compare(invoke, codegen_, masm, ge);
}
void IntrinsicLocationsBuilderARM64::VisitFP16Less(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
CreateIntIntToIntLocations(allocator_, invoke);
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
void IntrinsicCodeGeneratorARM64::VisitFP16Less(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
GenerateFP16Compare(invoke, codegen_, masm, mi);
}
void IntrinsicLocationsBuilderARM64::VisitFP16LessEquals(HInvoke* invoke) {
if (!codegen_->GetInstructionSetFeatures().HasFP16()) {
return;
}
CreateIntIntToIntLocations(allocator_, invoke);
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
void IntrinsicCodeGeneratorARM64::VisitFP16LessEquals(HInvoke* invoke) {
MacroAssembler* masm = GetVIXLAssembler();
GenerateFP16Compare(invoke, codegen_, masm, ls);
}
UNIMPLEMENTED_INTRINSIC(ARM64, ReferenceGetReferent)
UNIMPLEMENTED_INTRINSIC(ARM64, StringStringIndexOf);
UNIMPLEMENTED_INTRINSIC(ARM64, StringStringIndexOfAfter);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferAppend);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferLength);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferToString);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendObject);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendString);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendCharSequence);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendCharArray);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendBoolean);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendChar);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendInt);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendLong);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendFloat);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendDouble);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderLength);
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderToString);
// 1.8.
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndAddInt)
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndAddLong)
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetInt)
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetLong)
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetObject)
UNREACHABLE_INTRINSICS(ARM64)
#undef __
} // namespace arm64
} // namespace art