blob: d833631da919f0b83a1435dd648ef7896589b22f [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "semi_space.h"
#include <functional>
#include <numeric>
#include <climits>
#include <vector>
#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex-inl.h"
#include "base/timing_logger.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/accounting/mod_union_table.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/heap.h"
#include "gc/space/bump_pointer_space.h"
#include "gc/space/bump_pointer_space-inl.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "indirect_reference_table.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "mark_sweep-inl.h"
#include "monitor.h"
#include "mirror/art_field.h"
#include "mirror/art_field-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "mirror/object-inl.h"
#include "mirror/object_array.h"
#include "mirror/object_array-inl.h"
#include "runtime.h"
#include "semi_space-inl.h"
#include "thread-inl.h"
#include "thread_list.h"
#include "verifier/method_verifier.h"
using ::art::mirror::Class;
using ::art::mirror::Object;
namespace art {
namespace gc {
namespace collector {
static constexpr bool kProtectFromSpace = true;
static constexpr bool kResetFromSpace = true;
// TODO: Unduplicate logic.
void SemiSpace::ImmuneSpace(space::ContinuousSpace* space) {
// Bind live to mark bitmap if necessary.
if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
BindLiveToMarkBitmap(space);
}
// Add the space to the immune region.
if (immune_begin_ == nullptr) {
DCHECK(immune_end_ == nullptr);
immune_begin_ = reinterpret_cast<Object*>(space->Begin());
immune_end_ = reinterpret_cast<Object*>(space->End());
} else {
const space::ContinuousSpace* prev_space = nullptr;
// Find out if the previous space is immune.
for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
if (cur_space == space) {
break;
}
prev_space = cur_space;
}
// If previous space was immune, then extend the immune region. Relies on continuous spaces
// being sorted by Heap::AddContinuousSpace.
if (prev_space != nullptr && IsImmuneSpace(prev_space)) {
immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
}
}
}
void SemiSpace::BindBitmaps() {
timings_.StartSplit("BindBitmaps");
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
// Mark all of the spaces we never collect as immune.
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
|| space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
ImmuneSpace(space);
}
}
timings_.EndSplit();
}
SemiSpace::SemiSpace(Heap* heap, const std::string& name_prefix)
: GarbageCollector(heap,
name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
mark_stack_(nullptr),
immune_begin_(nullptr),
immune_end_(nullptr),
to_space_(nullptr),
from_space_(nullptr),
soft_reference_list_(nullptr),
weak_reference_list_(nullptr),
finalizer_reference_list_(nullptr),
phantom_reference_list_(nullptr),
cleared_reference_list_(nullptr),
self_(nullptr) {
}
void SemiSpace::InitializePhase() {
timings_.Reset();
base::TimingLogger::ScopedSplit split("InitializePhase", &timings_);
mark_stack_ = heap_->mark_stack_.get();
DCHECK(mark_stack_ != nullptr);
immune_begin_ = nullptr;
immune_end_ = nullptr;
soft_reference_list_ = nullptr;
weak_reference_list_ = nullptr;
finalizer_reference_list_ = nullptr;
phantom_reference_list_ = nullptr;
cleared_reference_list_ = nullptr;
self_ = Thread::Current();
// Do any pre GC verification.
timings_.NewSplit("PreGcVerification");
heap_->PreGcVerification(this);
}
void SemiSpace::ProcessReferences(Thread* self) {
base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
&finalizer_reference_list_, &phantom_reference_list_);
}
void SemiSpace::MarkingPhase() {
Thread* self = Thread::Current();
Locks::mutator_lock_->AssertExclusiveHeld(self);
base::TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
// Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
// wrong space.
heap_->SwapSemiSpaces();
// Assume the cleared space is already empty.
BindBitmaps();
// Process dirty cards and add dirty cards to mod-union tables.
heap_->ProcessCards(timings_);
// Need to do this before the checkpoint since we don't want any threads to add references to
// the live stack during the recursive mark.
timings_.NewSplit("SwapStacks");
heap_->SwapStacks();
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
MarkRoots();
// Mark roots of immune spaces.
UpdateAndMarkModUnion();
// Recursively mark remaining objects.
MarkReachableObjects();
}
bool SemiSpace::IsImmuneSpace(const space::ContinuousSpace* space) const {
return
immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
immune_end_ >= reinterpret_cast<Object*>(space->End());
}
void SemiSpace::UpdateAndMarkModUnion() {
for (auto& space : heap_->GetContinuousSpaces()) {
// If the space is immune then we need to mark the references to other spaces.
if (IsImmuneSpace(space)) {
accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
CHECK(table != nullptr);
// TODO: Improve naming.
base::TimingLogger::ScopedSplit split(
space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
"UpdateAndMarkImageModUnionTable",
&timings_);
table->UpdateAndMarkReferences(MarkRootCallback, this);
}
}
}
void SemiSpace::MarkReachableObjects() {
timings_.StartSplit("MarkStackAsLive");
accounting::ObjectStack* live_stack = heap_->GetLiveStack();
heap_->MarkAllocStackAsLive(live_stack);
live_stack->Reset();
timings_.EndSplit();
// Recursively process the mark stack.
ProcessMarkStack(true);
}
void SemiSpace::ReclaimPhase() {
base::TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
Thread* self = Thread::Current();
ProcessReferences(self);
{
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
SweepSystemWeaks();
}
// Record freed memory.
int from_bytes = from_space_->GetBytesAllocated();
int to_bytes = to_space_->GetBytesAllocated();
int from_objects = from_space_->GetObjectsAllocated();
int to_objects = to_space_->GetObjectsAllocated();
int freed_bytes = from_bytes - to_bytes;
int freed_objects = from_objects - to_objects;
CHECK_GE(freed_bytes, 0);
freed_bytes_.fetch_add(freed_bytes);
freed_objects_.fetch_add(freed_objects);
heap_->RecordFree(static_cast<size_t>(freed_objects), static_cast<size_t>(freed_bytes));
timings_.StartSplit("PreSweepingGcVerification");
heap_->PreSweepingGcVerification(this);
timings_.EndSplit();
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// Reclaim unmarked objects.
Sweep(false);
// Swap the live and mark bitmaps for each space which we modified space. This is an
// optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
// bitmaps.
timings_.StartSplit("SwapBitmaps");
SwapBitmaps();
timings_.EndSplit();
// Unbind the live and mark bitmaps.
UnBindBitmaps();
}
// Release the memory used by the from space.
if (kResetFromSpace) {
// Clearing from space.
from_space_->Clear();
}
// Protect the from space.
VLOG(heap)
<< "mprotect region " << reinterpret_cast<void*>(from_space_->Begin()) << " - "
<< reinterpret_cast<void*>(from_space_->Limit());
if (kProtectFromSpace) {
mprotect(from_space_->Begin(), from_space_->Capacity(), PROT_NONE);
} else {
mprotect(from_space_->Begin(), from_space_->Capacity(), PROT_READ);
}
}
void SemiSpace::ResizeMarkStack(size_t new_size) {
std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
CHECK_LE(mark_stack_->Size(), new_size);
mark_stack_->Resize(new_size);
for (const auto& obj : temp) {
mark_stack_->PushBack(obj);
}
}
inline void SemiSpace::MarkStackPush(Object* obj) {
if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
ResizeMarkStack(mark_stack_->Capacity() * 2);
}
// The object must be pushed on to the mark stack.
mark_stack_->PushBack(obj);
}
// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
bool SemiSpace::MarkLargeObject(const Object* obj) {
// TODO: support >1 discontinuous space.
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
if (UNLIKELY(!large_objects->Test(obj))) {
large_objects->Set(obj);
return true;
}
return false;
}
// Used to mark and copy objects. Any newly-marked objects who are in the from space get moved to
// the to-space and have their forward address updated. Objects which have been newly marked are
// pushed on the mark stack.
Object* SemiSpace::MarkObject(Object* obj) {
Object* ret = obj;
if (obj != nullptr && !IsImmune(obj)) {
if (from_space_->HasAddress(obj)) {
mirror::Object* forward_address = GetForwardingAddressInFromSpace(obj);
// If the object has already been moved, return the new forward address.
if (!to_space_->HasAddress(forward_address)) {
// Otherwise, we need to move the object and add it to the markstack for processing.
size_t object_size = obj->SizeOf();
size_t dummy = 0;
forward_address = to_space_->Alloc(self_, object_size, &dummy);
// Copy over the object and add it to the mark stack since we still need to update it's
// references.
memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
// Make sure to only update the forwarding address AFTER you copy the object so that the
// monitor word doesn't get stomped over.
COMPILE_ASSERT(sizeof(uint32_t) == sizeof(mirror::Object*),
monitor_size_must_be_same_as_object);
obj->SetLockWord(LockWord::FromForwardingAddress(reinterpret_cast<size_t>(forward_address)));
MarkStackPush(forward_address);
}
ret = forward_address;
// TODO: Do we need this if in the else statement?
} else {
accounting::SpaceBitmap* object_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
if (LIKELY(object_bitmap != nullptr)) {
// This object was not previously marked.
if (!object_bitmap->Test(obj)) {
object_bitmap->Set(obj);
MarkStackPush(obj);
}
} else {
DCHECK(!to_space_->HasAddress(obj)) << "Marking object in to_space_";
if (MarkLargeObject(obj)) {
MarkStackPush(obj);
}
}
}
}
return ret;
}
Object* SemiSpace::MarkRootCallback(Object* root, void* arg) {
DCHECK(root != nullptr);
DCHECK(arg != nullptr);
return reinterpret_cast<SemiSpace*>(arg)->MarkObject(root);
}
// Marks all objects in the root set.
void SemiSpace::MarkRoots() {
timings_.StartSplit("MarkRoots");
// TODO: Visit up image roots as well?
Runtime::Current()->VisitRoots(MarkRootCallback, this, false, true);
timings_.EndSplit();
}
void SemiSpace::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
CHECK(space->IsDlMallocSpace());
space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
accounting::SpaceBitmap* mark_bitmap = alloc_space->BindLiveToMarkBitmap();
GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
}
mirror::Object* SemiSpace::GetForwardingAddress(mirror::Object* obj) {
if (from_space_->HasAddress(obj)) {
LOG(FATAL) << "Shouldn't happen!";
return GetForwardingAddressInFromSpace(obj);
}
return obj;
}
mirror::Object* SemiSpace::SystemWeakIsMarkedCallback(Object* object, void* arg) {
return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
}
void SemiSpace::SweepSystemWeaks() {
timings_.StartSplit("SweepSystemWeaks");
Runtime::Current()->SweepSystemWeaks(SystemWeakIsMarkedCallback, this);
timings_.EndSplit();
}
struct SweepCallbackContext {
SemiSpace* mark_sweep;
space::AllocSpace* space;
Thread* self;
};
void SemiSpace::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
SemiSpace* gc = context->mark_sweep;
Heap* heap = gc->GetHeap();
space::AllocSpace* space = context->space;
Thread* self = context->self;
Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
heap->RecordFree(num_ptrs, freed_bytes);
gc->freed_objects_.fetch_add(num_ptrs);
gc->freed_bytes_.fetch_add(freed_bytes);
}
void SemiSpace::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
Heap* heap = context->mark_sweep->GetHeap();
// We don't free any actual memory to avoid dirtying the shared zygote pages.
for (size_t i = 0; i < num_ptrs; ++i) {
Object* obj = static_cast<Object*>(ptrs[i]);
heap->GetLiveBitmap()->Clear(obj);
heap->GetCardTable()->MarkCard(obj);
}
}
void SemiSpace::Sweep(bool swap_bitmaps) {
DCHECK(mark_stack_->IsEmpty());
base::TimingLogger::ScopedSplit("Sweep", &timings_);
const bool partial = (GetGcType() == kGcTypePartial);
SweepCallbackContext scc;
scc.mark_sweep = this;
scc.self = Thread::Current();
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (!space->IsDlMallocSpace()) {
continue;
}
// We always sweep always collect spaces.
bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect);
if (!partial && !sweep_space) {
// We sweep full collect spaces when the GC isn't a partial GC (ie its full).
sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
}
if (sweep_space && space->IsDlMallocSpace()) {
uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
scc.space = space->AsDlMallocSpace();
accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
if (swap_bitmaps) {
std::swap(live_bitmap, mark_bitmap);
}
if (!space->IsZygoteSpace()) {
base::TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_);
// Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
&SweepCallback, reinterpret_cast<void*>(&scc));
} else {
base::TimingLogger::ScopedSplit split("SweepZygote", &timings_);
// Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
// memory.
accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
&ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
}
}
}
SweepLargeObjects(swap_bitmaps);
}
void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
base::TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
// Sweep large objects
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
if (swap_bitmaps) {
std::swap(large_live_objects, large_mark_objects);
}
// O(n*log(n)) but hopefully there are not too many large objects.
size_t freed_objects = 0;
size_t freed_bytes = 0;
Thread* self = Thread::Current();
for (const Object* obj : large_live_objects->GetObjects()) {
if (!large_mark_objects->Test(obj)) {
freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj));
++freed_objects;
}
}
freed_large_objects_.fetch_add(freed_objects);
freed_large_object_bytes_.fetch_add(freed_bytes);
GetHeap()->RecordFree(freed_objects, freed_bytes);
}
// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
// marked, put it on the appropriate list in the heap for later processing.
void SemiSpace::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
DCHECK(klass != nullptr);
DCHECK(klass->IsReferenceClass());
DCHECK(obj != nullptr);
Object* referent = heap_->GetReferenceReferent(obj);
if (referent != nullptr) {
Object* forward_address = GetMarkedForwardAddress(referent);
if (forward_address == nullptr) {
Thread* self = Thread::Current();
// TODO: Remove these locks, and use atomic stacks for storing references?
// We need to check that the references haven't already been enqueued since we can end up
// scanning the same reference multiple times due to dirty cards.
if (klass->IsSoftReferenceClass()) {
MutexLock mu(self, *heap_->GetSoftRefQueueLock());
if (!heap_->IsEnqueued(obj)) {
heap_->EnqueuePendingReference(obj, &soft_reference_list_);
}
} else if (klass->IsWeakReferenceClass()) {
MutexLock mu(self, *heap_->GetWeakRefQueueLock());
if (!heap_->IsEnqueued(obj)) {
heap_->EnqueuePendingReference(obj, &weak_reference_list_);
}
} else if (klass->IsFinalizerReferenceClass()) {
MutexLock mu(self, *heap_->GetFinalizerRefQueueLock());
if (!heap_->IsEnqueued(obj)) {
heap_->EnqueuePendingReference(obj, &finalizer_reference_list_);
}
} else if (klass->IsPhantomReferenceClass()) {
MutexLock mu(self, *heap_->GetPhantomRefQueueLock());
if (!heap_->IsEnqueued(obj)) {
heap_->EnqueuePendingReference(obj, &phantom_reference_list_);
}
} else {
LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
<< klass->GetAccessFlags();
}
} else if (referent != forward_address) {
heap_->SetReferenceReferent(obj, forward_address);
}
}
}
// Visit all of the references of an object and update.
void SemiSpace::ScanObject(Object* obj) {
DCHECK(obj != NULL);
DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
MarkSweep::VisitObjectReferences(obj, [this](Object* obj, Object* ref, const MemberOffset& offset,
bool /* is_static */) ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
mirror::Object* new_address = MarkObject(ref);
if (new_address != ref) {
DCHECK(new_address != nullptr);
obj->SetFieldObject(offset, new_address, false);
}
}, kMovingClasses);
mirror::Class* klass = obj->GetClass();
if (UNLIKELY(klass->IsReferenceClass())) {
DelayReferenceReferent(klass, obj);
}
}
// Scan anything that's on the mark stack.
void SemiSpace::ProcessMarkStack(bool paused) {
timings_.StartSplit(paused ? "(paused)ProcessMarkStack" : "ProcessMarkStack");
while (!mark_stack_->IsEmpty()) {
ScanObject(mark_stack_->PopBack());
}
timings_.EndSplit();
}
// Walks the reference list marking any references subject to the
// reference clearing policy. References with a black referent are
// removed from the list. References with white referents biased
// toward saving are blackened and also removed from the list.
void SemiSpace::PreserveSomeSoftReferences(Object** list) {
DCHECK(list != NULL);
Object* clear = NULL;
size_t counter = 0;
DCHECK(mark_stack_->IsEmpty());
timings_.StartSplit("PreserveSomeSoftReferences");
while (*list != NULL) {
Object* ref = heap_->DequeuePendingReference(list);
Object* referent = heap_->GetReferenceReferent(ref);
if (referent == NULL) {
// Referent was cleared by the user during marking.
continue;
}
Object* forward_address = GetMarkedForwardAddress(referent);
bool is_marked = forward_address != nullptr;
if (!is_marked && ((++counter) & 1)) {
// Referent is white and biased toward saving, mark it.
forward_address = MarkObject(referent);
if (referent != forward_address) {
// Update the referent if we moved it.
heap_->SetReferenceReferent(ref, forward_address);
}
} else {
if (!is_marked) {
// Referent is white, queue it for clearing.
heap_->EnqueuePendingReference(ref, &clear);
} else if (referent != forward_address) {
CHECK(forward_address != nullptr);
heap_->SetReferenceReferent(ref, forward_address);
}
}
}
*list = clear;
timings_.EndSplit();
// Restart the mark with the newly black references added to the root set.
ProcessMarkStack(true);
}
inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
// All immune objects are assumed marked.
if (IsImmune(obj)) {
return obj;
}
if (from_space_->HasAddress(obj)) {
mirror::Object* forwarding_address = GetForwardingAddressInFromSpace(const_cast<Object*>(obj));
// If the object is forwarded then it MUST be marked.
if (to_space_->HasAddress(forwarding_address)) {
return forwarding_address;
}
// Must not be marked, return nullptr;
return nullptr;
} else if (to_space_->HasAddress(obj)) {
// Already forwarded, must be marked.
return obj;
}
return heap_->GetMarkBitmap()->Test(obj) ? obj : nullptr;
}
// Unlink the reference list clearing references objects with white
// referents. Cleared references registered to a reference queue are
// scheduled for appending by the heap worker thread.
void SemiSpace::ClearWhiteReferences(Object** list) {
DCHECK(list != NULL);
while (*list != NULL) {
Object* ref = heap_->DequeuePendingReference(list);
Object* referent = heap_->GetReferenceReferent(ref);
if (referent != nullptr) {
Object* forward_address = GetMarkedForwardAddress(referent);
if (forward_address == nullptr) {
// Referent is white, clear it.
heap_->ClearReferenceReferent(ref);
if (heap_->IsEnqueuable(ref)) {
heap_->EnqueueReference(ref, &cleared_reference_list_);
}
} else if (referent != forward_address) {
heap_->SetReferenceReferent(ref, forward_address);
}
}
}
DCHECK(*list == NULL);
}
// Enqueues finalizer references with white referents. White
// referents are blackened, moved to the zombie field, and the
// referent field is cleared.
void SemiSpace::EnqueueFinalizerReferences(Object** list) {
// *list = NULL;
// return;
DCHECK(list != NULL);
timings_.StartSplit("EnqueueFinalizerReferences");
MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
bool has_enqueued = false;
while (*list != NULL) {
Object* ref = heap_->DequeuePendingReference(list);
Object* referent = heap_->GetReferenceReferent(ref);
if (referent != nullptr) {
Object* forward_address = GetMarkedForwardAddress(referent);
// Not marked.
if (forward_address == nullptr) {
forward_address = MarkObject(referent);
// If the referent is non-null the reference must queuable.
DCHECK(heap_->IsEnqueuable(ref));
// Move the referent to the zombie field.
ref->SetFieldObject(zombie_offset, forward_address, false);
heap_->ClearReferenceReferent(ref);
heap_->EnqueueReference(ref, &cleared_reference_list_);
has_enqueued = true;
} else if (referent != forward_address) {
heap_->SetReferenceReferent(ref, forward_address);
}
}
}
timings_.EndSplit();
if (has_enqueued) {
ProcessMarkStack(true);
}
DCHECK(*list == NULL);
}
// Process reference class instances and schedule finalizations.
void SemiSpace::ProcessReferences(Object** soft_references, bool clear_soft,
Object** weak_references,
Object** finalizer_references,
Object** phantom_references) {
CHECK(soft_references != NULL);
CHECK(weak_references != NULL);
CHECK(finalizer_references != NULL);
CHECK(phantom_references != NULL);
CHECK(mark_stack_->IsEmpty());
// Unless we are in the zygote or required to clear soft references
// with white references, preserve some white referents.
if (!clear_soft && !Runtime::Current()->IsZygote()) {
PreserveSomeSoftReferences(soft_references);
}
timings_.StartSplit("ProcessReferences");
// Clear all remaining soft and weak references with white
// referents.
ClearWhiteReferences(soft_references);
ClearWhiteReferences(weak_references);
timings_.EndSplit();
// Preserve all white objects with finalize methods and schedule
// them for finalization.
EnqueueFinalizerReferences(finalizer_references);
timings_.StartSplit("ProcessReferences");
// Clear all f-reachable soft and weak references with white
// referents.
ClearWhiteReferences(soft_references);
ClearWhiteReferences(weak_references);
// Clear all phantom references with white referents.
ClearWhiteReferences(phantom_references);
// At this point all reference lists should be empty.
DCHECK(*soft_references == NULL);
DCHECK(*weak_references == NULL);
DCHECK(*finalizer_references == NULL);
DCHECK(*phantom_references == NULL);
timings_.EndSplit();
}
void SemiSpace::UnBindBitmaps() {
base::TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->IsDlMallocSpace()) {
space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
if (alloc_space->HasBoundBitmaps()) {
alloc_space->UnBindBitmaps();
heap_->GetMarkBitmap()->ReplaceBitmap(alloc_space->GetLiveBitmap(),
alloc_space->GetMarkBitmap());
}
}
}
}
void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
DCHECK(to_space != nullptr);
to_space_ = to_space;
}
void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
DCHECK(from_space != nullptr);
from_space_ = from_space;
}
void SemiSpace::FinishPhase() {
base::TimingLogger::ScopedSplit split("FinishPhase", &timings_);
// Can't enqueue references if we hold the mutator lock.
Object* cleared_references = GetClearedReferences();
Heap* heap = GetHeap();
timings_.NewSplit("EnqueueClearedReferences");
heap->EnqueueClearedReferences(&cleared_references);
timings_.NewSplit("PostGcVerification");
heap->PostGcVerification(this);
// Null the "to" and "from" spaces since compacting from one to the other isn't valid until
// further action is done by the heap.
to_space_ = nullptr;
from_space_ = nullptr;
// Update the cumulative statistics
total_time_ns_ += GetDurationNs();
total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
std::plus<uint64_t>());
total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
// Ensure that the mark stack is empty.
CHECK(mark_stack_->IsEmpty());
// Update the cumulative loggers.
cumulative_timings_.Start();
cumulative_timings_.AddLogger(timings_);
cumulative_timings_.End();
// Clear all of the spaces' mark bitmaps.
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
if (bitmap != nullptr &&
space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
bitmap->Clear();
}
}
mark_stack_->Reset();
// Reset the marked large objects.
space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
large_objects->GetMarkObjects()->Clear();
}
} // namespace collector
} // namespace gc
} // namespace art