blob: 8234b2467d6a160c9592bf25b830d99b7f79e10f [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_arm.h"
#include "arch/arm/instruction_set_features_arm.h"
#include "art_method.h"
#include "code_generator_arm.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "intrinsics.h"
#include "intrinsics_utils.h"
#include "mirror/array-inl.h"
#include "mirror/string.h"
#include "thread.h"
#include "utils/arm/assembler_arm.h"
namespace art {
namespace arm {
ArmAssembler* IntrinsicCodeGeneratorARM::GetAssembler() {
return codegen_->GetAssembler();
}
ArenaAllocator* IntrinsicCodeGeneratorARM::GetAllocator() {
return codegen_->GetGraph()->GetArena();
}
using IntrinsicSlowPathARM = IntrinsicSlowPath<InvokeDexCallingConventionVisitorARM>;
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<ArmAssembler*>(codegen->GetAssembler())-> // NOLINT
// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
class ReadBarrierSystemArrayCopySlowPathARM : public SlowPathCode {
public:
explicit ReadBarrierSystemArrayCopySlowPathARM(HInstruction* instruction)
: SlowPathCode(instruction) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
DCHECK(locations->CanCall());
DCHECK(instruction_->IsInvokeStaticOrDirect())
<< "Unexpected instruction in read barrier arraycopy slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
int32_t element_size = Primitive::ComponentSize(Primitive::kPrimNot);
uint32_t element_size_shift = Primitive::ComponentSizeShift(Primitive::kPrimNot);
uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
Register dest = locations->InAt(2).AsRegister<Register>();
Location dest_pos = locations->InAt(3);
Register src_curr_addr = locations->GetTemp(0).AsRegister<Register>();
Register dst_curr_addr = locations->GetTemp(1).AsRegister<Register>();
Register src_stop_addr = locations->GetTemp(2).AsRegister<Register>();
Register tmp = locations->GetTemp(3).AsRegister<Register>();
__ Bind(GetEntryLabel());
// Compute the base destination address in `dst_curr_addr`.
if (dest_pos.IsConstant()) {
int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ AddConstant(dst_curr_addr, dest, element_size * constant + offset);
} else {
__ add(dst_curr_addr,
dest,
ShifterOperand(dest_pos.AsRegister<Register>(), LSL, element_size_shift));
__ AddConstant(dst_curr_addr, offset);
}
Label loop;
__ Bind(&loop);
__ ldr(tmp, Address(src_curr_addr, element_size, Address::PostIndex));
__ MaybeUnpoisonHeapReference(tmp);
// TODO: Inline the mark bit check before calling the runtime?
// tmp = ReadBarrier::Mark(tmp);
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
// (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more
// explanations.)
DCHECK_NE(tmp, SP);
DCHECK_NE(tmp, LR);
DCHECK_NE(tmp, PC);
// IP is used internally by the ReadBarrierMarkRegX entry point
// as a temporary (and not preserved). It thus cannot be used by
// any live register in this slow path.
DCHECK_NE(src_curr_addr, IP);
DCHECK_NE(dst_curr_addr, IP);
DCHECK_NE(src_stop_addr, IP);
DCHECK_NE(tmp, IP);
DCHECK(0 <= tmp && tmp < kNumberOfCoreRegisters) << tmp;
int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp);
// This runtime call does not require a stack map.
arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
__ MaybePoisonHeapReference(tmp);
__ str(tmp, Address(dst_curr_addr, element_size, Address::PostIndex));
__ cmp(src_curr_addr, ShifterOperand(src_stop_addr));
__ b(&loop, NE);
__ b(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierSystemArrayCopySlowPathARM"; }
private:
DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARM);
};
#undef __
IntrinsicLocationsBuilderARM::IntrinsicLocationsBuilderARM(CodeGeneratorARM* codegen)
: arena_(codegen->GetGraph()->GetArena()),
assembler_(codegen->GetAssembler()),
features_(codegen->GetInstructionSetFeatures()) {}
bool IntrinsicLocationsBuilderARM::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
if (res == nullptr) {
return false;
}
return res->Intrinsified();
}
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
if (is64bit) {
__ vmovrrd(output.AsRegisterPairLow<Register>(),
output.AsRegisterPairHigh<Register>(),
FromLowSToD(input.AsFpuRegisterPairLow<SRegister>()));
} else {
__ vmovrs(output.AsRegister<Register>(), input.AsFpuRegister<SRegister>());
}
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
if (is64bit) {
__ vmovdrr(FromLowSToD(output.AsFpuRegisterPairLow<SRegister>()),
input.AsRegisterPairLow<Register>(),
input.AsRegisterPairHigh<Register>());
} else {
__ vmovsr(output.AsFpuRegister<SRegister>(), input.AsRegister<Register>());
}
}
void IntrinsicLocationsBuilderARM::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderARM::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
void IntrinsicCodeGeneratorARM::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderARM::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
void IntrinsicCodeGeneratorARM::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
}
static void GenNumberOfLeadingZeros(LocationSummary* locations,
Primitive::Type type,
ArmAssembler* assembler) {
Location in = locations->InAt(0);
Register out = locations->Out().AsRegister<Register>();
DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
if (type == Primitive::kPrimLong) {
Register in_reg_lo = in.AsRegisterPairLow<Register>();
Register in_reg_hi = in.AsRegisterPairHigh<Register>();
Label end;
__ clz(out, in_reg_hi);
__ CompareAndBranchIfNonZero(in_reg_hi, &end);
__ clz(out, in_reg_lo);
__ AddConstant(out, 32);
__ Bind(&end);
} else {
__ clz(out, in.AsRegister<Register>());
}
}
void IntrinsicLocationsBuilderARM::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
}
static void GenNumberOfTrailingZeros(LocationSummary* locations,
Primitive::Type type,
ArmAssembler* assembler) {
DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
Register out = locations->Out().AsRegister<Register>();
if (type == Primitive::kPrimLong) {
Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Label end;
__ rbit(out, in_reg_lo);
__ clz(out, out);
__ CompareAndBranchIfNonZero(in_reg_lo, &end);
__ rbit(out, in_reg_hi);
__ clz(out, out);
__ AddConstant(out, 32);
__ Bind(&end);
} else {
Register in = locations->InAt(0).AsRegister<Register>();
__ rbit(out, in);
__ clz(out, out);
}
}
void IntrinsicLocationsBuilderARM::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
}
static void MathAbsFP(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) {
Location in = locations->InAt(0);
Location out = locations->Out();
if (is64bit) {
__ vabsd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
} else {
__ vabss(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
}
}
void IntrinsicLocationsBuilderARM::VisitMathAbsDouble(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAbsDouble(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitMathAbsFloat(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAbsFloat(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
locations->AddTemp(Location::RequiresRegister());
}
static void GenAbsInteger(LocationSummary* locations,
bool is64bit,
ArmAssembler* assembler) {
Location in = locations->InAt(0);
Location output = locations->Out();
Register mask = locations->GetTemp(0).AsRegister<Register>();
if (is64bit) {
Register in_reg_lo = in.AsRegisterPairLow<Register>();
Register in_reg_hi = in.AsRegisterPairHigh<Register>();
Register out_reg_lo = output.AsRegisterPairLow<Register>();
Register out_reg_hi = output.AsRegisterPairHigh<Register>();
DCHECK_NE(out_reg_lo, in_reg_hi) << "Diagonal overlap unexpected.";
__ Asr(mask, in_reg_hi, 31);
__ adds(out_reg_lo, in_reg_lo, ShifterOperand(mask));
__ adc(out_reg_hi, in_reg_hi, ShifterOperand(mask));
__ eor(out_reg_lo, mask, ShifterOperand(out_reg_lo));
__ eor(out_reg_hi, mask, ShifterOperand(out_reg_hi));
} else {
Register in_reg = in.AsRegister<Register>();
Register out_reg = output.AsRegister<Register>();
__ Asr(mask, in_reg, 31);
__ add(out_reg, in_reg, ShifterOperand(mask));
__ eor(out_reg, mask, ShifterOperand(out_reg));
}
}
void IntrinsicLocationsBuilderARM::VisitMathAbsInt(HInvoke* invoke) {
CreateIntToIntPlusTemp(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAbsInt(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitMathAbsLong(HInvoke* invoke) {
CreateIntToIntPlusTemp(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAbsLong(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
static void GenMinMax(LocationSummary* locations,
bool is_min,
ArmAssembler* assembler) {
Register op1 = locations->InAt(0).AsRegister<Register>();
Register op2 = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ cmp(op1, ShifterOperand(op2));
__ it((is_min) ? Condition::LT : Condition::GT, kItElse);
__ mov(out, ShifterOperand(op1), is_min ? Condition::LT : Condition::GT);
__ mov(out, ShifterOperand(op2), is_min ? Condition::GE : Condition::LE);
}
static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void IntrinsicLocationsBuilderARM::VisitMathMinIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathMinIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), /* is_min */ true, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitMathMaxIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathMaxIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), /* is_min */ false, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
ArmAssembler* assembler = GetAssembler();
__ vsqrtd(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPeekByte(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
__ ldrsb(invoke->GetLocations()->Out().AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPeekIntNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
__ ldr(invoke->GetLocations()->Out().AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPeekLongNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
Register addr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
// Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
// exception. So we can't use ldrd as addr may be unaligned.
Register lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>();
Register hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>();
if (addr == lo) {
__ ldr(hi, Address(addr, 4));
__ ldr(lo, Address(addr, 0));
} else {
__ ldr(lo, Address(addr, 0));
__ ldr(hi, Address(addr, 4));
}
}
void IntrinsicLocationsBuilderARM::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPeekShortNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
__ ldrsh(invoke->GetLocations()->Out().AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
void IntrinsicLocationsBuilderARM::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPokeByte(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ strb(invoke->GetLocations()->InAt(1).AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPokeIntNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ str(invoke->GetLocations()->InAt(1).AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPokeLongNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
Register addr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
// Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
// exception. So we can't use ldrd as addr may be unaligned.
__ str(invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>(), Address(addr, 0));
__ str(invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>(), Address(addr, 4));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPokeShortNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ strh(invoke->GetLocations()->InAt(1).AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM::VisitThreadCurrentThread(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ LoadFromOffset(kLoadWord,
invoke->GetLocations()->Out().AsRegister<Register>(),
TR,
Thread::PeerOffset<kArmPointerSize>().Int32Value());
}
static void GenUnsafeGet(HInvoke* invoke,
Primitive::Type type,
bool is_volatile,
CodeGeneratorARM* codegen) {
LocationSummary* locations = invoke->GetLocations();
ArmAssembler* assembler = codegen->GetAssembler();
Location base_loc = locations->InAt(1);
Register base = base_loc.AsRegister<Register>(); // Object pointer.
Location offset_loc = locations->InAt(2);
Register offset = offset_loc.AsRegisterPairLow<Register>(); // Long offset, lo part only.
Location trg_loc = locations->Out();
switch (type) {
case Primitive::kPrimInt: {
Register trg = trg_loc.AsRegister<Register>();
__ ldr(trg, Address(base, offset));
if (is_volatile) {
__ dmb(ISH);
}
break;
}
case Primitive::kPrimNot: {
Register trg = trg_loc.AsRegister<Register>();
if (kEmitCompilerReadBarrier) {
if (kUseBakerReadBarrier) {
Location temp = locations->GetTemp(0);
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke, trg_loc, base, 0U, offset_loc, TIMES_1, temp, /* needs_null_check */ false);
if (is_volatile) {
__ dmb(ISH);
}
} else {
__ ldr(trg, Address(base, offset));
if (is_volatile) {
__ dmb(ISH);
}
codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc);
}
} else {
__ ldr(trg, Address(base, offset));
if (is_volatile) {
__ dmb(ISH);
}
__ MaybeUnpoisonHeapReference(trg);
}
break;
}
case Primitive::kPrimLong: {
Register trg_lo = trg_loc.AsRegisterPairLow<Register>();
__ add(IP, base, ShifterOperand(offset));
if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
Register trg_hi = trg_loc.AsRegisterPairHigh<Register>();
__ ldrexd(trg_lo, trg_hi, IP);
} else {
__ ldrd(trg_lo, Address(IP));
}
if (is_volatile) {
__ dmb(ISH);
}
break;
}
default:
LOG(FATAL) << "Unexpected type " << type;
UNREACHABLE();
}
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
HInvoke* invoke,
Primitive::Type type) {
bool can_call = kEmitCompilerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
LocationSummary* locations = new (arena) LocationSummary(invoke,
(can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall),
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(),
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// We need a temporary register for the read barrier marking slow
// path in InstructionCodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier.
locations->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
}
static void CreateIntIntIntIntToVoid(ArenaAllocator* arena,
const ArmInstructionSetFeatures& features,
Primitive::Type type,
bool is_volatile,
HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
if (type == Primitive::kPrimLong) {
// Potentially need temps for ldrexd-strexd loop.
if (is_volatile && !features.HasAtomicLdrdAndStrd()) {
locations->AddTemp(Location::RequiresRegister()); // Temp_lo.
locations->AddTemp(Location::RequiresRegister()); // Temp_hi.
}
} else if (type == Primitive::kPrimNot) {
// Temps for card-marking.
locations->AddTemp(Location::RequiresRegister()); // Temp.
locations->AddTemp(Location::RequiresRegister()); // Card.
}
}
void IntrinsicLocationsBuilderARM::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ true, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ true, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoid(
arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(
arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(
arena_, features_, Primitive::kPrimLong, /* is_volatile */ true, invoke);
}
static void GenUnsafePut(LocationSummary* locations,
Primitive::Type type,
bool is_volatile,
bool is_ordered,
CodeGeneratorARM* codegen) {
ArmAssembler* assembler = codegen->GetAssembler();
Register base = locations->InAt(1).AsRegister<Register>(); // Object pointer.
Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); // Long offset, lo part only.
Register value;
if (is_volatile || is_ordered) {
__ dmb(ISH);
}
if (type == Primitive::kPrimLong) {
Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>();
value = value_lo;
if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
Register temp_lo = locations->GetTemp(0).AsRegister<Register>();
Register temp_hi = locations->GetTemp(1).AsRegister<Register>();
Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>();
__ add(IP, base, ShifterOperand(offset));
Label loop_head;
__ Bind(&loop_head);
__ ldrexd(temp_lo, temp_hi, IP);
__ strexd(temp_lo, value_lo, value_hi, IP);
__ cmp(temp_lo, ShifterOperand(0));
__ b(&loop_head, NE);
} else {
__ add(IP, base, ShifterOperand(offset));
__ strd(value_lo, Address(IP));
}
} else {
value = locations->InAt(3).AsRegister<Register>();
Register source = value;
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
__ Mov(temp, value);
__ PoisonHeapReference(temp);
source = temp;
}
__ str(source, Address(base, offset));
}
if (is_volatile) {
__ dmb(ISH);
}
if (type == Primitive::kPrimNot) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register card = locations->GetTemp(1).AsRegister<Register>();
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(temp, card, base, value, value_can_be_null);
}
}
void IntrinsicCodeGeneratorARM::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ false,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ false,
/* is_ordered */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ true,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ false,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ false,
/* is_ordered */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ true,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ false,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ false,
/* is_ordered */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ true,
/* is_ordered */ false,
codegen_);
}
static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena,
HInvoke* invoke,
Primitive::Type type) {
bool can_call = kEmitCompilerReadBarrier &&
kUseBakerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
LocationSummary* locations = new (arena) LocationSummary(invoke,
(can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall),
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
// If heap poisoning is enabled, we don't want the unpoisoning
// operations to potentially clobber the output. Likewise when
// emitting a (Baker) read barrier, which may call.
Location::OutputOverlap overlaps =
((kPoisonHeapReferences && type == Primitive::kPrimNot) || can_call)
? Location::kOutputOverlap
: Location::kNoOutputOverlap;
locations->SetOut(Location::RequiresRegister(), overlaps);
// Temporary registers used in CAS. In the object case
// (UnsafeCASObject intrinsic), these are also used for
// card-marking, and possibly for (Baker) read barrier.
locations->AddTemp(Location::RequiresRegister()); // Pointer.
locations->AddTemp(Location::RequiresRegister()); // Temp 1.
}
static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorARM* codegen) {
DCHECK_NE(type, Primitive::kPrimLong);
ArmAssembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>(); // Boolean result.
Register base = locations->InAt(1).AsRegister<Register>(); // Object pointer.
Location offset_loc = locations->InAt(2);
Register offset = offset_loc.AsRegisterPairLow<Register>(); // Offset (discard high 4B).
Register expected = locations->InAt(3).AsRegister<Register>(); // Expected.
Register value = locations->InAt(4).AsRegister<Register>(); // Value.
Location tmp_ptr_loc = locations->GetTemp(0);
Register tmp_ptr = tmp_ptr_loc.AsRegister<Register>(); // Pointer to actual memory.
Register tmp = locations->GetTemp(1).AsRegister<Register>(); // Value in memory.
if (type == Primitive::kPrimNot) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
// Mark card for object assuming new value is stored. Worst case we will mark an unchanged
// object and scan the receiver at the next GC for nothing.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null);
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// Need to make sure the reference stored in the field is a to-space
// one before attempting the CAS or the CAS could fail incorrectly.
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke,
out_loc, // Unused, used only as a "temporary" within the read barrier.
base,
/* offset */ 0u,
/* index */ offset_loc,
ScaleFactor::TIMES_1,
tmp_ptr_loc,
/* needs_null_check */ false,
/* always_update_field */ true,
&tmp);
}
}
// Prevent reordering with prior memory operations.
// Emit a DMB ISH instruction instead of an DMB ISHST one, as the
// latter allows a preceding load to be delayed past the STXR
// instruction below.
__ dmb(ISH);
__ add(tmp_ptr, base, ShifterOperand(offset));
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
__ PoisonHeapReference(expected);
if (value == expected) {
// Do not poison `value`, as it is the same register as
// `expected`, which has just been poisoned.
} else {
__ PoisonHeapReference(value);
}
}
// do {
// tmp = [r_ptr] - expected;
// } while (tmp == 0 && failure([r_ptr] <- r_new_value));
// result = tmp != 0;
Label loop_head;
__ Bind(&loop_head);
__ ldrex(tmp, tmp_ptr);
__ subs(tmp, tmp, ShifterOperand(expected));
__ it(EQ, ItState::kItT);
__ strex(tmp, value, tmp_ptr, EQ);
__ cmp(tmp, ShifterOperand(1), EQ);
__ b(&loop_head, EQ);
__ dmb(ISH);
__ rsbs(out, tmp, ShifterOperand(1));
__ it(CC);
__ mov(out, ShifterOperand(0), CC);
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
__ UnpoisonHeapReference(expected);
if (value == expected) {
// Do not unpoison `value`, as it is the same register as
// `expected`, which has just been unpoisoned.
} else {
__ UnpoisonHeapReference(value);
}
}
}
void IntrinsicLocationsBuilderARM::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimInt);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimNot);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeCASInt(HInvoke* invoke) {
GenCas(invoke, Primitive::kPrimInt, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
GenCas(invoke, Primitive::kPrimNot, codegen_);
}
void IntrinsicLocationsBuilderARM::VisitStringCompareTo(HInvoke* invoke) {
// The inputs plus one temp.
LocationSummary* locations = new (arena_) LocationSummary(invoke,
invoke->InputAt(1)->CanBeNull()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
// Need temporary registers for String compression's feature.
if (mirror::kUseStringCompression) {
locations->AddTemp(Location::RequiresRegister());
}
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitStringCompareTo(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register str = locations->InAt(0).AsRegister<Register>();
Register arg = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
Register temp0 = locations->GetTemp(0).AsRegister<Register>();
Register temp1 = locations->GetTemp(1).AsRegister<Register>();
Register temp2 = locations->GetTemp(2).AsRegister<Register>();
Register temp3;
if (mirror::kUseStringCompression) {
temp3 = locations->GetTemp(3).AsRegister<Register>();
}
Label loop;
Label find_char_diff;
Label end;
Label different_compression;
// Get offsets of count and value fields within a string object.
const int32_t count_offset = mirror::String::CountOffset().Int32Value();
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Take slow path and throw if input can be and is null.
SlowPathCode* slow_path = nullptr;
const bool can_slow_path = invoke->InputAt(1)->CanBeNull();
if (can_slow_path) {
slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(slow_path);
__ CompareAndBranchIfZero(arg, slow_path->GetEntryLabel());
}
// Reference equality check, return 0 if same reference.
__ subs(out, str, ShifterOperand(arg));
__ b(&end, EQ);
if (mirror::kUseStringCompression) {
// Load `count` fields of this and argument strings.
__ ldr(temp3, Address(str, count_offset));
__ ldr(temp2, Address(arg, count_offset));
// Extract lengths from the `count` fields.
__ Lsr(temp0, temp3, 1u);
__ Lsr(temp1, temp2, 1u);
} else {
// Load lengths of this and argument strings.
__ ldr(temp0, Address(str, count_offset));
__ ldr(temp1, Address(arg, count_offset));
}
// out = length diff.
__ subs(out, temp0, ShifterOperand(temp1));
// temp0 = min(len(str), len(arg)).
__ it(GT);
__ mov(temp0, ShifterOperand(temp1), GT);
// Shorter string is empty?
__ CompareAndBranchIfZero(temp0, &end);
if (mirror::kUseStringCompression) {
// Check if both strings using same compression style to use this comparison loop.
__ eor(temp2, temp2, ShifterOperand(temp3));
__ Lsrs(temp2, temp2, 1u);
__ b(&different_compression, CS);
// For string compression, calculate the number of bytes to compare (not chars).
// This could in theory exceed INT32_MAX, so treat temp0 as unsigned.
__ Lsls(temp3, temp3, 31u); // Extract purely the compression flag.
__ it(NE);
__ add(temp0, temp0, ShifterOperand(temp0), NE);
}
// Store offset of string value in preparation for comparison loop.
__ mov(temp1, ShifterOperand(value_offset));
// Assertions that must hold in order to compare multiple characters at a time.
CHECK_ALIGNED(value_offset, 8);
static_assert(IsAligned<8>(kObjectAlignment),
"String data must be 8-byte aligned for unrolled CompareTo loop.");
const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
DCHECK_EQ(char_size, 2u);
Label find_char_diff_2nd_cmp;
// Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment).
__ Bind(&loop);
__ ldr(IP, Address(str, temp1));
__ ldr(temp2, Address(arg, temp1));
__ cmp(IP, ShifterOperand(temp2));
__ b(&find_char_diff, NE);
__ add(temp1, temp1, ShifterOperand(char_size * 2));
__ ldr(IP, Address(str, temp1));
__ ldr(temp2, Address(arg, temp1));
__ cmp(IP, ShifterOperand(temp2));
__ b(&find_char_diff_2nd_cmp, NE);
__ add(temp1, temp1, ShifterOperand(char_size * 2));
// With string compression, we have compared 8 bytes, otherwise 4 chars.
__ subs(temp0, temp0, ShifterOperand(mirror::kUseStringCompression ? 8 : 4));
__ b(&loop, HI);
__ b(&end);
__ Bind(&find_char_diff_2nd_cmp);
if (mirror::kUseStringCompression) {
__ subs(temp0, temp0, ShifterOperand(4)); // 4 bytes previously compared.
__ b(&end, LS); // Was the second comparison fully beyond the end?
} else {
// Without string compression, we can start treating temp0 as signed
// and rely on the signed comparison below.
__ sub(temp0, temp0, ShifterOperand(2));
}
// Find the single character difference.
__ Bind(&find_char_diff);
// Get the bit position of the first character that differs.
__ eor(temp1, temp2, ShifterOperand(IP));
__ rbit(temp1, temp1);
__ clz(temp1, temp1);
// temp0 = number of characters remaining to compare.
// (Without string compression, it could be < 1 if a difference is found by the second CMP
// in the comparison loop, and after the end of the shorter string data).
// Without string compression (temp1 >> 4) = character where difference occurs between the last
// two words compared, in the interval [0,1].
// (0 for low half-word different, 1 for high half-word different).
// With string compression, (temp1 << 3) = byte where the difference occurs,
// in the interval [0,3].
// If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside
// the remaining string data, so just return length diff (out).
// The comparison is unsigned for string compression, otherwise signed.
__ cmp(temp0, ShifterOperand(temp1, LSR, mirror::kUseStringCompression ? 3 : 4));
__ b(&end, mirror::kUseStringCompression ? LS : LE);
// Extract the characters and calculate the difference.
if (mirror::kUseStringCompression) {
// For compressed strings we need to clear 0x7 from temp1, for uncompressed we need to clear
// 0xf. We also need to prepare the character extraction mask `uncompressed ? 0xffffu : 0xffu`.
// The compression flag is now in the highest bit of temp3, so let's play some tricks.
__ orr(temp3, temp3, ShifterOperand(0xffu << 23)); // uncompressed ? 0xff800000u : 0x7ff80000u
__ bic(temp1, temp1, ShifterOperand(temp3, LSR, 31 - 3)); // &= ~(uncompressed ? 0xfu : 0x7u)
__ Asr(temp3, temp3, 7u); // uncompressed ? 0xffff0000u : 0xff0000u.
__ Lsr(temp2, temp2, temp1); // Extract second character.
__ Lsr(temp3, temp3, 16u); // uncompressed ? 0xffffu : 0xffu
__ Lsr(out, IP, temp1); // Extract first character.
__ and_(temp2, temp2, ShifterOperand(temp3));
__ and_(out, out, ShifterOperand(temp3));
} else {
__ bic(temp1, temp1, ShifterOperand(0xf));
__ Lsr(temp2, temp2, temp1);
__ Lsr(out, IP, temp1);
__ movt(temp2, 0);
__ movt(out, 0);
}
__ sub(out, out, ShifterOperand(temp2));
if (mirror::kUseStringCompression) {
__ b(&end);
__ Bind(&different_compression);
// Comparison for different compression style.
const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
DCHECK_EQ(c_char_size, 1u);
// We want to free up the temp3, currently holding `str.count`, for comparison.
// So, we move it to the bottom bit of the iteration count `temp0` which we tnen
// need to treat as unsigned. Start by freeing the bit with an ADD and continue
// further down by a LSRS+SBC which will flip the meaning of the flag but allow
// `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition.
__ add(temp0, temp0, ShifterOperand(temp0)); // Unlike LSL, this ADD is always 16-bit.
// `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer.
__ mov(temp1, ShifterOperand(str));
__ mov(temp2, ShifterOperand(arg));
__ Lsrs(temp3, temp3, 1u); // Continue the move of the compression flag.
__ it(CS, kItThen); // Interleave with selection of temp1 and temp2.
__ mov(temp1, ShifterOperand(arg), CS); // Preserves flags.
__ mov(temp2, ShifterOperand(str), CS); // Preserves flags.
__ sbc(temp0, temp0, ShifterOperand(0)); // Complete the move of the compression flag.
// Adjust temp1 and temp2 from string pointers to data pointers.
__ add(temp1, temp1, ShifterOperand(value_offset));
__ add(temp2, temp2, ShifterOperand(value_offset));
Label different_compression_loop;
Label different_compression_diff;
// Main loop for different compression.
__ Bind(&different_compression_loop);
__ ldrb(IP, Address(temp1, c_char_size, Address::PostIndex));
__ ldrh(temp3, Address(temp2, char_size, Address::PostIndex));
__ cmp(IP, ShifterOperand(temp3));
__ b(&different_compression_diff, NE);
__ subs(temp0, temp0, ShifterOperand(2));
__ b(&different_compression_loop, HI);
__ b(&end);
// Calculate the difference.
__ Bind(&different_compression_diff);
__ sub(out, IP, ShifterOperand(temp3));
// Flip the difference if the `arg` is compressed.
// `temp0` contains inverted `str` compression flag, i.e the same as `arg` compression flag.
__ Lsrs(temp0, temp0, 1u);
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ it(CC);
__ rsb(out, out, ShifterOperand(0), CC);
}
__ Bind(&end);
if (can_slow_path) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderARM::VisitStringEquals(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Temporary registers to store lengths of strings and for calculations.
// Using instruction cbz requires a low register, so explicitly set a temp to be R0.
locations->AddTemp(Location::RegisterLocation(R0));
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM::VisitStringEquals(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register str = locations->InAt(0).AsRegister<Register>();
Register arg = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register temp1 = locations->GetTemp(1).AsRegister<Register>();
Register temp2 = locations->GetTemp(2).AsRegister<Register>();
Label loop;
Label end;
Label return_true;
Label return_false;
// Get offsets of count, value, and class fields within a string object.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
StringEqualsOptimizations optimizations(invoke);
if (!optimizations.GetArgumentNotNull()) {
// Check if input is null, return false if it is.
__ CompareAndBranchIfZero(arg, &return_false);
}
// Reference equality check, return true if same reference.
__ cmp(str, ShifterOperand(arg));
__ b(&return_true, EQ);
if (!optimizations.GetArgumentIsString()) {
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
__ ldr(temp, Address(str, class_offset));
__ ldr(temp1, Address(arg, class_offset));
__ cmp(temp, ShifterOperand(temp1));
__ b(&return_false, NE);
}
// Load `count` fields of this and argument strings.
__ ldr(temp, Address(str, count_offset));
__ ldr(temp1, Address(arg, count_offset));
// Check if `count` fields are equal, return false if they're not.
// Also compares the compression style, if differs return false.
__ cmp(temp, ShifterOperand(temp1));
__ b(&return_false, NE);
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ cbz(temp, &return_true);
// Assertions that must hold in order to compare strings 4 bytes at a time.
DCHECK_ALIGNED(value_offset, 4);
static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare.");
if (mirror::kUseStringCompression) {
// For string compression, calculate the number of bytes to compare (not chars).
// This could in theory exceed INT32_MAX, so treat temp as unsigned.
__ Lsrs(temp, temp, 1u); // Extract length and check compression flag.
__ it(CS); // If uncompressed,
__ add(temp, temp, ShifterOperand(temp), CS); // double the byte count.
}
// Store offset of string value in preparation for comparison loop.
__ LoadImmediate(temp1, value_offset);
// Loop to compare strings 4 bytes at a time starting at the front of the string.
// Ok to do this because strings are zero-padded to kObjectAlignment.
__ Bind(&loop);
__ ldr(out, Address(str, temp1));
__ ldr(temp2, Address(arg, temp1));
__ add(temp1, temp1, ShifterOperand(sizeof(uint32_t)));
__ cmp(out, ShifterOperand(temp2));
__ b(&return_false, NE);
// With string compression, we have compared 4 bytes, otherwise 2 chars.
__ subs(temp, temp, ShifterOperand(mirror::kUseStringCompression ? 4 : 2));
__ b(&loop, HI);
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ LoadImmediate(out, 1);
__ b(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ LoadImmediate(out, 0);
__ Bind(&end);
}
static void GenerateVisitStringIndexOf(HInvoke* invoke,
ArmAssembler* assembler,
CodeGeneratorARM* codegen,
ArenaAllocator* allocator,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCode* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) >
std::numeric_limits<uint16_t>::max()) {
// Always needs the slow-path. We could directly dispatch to it, but this case should be
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
slow_path = new (allocator) IntrinsicSlowPathARM(invoke);
codegen->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != Primitive::kPrimChar) {
Register char_reg = locations->InAt(1).AsRegister<Register>();
// 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`.
__ cmp(char_reg,
ShifterOperand(static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1));
slow_path = new (allocator) IntrinsicSlowPathARM(invoke);
codegen->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), HS);
}
if (start_at_zero) {
Register tmp_reg = locations->GetTemp(0).AsRegister<Register>();
DCHECK_EQ(tmp_reg, R2);
// Start-index = 0.
__ LoadImmediate(tmp_reg, 0);
}
codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderARM::VisitStringIndexOf(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
// best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(R0));
// Need to send start-index=0.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
}
void IntrinsicCodeGeneratorARM::VisitStringIndexOf(HInvoke* invoke) {
GenerateVisitStringIndexOf(
invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
}
void IntrinsicLocationsBuilderARM::VisitStringIndexOfAfter(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
// best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(R0));
}
void IntrinsicCodeGeneratorARM::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateVisitStringIndexOf(
invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
}
void IntrinsicLocationsBuilderARM::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
locations->SetOut(Location::RegisterLocation(R0));
}
void IntrinsicCodeGeneratorARM::VisitStringNewStringFromBytes(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register byte_array = locations->InAt(0).AsRegister<Register>();
__ cmp(byte_array, ShifterOperand(0));
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), EQ);
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderARM::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainOnly,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(R0));
}
void IntrinsicCodeGeneratorARM::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
}
void IntrinsicLocationsBuilderARM::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetOut(Location::RegisterLocation(R0));
}
void IntrinsicCodeGeneratorARM::VisitStringNewStringFromString(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register string_to_copy = locations->InAt(0).AsRegister<Register>();
__ cmp(string_to_copy, ShifterOperand(0));
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), EQ);
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderARM::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
LocationSummary* locations = invoke->GetLocations();
if (locations == nullptr) {
return;
}
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) {
locations->SetInAt(1, Location::RequiresRegister());
}
if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) {
locations->SetInAt(3, Location::RequiresRegister());
}
if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) {
locations->SetInAt(4, Location::RequiresRegister());
}
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// Temporary register IP cannot be used in
// ReadBarrierSystemArrayCopySlowPathARM (because that register
// is clobbered by ReadBarrierMarkRegX entry points). Get an extra
// temporary register from the register allocator.
locations->AddTemp(Location::RequiresRegister());
}
}
static void CheckPosition(ArmAssembler* assembler,
Location pos,
Register input,
Location length,
SlowPathCode* slow_path,
Register temp,
bool length_is_input_length = false) {
// Where is the length in the Array?
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
if (pos_const == 0) {
if (!length_is_input_length) {
// Check that length(input) >= length.
__ LoadFromOffset(kLoadWord, temp, input, length_offset);
if (length.IsConstant()) {
__ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmp(temp, ShifterOperand(length.AsRegister<Register>()));
}
__ b(slow_path->GetEntryLabel(), LT);
}
} else {
// Check that length(input) >= pos.
__ LoadFromOffset(kLoadWord, temp, input, length_offset);
__ subs(temp, temp, ShifterOperand(pos_const));
__ b(slow_path->GetEntryLabel(), LT);
// Check that (length(input) - pos) >= length.
if (length.IsConstant()) {
__ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmp(temp, ShifterOperand(length.AsRegister<Register>()));
}
__ b(slow_path->GetEntryLabel(), LT);
}
} else if (length_is_input_length) {
// The only way the copy can succeed is if pos is zero.
Register pos_reg = pos.AsRegister<Register>();
__ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel());
} else {
// Check that pos >= 0.
Register pos_reg = pos.AsRegister<Register>();
__ cmp(pos_reg, ShifterOperand(0));
__ b(slow_path->GetEntryLabel(), LT);
// Check that pos <= length(input).
__ LoadFromOffset(kLoadWord, temp, input, length_offset);
__ subs(temp, temp, ShifterOperand(pos_reg));
__ b(slow_path->GetEntryLabel(), LT);
// Check that (length(input) - pos) >= length.
if (length.IsConstant()) {
__ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmp(temp, ShifterOperand(length.AsRegister<Register>()));
}
__ b(slow_path->GetEntryLabel(), LT);
}
}
void IntrinsicCodeGeneratorARM::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
Register src = locations->InAt(0).AsRegister<Register>();
Location src_pos = locations->InAt(1);
Register dest = locations->InAt(2).AsRegister<Register>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
Location temp1_loc = locations->GetTemp(0);
Register temp1 = temp1_loc.AsRegister<Register>();
Location temp2_loc = locations->GetTemp(1);
Register temp2 = temp2_loc.AsRegister<Register>();
Location temp3_loc = locations->GetTemp(2);
Register temp3 = temp3_loc.AsRegister<Register>();
SlowPathCode* intrinsic_slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(intrinsic_slow_path);
Label conditions_on_positions_validated;
SystemArrayCopyOptimizations optimizations(invoke);
// If source and destination are the same, we go to slow path if we need to do
// forward copying.
if (src_pos.IsConstant()) {
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
if (optimizations.GetDestinationIsSource()) {
// Checked when building locations.
DCHECK_GE(src_pos_constant, dest_pos_constant);
} else if (src_pos_constant < dest_pos_constant) {
__ cmp(src, ShifterOperand(dest));
__ b(intrinsic_slow_path->GetEntryLabel(), EQ);
}
// Checked when building locations.
DCHECK(!optimizations.GetDestinationIsSource()
|| (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue()));
} else {
if (!optimizations.GetDestinationIsSource()) {
__ cmp(src, ShifterOperand(dest));
__ b(&conditions_on_positions_validated, NE);
}
__ cmp(dest_pos.AsRegister<Register>(), ShifterOperand(src_pos_constant));
__ b(intrinsic_slow_path->GetEntryLabel(), GT);
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ cmp(src, ShifterOperand(dest));
__ b(&conditions_on_positions_validated, NE);
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ cmp(src_pos.AsRegister<Register>(), ShifterOperand(dest_pos_constant));
} else {
__ cmp(src_pos.AsRegister<Register>(), ShifterOperand(dest_pos.AsRegister<Register>()));
}
__ b(intrinsic_slow_path->GetEntryLabel(), LT);
}
__ Bind(&conditions_on_positions_validated);
if (!optimizations.GetSourceIsNotNull()) {
// Bail out if the source is null.
__ CompareAndBranchIfZero(src, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
// Bail out if the destination is null.
__ CompareAndBranchIfZero(dest, intrinsic_slow_path->GetEntryLabel());
}
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant() &&
!optimizations.GetCountIsSourceLength() &&
!optimizations.GetCountIsDestinationLength()) {
__ cmp(length.AsRegister<Register>(), ShifterOperand(0));
__ b(intrinsic_slow_path->GetEntryLabel(), LT);
}
// Validity checks: source.
CheckPosition(assembler,
src_pos,
src,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsSourceLength());
// Validity checks: dest.
CheckPosition(assembler,
dest_pos,
dest,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsDestinationLength());
if (!optimizations.GetDoesNotNeedTypeCheck()) {
// Check whether all elements of the source array are assignable to the component
// type of the destination array. We do two checks: the classes are the same,
// or the destination is Object[]. If none of these checks succeed, we go to the
// slow path.
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
// /* HeapReference<Class> */ temp1 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
// Bail out if the source is not a non primitive array.
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
__ CompareAndBranchIfZero(temp1, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp1` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
// /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_);
__ LoadFromOffset(kLoadUnsignedHalfword, temp1, temp1, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
}
// /* HeapReference<Class> */ temp1 = dest->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check */ false);
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
// Bail out if the destination is not a non primitive array.
//
// Register `temp1` is not trashed by the read barrier emitted
// by GenerateFieldLoadWithBakerReadBarrier below, as that
// method produces a call to a ReadBarrierMarkRegX entry point,
// which saves all potentially live registers, including
// temporaries such a `temp1`.
// /* HeapReference<Class> */ temp2 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check */ false);
__ CompareAndBranchIfZero(temp2, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp2` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
// /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
__ LoadFromOffset(kLoadUnsignedHalfword, temp2, temp2, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ CompareAndBranchIfNonZero(temp2, intrinsic_slow_path->GetEntryLabel());
}
// For the same reason given earlier, `temp1` is not trashed by the
// read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
// /* HeapReference<Class> */ temp2 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check */ false);
// Note: if heap poisoning is on, we are comparing two unpoisoned references here.
__ cmp(temp1, ShifterOperand(temp2));
if (optimizations.GetDestinationIsTypedObjectArray()) {
Label do_copy;
__ b(&do_copy, EQ);
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
// /* HeapReference<Class> */ temp1 = temp1->super_class_
// We do not need to emit a read barrier for the following
// heap reference load, as `temp1` is only used in a
// comparison with null below, and this reference is not
// kept afterwards.
__ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
__ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ b(intrinsic_slow_path->GetEntryLabel(), NE);
}
} else {
// Non read barrier code.
// /* HeapReference<Class> */ temp1 = dest->klass_
__ LoadFromOffset(kLoadWord, temp1, dest, class_offset);
// /* HeapReference<Class> */ temp2 = src->klass_
__ LoadFromOffset(kLoadWord, temp2, src, class_offset);
bool did_unpoison = false;
if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
!optimizations.GetSourceIsNonPrimitiveArray()) {
// One or two of the references need to be unpoisoned. Unpoison them
// both to make the identity check valid.
__ MaybeUnpoisonHeapReference(temp1);
__ MaybeUnpoisonHeapReference(temp2);
did_unpoison = true;
}
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
// Bail out if the destination is not a non primitive array.
// /* HeapReference<Class> */ temp3 = temp1->component_type_
__ LoadFromOffset(kLoadWord, temp3, temp1, component_offset);
__ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp3);
// /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
__ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
// Bail out if the source is not a non primitive array.
// /* HeapReference<Class> */ temp3 = temp2->component_type_
__ LoadFromOffset(kLoadWord, temp3, temp2, component_offset);
__ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp3);
// /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
__ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
}
__ cmp(temp1, ShifterOperand(temp2));
if (optimizations.GetDestinationIsTypedObjectArray()) {
Label do_copy;
__ b(&do_copy, EQ);
if (!did_unpoison) {
__ MaybeUnpoisonHeapReference(temp1);
}
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->super_class_
__ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
// No need to unpoison the result, we're comparing against null.
__ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ b(intrinsic_slow_path->GetEntryLabel(), NE);
}
}
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
// Bail out if the source is not a non primitive array.
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
// /* HeapReference<Class> */ temp3 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
__ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp3` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ temp1 = src->klass_
__ LoadFromOffset(kLoadWord, temp1, src, class_offset);
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp3 = temp1->component_type_
__ LoadFromOffset(kLoadWord, temp3, temp1, component_offset);
__ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp3);
}
// /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
__ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
}
int32_t element_size = Primitive::ComponentSize(Primitive::kPrimNot);
uint32_t element_size_shift = Primitive::ComponentSizeShift(Primitive::kPrimNot);
uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
// Compute the base source address in `temp1`.
if (src_pos.IsConstant()) {
int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ AddConstant(temp1, src, element_size * constant + offset);
} else {
__ add(temp1, src, ShifterOperand(src_pos.AsRegister<Register>(), LSL, element_size_shift));
__ AddConstant(temp1, offset);
}
// Compute the end source address in `temp3`.
if (length.IsConstant()) {
int32_t constant = length.GetConstant()->AsIntConstant()->GetValue();
__ AddConstant(temp3, temp1, element_size * constant);
} else {
__ add(temp3, temp1, ShifterOperand(length.AsRegister<Register>(), LSL, element_size_shift));
}
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// The base destination address is computed later, as `temp2` is
// used for intermediate computations.
// SystemArrayCopy implementation for Baker read barriers (see
// also CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier):
//
// if (src_ptr != end_ptr) {
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// do {
// *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
// } while (src_ptr != end_ptr)
// } else {
// // Fast-path copy.
// do {
// *dest_ptr++ = *src_ptr++;
// } while (src_ptr != end_ptr)
// }
// }
Label loop, done;
// Don't enter copy loop if `length == 0`.
__ cmp(temp1, ShifterOperand(temp3));
__ b(&done, EQ);
// /* int32_t */ monitor = src->monitor_
__ LoadFromOffset(kLoadWord, temp2, src, monitor_offset);
// /* LockWord */ lock_word = LockWord(monitor)
static_assert(sizeof(LockWord) == sizeof(int32_t),
"art::LockWord and int32_t have different sizes.");
// Introduce a dependency on the lock_word including the rb_state,
// which shall prevent load-load reordering without using
// a memory barrier (which would be more expensive).
// `src` is unchanged by this operation, but its value now depends
// on `temp2`.
__ add(src, src, ShifterOperand(temp2, LSR, 32));
// Slow path used to copy array when `src` is gray.
SlowPathCode* read_barrier_slow_path =
new (GetAllocator()) ReadBarrierSystemArrayCopySlowPathARM(invoke);
codegen_->AddSlowPath(read_barrier_slow_path);
// Given the numeric representation, it's enough to check the low bit of the
// rb_state. We do that by shifting the bit out of the lock word with LSRS
// which can be a 16-bit instruction unlike the TST immediate.
static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1);
// Carry flag is the last bit shifted out by LSRS.
__ b(read_barrier_slow_path->GetEntryLabel(), CS);
// Fast-path copy.
// Compute the base destination address in `temp2`.
if (dest_pos.IsConstant()) {
int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ AddConstant(temp2, dest, element_size * constant + offset);
} else {
__ add(temp2, dest, ShifterOperand(dest_pos.AsRegister<Register>(), LSL, element_size_shift));
__ AddConstant(temp2, offset);
}
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
__ Bind(&loop);
__ ldr(IP, Address(temp1, element_size, Address::PostIndex));
__ str(IP, Address(temp2, element_size, Address::PostIndex));
__ cmp(temp1, ShifterOperand(temp3));
__ b(&loop, NE);
__ Bind(read_barrier_slow_path->GetExitLabel());
__ Bind(&done);
} else {
// Non read barrier code.
// Compute the base destination address in `temp2`.
if (dest_pos.IsConstant()) {
int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ AddConstant(temp2, dest, element_size * constant + offset);
} else {
__ add(temp2, dest, ShifterOperand(dest_pos.AsRegister<Register>(), LSL, element_size_shift));
__ AddConstant(temp2, offset);
}
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
Label loop, done;
__ cmp(temp1, ShifterOperand(temp3));
__ b(&done, EQ);
__ Bind(&loop);
__ ldr(IP, Address(temp1, element_size, Address::PostIndex));
__ str(IP, Address(temp2, element_size, Address::PostIndex));
__ cmp(temp1, ShifterOperand(temp3));
__ b(&loop, NE);
__ Bind(&done);
}
// We only need one card marking on the destination array.
codegen_->MarkGCCard(temp1,
temp2,
dest,
Register(kNoRegister),
/* value_can_be_null */ false);
__ Bind(intrinsic_slow_path->GetExitLabel());
}
static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
// If the graph is debuggable, all callee-saved floating-point registers are blocked by
// the code generator. Furthermore, the register allocator creates fixed live intervals
// for all caller-saved registers because we are doing a function call. As a result, if
// the input and output locations are unallocated, the register allocator runs out of
// registers and fails; however, a debuggable graph is not the common case.
if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
return;
}
DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
LocationSummary* const locations = new (arena) LocationSummary(invoke,
LocationSummary::kCallOnMainOnly,
kIntrinsified);
const InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
// Native code uses the soft float ABI.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
// If the graph is debuggable, all callee-saved floating-point registers are blocked by
// the code generator. Furthermore, the register allocator creates fixed live intervals
// for all caller-saved registers because we are doing a function call. As a result, if
// the input and output locations are unallocated, the register allocator runs out of
// registers and fails; however, a debuggable graph is not the common case.
if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
return;
}
DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
DCHECK_EQ(invoke->InputAt(1)->GetType(), Primitive::kPrimDouble);
DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
LocationSummary* const locations = new (arena) LocationSummary(invoke,
LocationSummary::kCallOnMainOnly,
kIntrinsified);
const InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
// Native code uses the soft float ABI.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
}
static void GenFPToFPCall(HInvoke* invoke,
ArmAssembler* assembler,
CodeGeneratorARM* codegen,
QuickEntrypointEnum entry) {
LocationSummary* const locations = invoke->GetLocations();
const InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
DCHECK(locations->WillCall() && locations->Intrinsified());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(0)));
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(1)));
// Native code uses the soft float ABI.
__ vmovrrd(calling_convention.GetRegisterAt(0),
calling_convention.GetRegisterAt(1),
FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>()));
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
__ vmovdrr(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()),
calling_convention.GetRegisterAt(0),
calling_convention.GetRegisterAt(1));
}
static void GenFPFPToFPCall(HInvoke* invoke,
ArmAssembler* assembler,
CodeGeneratorARM* codegen,
QuickEntrypointEnum entry) {
LocationSummary* const locations = invoke->GetLocations();
const InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
DCHECK(locations->WillCall() && locations->Intrinsified());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(0)));
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(1)));
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(2)));
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(3)));
// Native code uses the soft float ABI.
__ vmovrrd(calling_convention.GetRegisterAt(0),
calling_convention.GetRegisterAt(1),
FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>()));
__ vmovrrd(calling_convention.GetRegisterAt(2),
calling_convention.GetRegisterAt(3),
FromLowSToD(locations->InAt(1).AsFpuRegisterPairLow<SRegister>()));
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
__ vmovdrr(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()),
calling_convention.GetRegisterAt(0),
calling_convention.GetRegisterAt(1));
}
void IntrinsicLocationsBuilderARM::VisitMathCos(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathCos(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos);
}
void IntrinsicLocationsBuilderARM::VisitMathSin(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathSin(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin);
}
void IntrinsicLocationsBuilderARM::VisitMathAcos(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAcos(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos);
}
void IntrinsicLocationsBuilderARM::VisitMathAsin(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAsin(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin);
}
void IntrinsicLocationsBuilderARM::VisitMathAtan(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAtan(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan);
}
void IntrinsicLocationsBuilderARM::VisitMathCbrt(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathCbrt(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt);
}
void IntrinsicLocationsBuilderARM::VisitMathCosh(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathCosh(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh);
}
void IntrinsicLocationsBuilderARM::VisitMathExp(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathExp(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp);
}
void IntrinsicLocationsBuilderARM::VisitMathExpm1(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathExpm1(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1);
}
void IntrinsicLocationsBuilderARM::VisitMathLog(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathLog(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog);
}
void IntrinsicLocationsBuilderARM::VisitMathLog10(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathLog10(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10);
}
void IntrinsicLocationsBuilderARM::VisitMathSinh(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathSinh(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh);
}
void IntrinsicLocationsBuilderARM::VisitMathTan(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathTan(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan);
}
void IntrinsicLocationsBuilderARM::VisitMathTanh(HInvoke* invoke) {
CreateFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathTanh(HInvoke* invoke) {
GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh);
}
void IntrinsicLocationsBuilderARM::VisitMathAtan2(HInvoke* invoke) {
CreateFPFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAtan2(HInvoke* invoke) {
GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2);
}
void IntrinsicLocationsBuilderARM::VisitMathHypot(HInvoke* invoke) {
CreateFPFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathHypot(HInvoke* invoke) {
GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot);
}
void IntrinsicLocationsBuilderARM::VisitMathNextAfter(HInvoke* invoke) {
CreateFPFPToFPCallLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathNextAfter(HInvoke* invoke) {
GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter);
}
void IntrinsicLocationsBuilderARM::VisitIntegerReverse(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitIntegerReverse(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Register in = locations->InAt(0).AsRegister<Register>();
__ rbit(out, in);
}
void IntrinsicLocationsBuilderARM::VisitLongReverse(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitLongReverse(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>();
__ rbit(out_reg_lo, in_reg_hi);
__ rbit(out_reg_hi, in_reg_lo);
}
void IntrinsicLocationsBuilderARM::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitIntegerReverseBytes(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Register in = locations->InAt(0).AsRegister<Register>();
__ rev(out, in);
}
void IntrinsicLocationsBuilderARM::VisitLongReverseBytes(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitLongReverseBytes(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>();
__ rev(out_reg_lo, in_reg_hi);
__ rev(out_reg_hi, in_reg_lo);
}
void IntrinsicLocationsBuilderARM::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitShortReverseBytes(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Register in = locations->InAt(0).AsRegister<Register>();
__ revsh(out, in);
}
static void GenBitCount(HInvoke* instr, Primitive::Type type, ArmAssembler* assembler) {
DCHECK(Primitive::IsIntOrLongType(type)) << type;
DCHECK_EQ(instr->GetType(), Primitive::kPrimInt);
DCHECK_EQ(Primitive::PrimitiveKind(instr->InputAt(0)->GetType()), type);
bool is_long = type == Primitive::kPrimLong;
LocationSummary* locations = instr->GetLocations();
Location in = locations->InAt(0);
Register src_0 = is_long ? in.AsRegisterPairLow<Register>() : in.AsRegister<Register>();
Register src_1 = is_long ? in.AsRegisterPairHigh<Register>() : src_0;
SRegister tmp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
DRegister tmp_d = FromLowSToD(tmp_s);
Register out_r = locations->Out().AsRegister<Register>();
// Move data from core register(s) to temp D-reg for bit count calculation, then move back.
// According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg,
// transferring data from core reg to upper or lower half of vfp D-reg requires extra latency,
// That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'.
__ vmovdrr(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0|
__ vcntd(tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c|
__ vpaddld(tmp_d, tmp_d, 8, /* is_unsigned */ true); // Temp DReg |--c|--c|--c|--c|
__ vpaddld(tmp_d, tmp_d, 16, /* is_unsigned */ true); // Temp DReg |------c|------c|
if (is_long) {
__ vpaddld(tmp_d, tmp_d, 32, /* is_unsigned */ true); // Temp DReg |--------------c|
}
__ vmovrs(out_r, tmp_s);
}
void IntrinsicLocationsBuilderARM::VisitIntegerBitCount(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
void IntrinsicCodeGeneratorARM::VisitIntegerBitCount(HInvoke* invoke) {
GenBitCount(invoke, Primitive::kPrimInt, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitLongBitCount(HInvoke* invoke) {
VisitIntegerBitCount(invoke);
}
void IntrinsicCodeGeneratorARM::VisitLongBitCount(HInvoke* invoke) {
GenBitCount(invoke, Primitive::kPrimLong, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitStringGetCharsNoCheck(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
// Temporary registers to store lengths of strings and for calculations.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM::VisitStringGetCharsNoCheck(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
DCHECK_EQ(char_size, 2u);
// Location of data in char array buffer.
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
// Location of char array data in string.
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
// void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin);
// Since getChars() calls getCharsNoCheck() - we use registers rather than constants.
Register srcObj = locations->InAt(0).AsRegister<Register>();
Register srcBegin = locations->InAt(1).AsRegister<Register>();
Register srcEnd = locations->InAt(2).AsRegister<Register>();
Register dstObj = locations->InAt(3).AsRegister<Register>();
Register dstBegin = locations->InAt(4).AsRegister<Register>();
Register num_chr = locations->GetTemp(0).AsRegister<Register>();
Register src_ptr = locations->GetTemp(1).AsRegister<Register>();
Register dst_ptr = locations->GetTemp(2).AsRegister<Register>();
Label done, compressed_string_loop;
// dst to be copied.
__ add(dst_ptr, dstObj, ShifterOperand(data_offset));
__ add(dst_ptr, dst_ptr, ShifterOperand(dstBegin, LSL, 1));
__ subs(num_chr, srcEnd, ShifterOperand(srcBegin));
// Early out for valid zero-length retrievals.
__ b(&done, EQ);
// src range to copy.
__ add(src_ptr, srcObj, ShifterOperand(value_offset));
Label compressed_string_preloop;
if (mirror::kUseStringCompression) {
// Location of count in string.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
// String's length.
__ ldr(IP, Address(srcObj, count_offset));
__ tst(IP, ShifterOperand(1));
__ b(&compressed_string_preloop, EQ);
}
__ add(src_ptr, src_ptr, ShifterOperand(srcBegin, LSL, 1));
// Do the copy.
Label loop, remainder;
// Save repairing the value of num_chr on the < 4 character path.
__ subs(IP, num_chr, ShifterOperand(4));
__ b(&remainder, LT);
// Keep the result of the earlier subs, we are going to fetch at least 4 characters.
__ mov(num_chr, ShifterOperand(IP));
// Main loop used for longer fetches loads and stores 4x16-bit characters at a time.
// (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code
// to rectify these everywhere this intrinsic applies.)
__ Bind(&loop);
__ ldr(IP, Address(src_ptr, char_size * 2));
__ subs(num_chr, num_chr, ShifterOperand(4));
__ str(IP, Address(dst_ptr, char_size * 2));
__ ldr(IP, Address(src_ptr, char_size * 4, Address::PostIndex));
__ str(IP, Address(dst_ptr, char_size * 4, Address::PostIndex));
__ b(&loop, GE);
__ adds(num_chr, num_chr, ShifterOperand(4));
__ b(&done, EQ);
// Main loop for < 4 character case and remainder handling. Loads and stores one
// 16-bit Java character at a time.
__ Bind(&remainder);
__ ldrh(IP, Address(src_ptr, char_size, Address::PostIndex));
__ subs(num_chr, num_chr, ShifterOperand(1));
__ strh(IP, Address(dst_ptr, char_size, Address::PostIndex));
__ b(&remainder, GT);
if (mirror::kUseStringCompression) {
__ b(&done);
const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
DCHECK_EQ(c_char_size, 1u);
// Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
__ Bind(&compressed_string_preloop);
__ add(src_ptr, src_ptr, ShifterOperand(srcBegin));
__ Bind(&compressed_string_loop);
__ ldrb(IP, Address(src_ptr, c_char_size, Address::PostIndex));
__ strh(IP, Address(dst_ptr, char_size, Address::PostIndex));
__ subs(num_chr, num_chr, ShifterOperand(1));
__ b(&compressed_string_loop, GT);
}
__ Bind(&done);
}
void IntrinsicLocationsBuilderARM::VisitFloatIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitFloatIsInfinite(HInvoke* invoke) {
ArmAssembler* const assembler = GetAssembler();
LocationSummary* const locations = invoke->GetLocations();
const Register out = locations->Out().AsRegister<Register>();
// Shifting left by 1 bit makes the value encodable as an immediate operand;
// we don't care about the sign bit anyway.
constexpr uint32_t infinity = kPositiveInfinityFloat << 1U;
__ vmovrs(out, locations->InAt(0).AsFpuRegister<SRegister>());
// We don't care about the sign bit, so shift left.
__ Lsl(out, out, 1);
__ eor(out, out, ShifterOperand(infinity));
// If the result is 0, then it has 32 leading zeros, and less than that otherwise.
__ clz(out, out);
// Any number less than 32 logically shifted right by 5 bits results in 0;
// the same operation on 32 yields 1.
__ Lsr(out, out, 5);
}
void IntrinsicLocationsBuilderARM::VisitDoubleIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitDoubleIsInfinite(HInvoke* invoke) {
ArmAssembler* const assembler = GetAssembler();
LocationSummary* const locations = invoke->GetLocations();
const Register out = locations->Out().AsRegister<Register>();
// The highest 32 bits of double precision positive infinity separated into
// two constants encodable as immediate operands.
constexpr uint32_t infinity_high = 0x7f000000U;
constexpr uint32_t infinity_high2 = 0x00f00000U;
static_assert((infinity_high | infinity_high2) == static_cast<uint32_t>(kPositiveInfinityDouble >> 32U),
"The constants do not add up to the high 32 bits of double precision positive infinity.");
__ vmovrrd(IP, out, FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>()));
__ eor(out, out, ShifterOperand(infinity_high));
__ eor(out, out, ShifterOperand(infinity_high2));
// We don't care about the sign bit, so shift left.
__ orr(out, IP, ShifterOperand(out, LSL, 1));
// If the result is 0, then it has 32 leading zeros, and less than that otherwise.
__ clz(out, out);
// Any number less than 32 logically shifted right by 5 bits results in 0;
// the same operation on 32 yields 1.
__ Lsr(out, out, 5);
}
UNIMPLEMENTED_INTRINSIC(ARM, MathMinDoubleDouble)
UNIMPLEMENTED_INTRINSIC(ARM, MathMinFloatFloat)
UNIMPLEMENTED_INTRINSIC(ARM, MathMaxDoubleDouble)
UNIMPLEMENTED_INTRINSIC(ARM, MathMaxFloatFloat)
UNIMPLEMENTED_INTRINSIC(ARM, MathMinLongLong)
UNIMPLEMENTED_INTRINSIC(ARM, MathMaxLongLong)
UNIMPLEMENTED_INTRINSIC(ARM, MathCeil) // Could be done by changing rounding mode, maybe?
UNIMPLEMENTED_INTRINSIC(ARM, MathFloor) // Could be done by changing rounding mode, maybe?
UNIMPLEMENTED_INTRINSIC(ARM, MathRint)
UNIMPLEMENTED_INTRINSIC(ARM, MathRoundDouble) // Could be done by changing rounding mode, maybe?
UNIMPLEMENTED_INTRINSIC(ARM, MathRoundFloat) // Could be done by changing rounding mode, maybe?
UNIMPLEMENTED_INTRINSIC(ARM, UnsafeCASLong) // High register pressure.
UNIMPLEMENTED_INTRINSIC(ARM, SystemArrayCopyChar)
UNIMPLEMENTED_INTRINSIC(ARM, ReferenceGetReferent)
UNIMPLEMENTED_INTRINSIC(ARM, IntegerHighestOneBit)
UNIMPLEMENTED_INTRINSIC(ARM, LongHighestOneBit)
UNIMPLEMENTED_INTRINSIC(ARM, IntegerLowestOneBit)
UNIMPLEMENTED_INTRINSIC(ARM, LongLowestOneBit)
UNIMPLEMENTED_INTRINSIC(ARM, StringStringIndexOf);
UNIMPLEMENTED_INTRINSIC(ARM, StringStringIndexOfAfter);
// 1.8.
UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndAddInt)
UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndAddLong)
UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetInt)
UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetLong)
UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetObject)
UNREACHABLE_INTRINSICS(ARM)
#undef __
} // namespace arm
} // namespace art