blob: 754624538d82f8ff039ff0a183d526740f757ef3 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_instruction-inl.h"
#include <inttypes.h>
#include <iomanip>
#include "dex_file-inl.h"
#include "utils.h"
namespace art {
const char* const Instruction::kInstructionNames[] = {
#define INSTRUCTION_NAME(o, c, pname, f, r, i, a, v) pname,
#include "dex_instruction_list.h"
DEX_INSTRUCTION_LIST(INSTRUCTION_NAME)
#undef DEX_INSTRUCTION_LIST
#undef INSTRUCTION_NAME
};
Instruction::Format const Instruction::kInstructionFormats[] = {
#define INSTRUCTION_FORMAT(o, c, p, format, r, i, a, v) format,
#include "dex_instruction_list.h"
DEX_INSTRUCTION_LIST(INSTRUCTION_FORMAT)
#undef DEX_INSTRUCTION_LIST
#undef INSTRUCTION_FORMAT
};
int const Instruction::kInstructionFlags[] = {
#define INSTRUCTION_FLAGS(o, c, p, f, r, i, flags, v) flags,
#include "dex_instruction_list.h"
DEX_INSTRUCTION_LIST(INSTRUCTION_FLAGS)
#undef DEX_INSTRUCTION_LIST
#undef INSTRUCTION_FLAGS
};
int const Instruction::kInstructionVerifyFlags[] = {
#define INSTRUCTION_VERIFY_FLAGS(o, c, p, f, r, i, a, vflags) vflags,
#include "dex_instruction_list.h"
DEX_INSTRUCTION_LIST(INSTRUCTION_VERIFY_FLAGS)
#undef DEX_INSTRUCTION_LIST
#undef INSTRUCTION_VERIFY_FLAGS
};
int const Instruction::kInstructionSizeInCodeUnits[] = {
#define INSTRUCTION_SIZE(opcode, c, p, format, r, i, a, v) \
((opcode == NOP) ? -1 : \
((format >= k10x) && (format <= k10t)) ? 1 : \
((format >= k20t) && (format <= k22c)) ? 2 : \
((format >= k32x) && (format <= k3rc)) ? 3 : \
(format == k51l) ? 5 : -1),
#include "dex_instruction_list.h"
DEX_INSTRUCTION_LIST(INSTRUCTION_SIZE)
#undef DEX_INSTRUCTION_LIST
#undef INSTRUCTION_SIZE
};
/*
* Handy macros for helping decode instructions.
*/
#define FETCH(_offset) (insns[(_offset)])
#define FETCH_uint32(_offset) (fetch_uint32_impl((_offset), insns))
#define INST_A(_insn) (((uint16_t)(_insn) >> 8) & 0x0f)
#define INST_B(_insn) ((uint16_t)(_insn) >> 12)
#define INST_AA(_insn) ((_insn) >> 8)
/* Helper for FETCH_uint32, above. */
static inline uint32_t fetch_uint32_impl(uint32_t offset, const uint16_t* insns) {
return insns[offset] | ((uint32_t) insns[offset+1] << 16);
}
bool Instruction::HasVRegC() const {
switch (FormatOf(Opcode())) {
case k23x: return true;
case k35c: return true;
case k3rc: return true;
default: return false;
}
}
bool Instruction::HasVRegB() const {
switch (FormatOf(Opcode())) {
case k12x: return true;
case k22b: return true;
case k22c: return true;
case k22s: return true;
case k22t: return true;
case k22x: return true;
case k23x: return true;
case k32x: return true;
default: return false;
}
}
bool Instruction::HasVRegA() const {
switch (FormatOf(Opcode())) {
case k11n: return true;
case k11x: return true;
case k12x: return true;
case k21c: return true;
case k21h: return true;
case k21s: return true;
case k21t: return true;
case k22b: return true;
case k22c: return true;
case k22s: return true;
case k22t: return true;
case k22x: return true;
case k23x: return true;
case k31c: return true;
case k31i: return true;
case k31t: return true;
case k32x: return true;
case k51l: return true;
default: return false;
}
}
int32_t Instruction::VRegC() const {
switch (FormatOf(Opcode())) {
case k23x: return VRegC_23x();
case k35c: return VRegC_35c();
case k3rc: return VRegC_3rc();
default: LOG(FATAL) << "Tried to access vC of instruction " << Name() <<
" which has no C operand.";
}
return -1;
}
int32_t Instruction::VRegB() const {
switch (FormatOf(Opcode())) {
case k12x: return VRegB_12x();
case k22b: return VRegB_22b();
case k22c: return VRegB_22c();
case k22s: return VRegB_22s();
case k22t: return VRegB_22t();
case k22x: return VRegB_22x();
case k23x: return VRegB_23x();
case k32x: return VRegB_32x();
default: LOG(FATAL) << "Tried to access vB of instruction " << Name() <<
" which has no B operand.";
}
return -1;
}
int32_t Instruction::VRegA() const {
switch (FormatOf(Opcode())) {
case k11n: return VRegA_11n();
case k11x: return VRegA_11x();
case k12x: return VRegA_12x();
case k21c: return VRegA_21c();
case k21h: return VRegA_21h();
case k21s: return VRegA_21s();
case k21t: return VRegA_21t();
case k22b: return VRegA_22b();
case k22c: return VRegA_22c();
case k22s: return VRegA_22s();
case k22t: return VRegA_22t();
case k22x: return VRegA_22x();
case k23x: return VRegA_23x();
case k31c: return VRegA_31c();
case k31i: return VRegA_31i();
case k31t: return VRegA_31t();
case k32x: return VRegA_32x();
case k51l: return VRegA_51l();
default: LOG(FATAL) << "Tried to access vA of instruction " << Name() <<
" which has no A operand.";
}
return -1;
}
int32_t Instruction::GetTargetOffset() const {
switch (FormatOf(Opcode())) {
// Cases for conditional branches follow.
case k22t: return VRegC_22t();
case k21t: return VRegB_21t();
// Cases for unconditional branches follow.
case k10t: return VRegA_10t();
case k20t: return VRegA_20t();
case k30t: return VRegA_30t();
default: LOG(FATAL) << "Tried to access the branch offset of an instruction " << Name() <<
" which does not have a target operand.";
}
return 0;
}
bool Instruction::CanFlowThrough() const {
const uint16_t* insns = reinterpret_cast<const uint16_t*>(this);
uint16_t insn = *insns;
Code opcode = static_cast<Code>(insn & 0xFF);
return FlagsOf(opcode) & Instruction::kContinue;
}
void Instruction::Decode(uint32_t &vA, uint32_t &vB, uint64_t &vB_wide, uint32_t &vC, uint32_t arg[]) const {
const uint16_t* insns = reinterpret_cast<const uint16_t*>(this);
uint16_t insn = *insns;
Code opcode = static_cast<Code>(insn & 0xFF);
switch (FormatOf(opcode)) {
case k10x: // op
/* nothing to do; copy the AA bits out for the verifier */
vA = INST_AA(insn);
break;
case k12x: // op vA, vB
vA = INST_A(insn);
vB = INST_B(insn);
break;
case k11n: // op vA, #+B
vA = INST_A(insn);
vB = (int32_t) (INST_B(insn) << 28) >> 28; // sign extend 4-bit value
break;
case k11x: // op vAA
vA = INST_AA(insn);
break;
case k10t: // op +AA
vA = (int8_t) INST_AA(insn); // sign-extend 8-bit value
break;
case k20t: // op +AAAA
vA = (int16_t) FETCH(1); // sign-extend 16-bit value
break;
case k21c: // op vAA, thing@BBBB
case k22x: // op vAA, vBBBB
vA = INST_AA(insn);
vB = FETCH(1);
break;
case k21s: // op vAA, #+BBBB
case k21t: // op vAA, +BBBB
vA = INST_AA(insn);
vB = (int16_t) FETCH(1); // sign-extend 16-bit value
break;
case k21h: // op vAA, #+BBBB0000[00000000]
vA = INST_AA(insn);
/*
* The value should be treated as right-zero-extended, but we don't
* actually do that here. Among other things, we don't know if it's
* the top bits of a 32- or 64-bit value.
*/
vB = FETCH(1);
break;
case k23x: // op vAA, vBB, vCC
vA = INST_AA(insn);
vB = FETCH(1) & 0xff;
vC = FETCH(1) >> 8;
break;
case k22b: // op vAA, vBB, #+CC
vA = INST_AA(insn);
vB = FETCH(1) & 0xff;
vC = (int8_t) (FETCH(1) >> 8); // sign-extend 8-bit value
break;
case k22s: // op vA, vB, #+CCCC
case k22t: // op vA, vB, +CCCC
vA = INST_A(insn);
vB = INST_B(insn);
vC = (int16_t) FETCH(1); // sign-extend 16-bit value
break;
case k22c: // op vA, vB, thing@CCCC
vA = INST_A(insn);
vB = INST_B(insn);
vC = FETCH(1);
break;
case k30t: // op +AAAAAAAA
vA = FETCH_uint32(1); // signed 32-bit value
break;
case k31t: // op vAA, +BBBBBBBB
case k31c: // op vAA, string@BBBBBBBB
vA = INST_AA(insn);
vB = FETCH_uint32(1); // 32-bit value
break;
case k32x: // op vAAAA, vBBBB
vA = FETCH(1);
vB = FETCH(2);
break;
case k31i: // op vAA, #+BBBBBBBB
vA = INST_AA(insn);
vB = FETCH_uint32(1); // signed 32-bit value
break;
case k35c: // op {vC, vD, vE, vF, vG}, thing@BBBB
{
/*
* Note that the fields mentioned in the spec don't appear in
* their "usual" positions here compared to most formats. This
* was done so that the field names for the argument count and
* reference index match between this format and the corresponding
* range formats (3rc and friends).
*
* Bottom line: The argument count is always in vA, and the
* method constant (or equivalent) is always in vB.
*/
uint16_t regList;
int count;
vA = INST_B(insn); // This is labeled A in the spec.
vB = FETCH(1);
regList = FETCH(2);
count = vA;
/*
* Copy the argument registers into the arg[] array, and
* also copy the first argument (if any) into vC. (The
* DecodedInstruction structure doesn't have separate
* fields for {vD, vE, vF, vG}, so there's no need to make
* copies of those.) Note that cases 5..2 fall through.
*/
switch (count) {
case 5: arg[4] = INST_A(insn);
case 4: arg[3] = (regList >> 12) & 0x0f;
case 3: arg[2] = (regList >> 8) & 0x0f;
case 2: arg[1] = (regList >> 4) & 0x0f;
case 1: vC = arg[0] = regList & 0x0f; break;
case 0: break; // Valid, but no need to do anything.
default:
LOG(ERROR) << "Invalid arg count in 35c (" << count << ")";
return;
}
}
break;
case k3rc: // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB
vA = INST_AA(insn);
vB = FETCH(1);
vC = FETCH(2);
break;
case k51l: // op vAA, #+BBBBBBBBBBBBBBBB
vA = INST_AA(insn);
vB_wide = FETCH_uint32(1) | ((uint64_t) FETCH_uint32(3) << 32);
break;
default:
LOG(ERROR) << "Can't decode unexpected format " << FormatOf(opcode) << " (op=" << opcode << ")";
return;
}
}
size_t Instruction::SizeInCodeUnitsComplexOpcode() const {
const uint16_t* insns = reinterpret_cast<const uint16_t*>(this);
// Handle special NOP encoded variable length sequences.
switch (*insns) {
case kPackedSwitchSignature:
return (4 + insns[1] * 2);
case kSparseSwitchSignature:
return (2 + insns[1] * 4);
case kArrayDataSignature: {
uint16_t element_size = insns[1];
uint32_t length = insns[2] | (((uint32_t)insns[3]) << 16);
// The plus 1 is to round up for odd size and width.
return (4 + (element_size * length + 1) / 2);
}
default:
if ((*insns & 0xFF) == 0) {
return 1; // NOP.
} else {
LOG(FATAL) << "Unreachable: " << DumpString(NULL);
return 0;
}
}
}
std::string Instruction::DumpHex(size_t code_units) const {
size_t inst_length = SizeInCodeUnits();
if (inst_length > code_units) {
inst_length = code_units;
}
std::ostringstream os;
const uint16_t* insn = reinterpret_cast<const uint16_t*>(this);
for (size_t i = 0; i < inst_length; i++) {
os << StringPrintf("0x%04x", insn[i]) << " ";
}
for (size_t i = inst_length; i < code_units; i++) {
os << " ";
}
return os.str();
}
std::string Instruction::DumpString(const DexFile* file) const {
std::ostringstream os;
const char* opcode = kInstructionNames[Opcode()];
switch (FormatOf(Opcode())) {
case k10x: os << opcode; break;
case k12x: os << StringPrintf("%s v%d, v%d", opcode, VRegA_12x(), VRegB_12x()); break;
case k11n: os << StringPrintf("%s v%d, #%+d", opcode, VRegA_11n(), VRegB_11n()); break;
case k11x: os << StringPrintf("%s v%d", opcode, VRegA_11x()); break;
case k10t: os << StringPrintf("%s %+d", opcode, VRegA_10t()); break;
case k20t: os << StringPrintf("%s %+d", opcode, VRegA_20t()); break;
case k22x: os << StringPrintf("%s v%d, v%d", opcode, VRegA_22x(), VRegB_22x()); break;
case k21t: os << StringPrintf("%s v%d, %+d", opcode, VRegA_21t(), VRegB_21t()); break;
case k21s: os << StringPrintf("%s v%d, #%+d", opcode, VRegA_21s(), VRegB_21s()); break;
case k21h: {
// op vAA, #+BBBB0000[00000000]
if (Opcode() == CONST_HIGH16) {
uint32_t value = VRegB_21h() << 16;
os << StringPrintf("%s v%d, #int %+d // 0x%x", opcode, VRegA_21h(), value, value);
} else {
uint64_t value = static_cast<uint64_t>(VRegB_21h()) << 48;
os << StringPrintf("%s v%d, #long %+" PRId64 " // 0x%" PRIx64, opcode, VRegA_21h(),
value, value);
}
}
break;
case k21c: {
switch (Opcode()) {
case CONST_STRING:
if (file != NULL) {
uint32_t string_idx = VRegB_21c();
os << StringPrintf("const-string v%d, %s // string@%d", VRegA_21c(),
PrintableString(file->StringDataByIdx(string_idx)).c_str(), string_idx);
break;
} // else fall-through
case CHECK_CAST:
case CONST_CLASS:
case NEW_INSTANCE:
if (file != NULL) {
uint32_t type_idx = VRegB_21c();
os << opcode << " v" << static_cast<int>(VRegA_21c()) << ", " << PrettyType(type_idx, *file)
<< " // type@" << type_idx;
break;
} // else fall-through
case SGET:
case SGET_WIDE:
case SGET_OBJECT:
case SGET_BOOLEAN:
case SGET_BYTE:
case SGET_CHAR:
case SGET_SHORT:
if (file != NULL) {
uint32_t field_idx = VRegB_21c();
os << opcode << " v" << static_cast<int>(VRegA_21c()) << ", " << PrettyField(field_idx, *file, true)
<< " // field@" << field_idx;
break;
} // else fall-through
case SPUT:
case SPUT_WIDE:
case SPUT_OBJECT:
case SPUT_BOOLEAN:
case SPUT_BYTE:
case SPUT_CHAR:
case SPUT_SHORT:
if (file != NULL) {
uint32_t field_idx = VRegB_21c();
os << opcode << " v" << static_cast<int>(VRegA_21c()) << ", " << PrettyField(field_idx, *file, true)
<< " // field@" << field_idx;
break;
} // else fall-through
default:
os << StringPrintf("%s v%d, thing@%d", opcode, VRegA_21c(), VRegB_21c());
break;
}
break;
}
case k23x: os << StringPrintf("%s v%d, v%d, v%d", opcode, VRegA_23x(), VRegB_23x(), VRegC_23x()); break;
case k22b: os << StringPrintf("%s v%d, v%d, #%+d", opcode, VRegA_22b(), VRegB_22b(), VRegC_22b()); break;
case k22t: os << StringPrintf("%s v%d, v%d, %+d", opcode, VRegA_22t(), VRegB_22t(), VRegC_22t()); break;
case k22s: os << StringPrintf("%s v%d, v%d, #%+d", opcode, VRegA_22s(), VRegB_22s(), VRegC_22s()); break;
case k22c: {
switch (Opcode()) {
case IGET:
case IGET_WIDE:
case IGET_OBJECT:
case IGET_BOOLEAN:
case IGET_BYTE:
case IGET_CHAR:
case IGET_SHORT:
if (file != NULL) {
uint32_t field_idx = VRegC_22c();
os << opcode << " v" << static_cast<int>(VRegA_22c()) << ", v" << static_cast<int>(VRegB_22c()) << ", "
<< PrettyField(field_idx, *file, true) << " // field@" << field_idx;
break;
} // else fall-through
case IGET_QUICK:
case IGET_OBJECT_QUICK:
if (file != NULL) {
uint32_t field_idx = VRegC_22c();
os << opcode << " v" << static_cast<int>(VRegA_22c()) << ", v" << static_cast<int>(VRegB_22c()) << ", "
<< "// offset@" << field_idx;
break;
} // else fall-through
case IPUT:
case IPUT_WIDE:
case IPUT_OBJECT:
case IPUT_BOOLEAN:
case IPUT_BYTE:
case IPUT_CHAR:
case IPUT_SHORT:
if (file != NULL) {
uint32_t field_idx = VRegC_22c();
os << opcode << " v" << static_cast<int>(VRegA_22c()) << ", v" << static_cast<int>(VRegB_22c()) << ", "
<< PrettyField(field_idx, *file, true) << " // field@" << field_idx;
break;
} // else fall-through
case IPUT_QUICK:
case IPUT_OBJECT_QUICK:
if (file != NULL) {
uint32_t field_idx = VRegC_22c();
os << opcode << " v" << static_cast<int>(VRegA_22c()) << ", v" << static_cast<int>(VRegB_22c()) << ", "
<< "// offset@" << field_idx;
break;
} // else fall-through
case INSTANCE_OF:
if (file != NULL) {
uint32_t type_idx = VRegC_22c();
os << opcode << " v" << static_cast<int>(VRegA_22c()) << ", v" << static_cast<int>(VRegB_22c()) << ", "
<< PrettyType(type_idx, *file) << " // type@" << type_idx;
break;
}
case NEW_ARRAY:
if (file != NULL) {
uint32_t type_idx = VRegC_22c();
os << opcode << " v" << static_cast<int>(VRegA_22c()) << ", v" << static_cast<int>(VRegB_22c()) << ", "
<< PrettyType(type_idx, *file) << " // type@" << type_idx;
break;
} // else fall-through
default:
os << StringPrintf("%s v%d, v%d, thing@%d", opcode, VRegA_22c(), VRegB_22c(), VRegC_22c());
break;
}
break;
}
case k32x: os << StringPrintf("%s v%d, v%d", opcode, VRegA_32x(), VRegB_32x()); break;
case k30t: os << StringPrintf("%s %+d", opcode, VRegA_30t()); break;
case k31t: os << StringPrintf("%s v%d, %+d", opcode, VRegA_31t(), VRegB_31t()); break;
case k31i: os << StringPrintf("%s v%d, #%+d", opcode, VRegA_31i(), VRegB_31i()); break;
case k31c:
if (Opcode() == CONST_STRING_JUMBO) {
uint32_t string_idx = VRegB_31c();
if (file != NULL) {
os << StringPrintf("%s v%d, %s // string@%d", opcode, VRegA_31c(),
PrintableString(file->StringDataByIdx(string_idx)).c_str(),
string_idx);
} else {
os << StringPrintf("%s v%d, string@%d", opcode, VRegA_31c(), string_idx);
}
} else {
os << StringPrintf("%s v%d, thing@%d", opcode, VRegA_31c(), VRegB_31c()); break;
}
break;
case k35c: {
uint32_t arg[5];
GetArgs(arg);
switch (Opcode()) {
case FILLED_NEW_ARRAY:
{
const int32_t a = VRegA_35c();
os << opcode << " {";
for (int i = 0; i < a; ++i) {
if (i > 0) {
os << ", ";
}
os << "v" << arg[i];
}
os << "}, type@" << VRegB_35c();
}
break;
case INVOKE_VIRTUAL:
case INVOKE_SUPER:
case INVOKE_DIRECT:
case INVOKE_STATIC:
case INVOKE_INTERFACE:
if (file != NULL) {
os << opcode << " {";
uint32_t method_idx = VRegB_35c();
for (size_t i = 0; i < VRegA_35c(); ++i) {
if (i != 0) {
os << ", ";
}
os << "v" << arg[i];
}
os << "}, " << PrettyMethod(method_idx, *file) << " // method@" << method_idx;
break;
} // else fall-through
case INVOKE_VIRTUAL_QUICK:
if (file != NULL) {
os << opcode << " {";
uint32_t method_idx = VRegB_35c();
for (size_t i = 0; i < VRegA_35c(); ++i) {
if (i != 0) {
os << ", ";
}
os << "v" << arg[i];
}
os << "}, // vtable@" << method_idx;
break;
} // else fall-through
default:
os << opcode << " {v" << arg[0] << ", v" << arg[1] << ", v" << arg[2]
<< ", v" << arg[3] << ", v" << arg[4] << "}, thing@" << VRegB_35c();
break;
}
break;
}
case k3rc: {
switch (Opcode()) {
case INVOKE_VIRTUAL_RANGE:
case INVOKE_SUPER_RANGE:
case INVOKE_DIRECT_RANGE:
case INVOKE_STATIC_RANGE:
case INVOKE_INTERFACE_RANGE:
if (file != NULL) {
uint32_t method_idx = VRegB_3rc();
os << StringPrintf("%s, {v%d .. v%d}, ", opcode, VRegC_3rc(), (VRegC_3rc() + VRegA_3rc() - 1))
<< PrettyMethod(method_idx, *file) << " // method@" << method_idx;
break;
} // else fall-through
case INVOKE_VIRTUAL_RANGE_QUICK:
if (file != NULL) {
uint32_t method_idx = VRegB_3rc();
os << StringPrintf("%s, {v%d .. v%d}, ", opcode, VRegC_3rc(), (VRegC_3rc() + VRegA_3rc() - 1))
<< "// vtable@" << method_idx;
break;
} // else fall-through
default:
os << StringPrintf("%s, {v%d .. v%d}, thing@%d", opcode, VRegC_3rc(),
(VRegC_3rc() + VRegA_3rc() - 1), VRegB_3rc());
break;
}
break;
}
case k51l: os << StringPrintf("%s v%d, #%+" PRId64, opcode, VRegA_51l(), VRegB_51l()); break;
default: os << " unknown format (" << DumpHex(5) << ")"; break;
}
return os.str();
}
std::ostream& operator<<(std::ostream& os, const Instruction::Code& code) {
return os << Instruction::Name(code);
}
} // namespace art