blob: e815474b6eb005a6066e6dd66a537744122c67d8 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nodes.h"
#include <algorithm>
#include <cfloat>
#include <functional>
#include "art_method-inl.h"
#include "base/arena_allocator.h"
#include "base/arena_bit_vector.h"
#include "base/bit_utils.h"
#include "base/bit_vector-inl.h"
#include "base/bit_vector.h"
#include "base/iteration_range.h"
#include "base/logging.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/stl_util.h"
#include "class_linker-inl.h"
#include "class_root-inl.h"
#include "code_generator.h"
#include "common_dominator.h"
#include "intrinsics.h"
#include "mirror/class-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "ssa_builder.h"
namespace art {
// Enable floating-point static evaluation during constant folding
// only if all floating-point operations and constants evaluate in the
// range and precision of the type used (i.e., 32-bit float, 64-bit
// double).
static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
ReferenceTypeInfo::TypeHandle HandleCache::CreateRootHandle(VariableSizedHandleScope* handles,
ClassRoot class_root) {
// Mutator lock is required for NewHandle and GetClassRoot().
ScopedObjectAccess soa(Thread::Current());
return handles->NewHandle(GetClassRoot(class_root));
}
void HGraph::AddBlock(HBasicBlock* block) {
block->SetBlockId(blocks_.size());
blocks_.push_back(block);
}
void HGraph::FindBackEdges(ArenaBitVector* visited) {
// "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
DCHECK_EQ(visited->GetHighestBitSet(), -1);
// Allocate memory from local ScopedArenaAllocator.
ScopedArenaAllocator allocator(GetArenaStack());
// Nodes that we're currently visiting, indexed by block id.
ArenaBitVector visiting(
&allocator, blocks_.size(), /* expandable= */ false, kArenaAllocGraphBuilder);
visiting.ClearAllBits();
// Number of successors visited from a given node, indexed by block id.
ScopedArenaVector<size_t> successors_visited(blocks_.size(),
0u,
allocator.Adapter(kArenaAllocGraphBuilder));
// Stack of nodes that we're currently visiting (same as marked in "visiting" above).
ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
constexpr size_t kDefaultWorklistSize = 8;
worklist.reserve(kDefaultWorklistSize);
visited->SetBit(entry_block_->GetBlockId());
visiting.SetBit(entry_block_->GetBlockId());
worklist.push_back(entry_block_);
while (!worklist.empty()) {
HBasicBlock* current = worklist.back();
uint32_t current_id = current->GetBlockId();
if (successors_visited[current_id] == current->GetSuccessors().size()) {
visiting.ClearBit(current_id);
worklist.pop_back();
} else {
HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
uint32_t successor_id = successor->GetBlockId();
if (visiting.IsBitSet(successor_id)) {
DCHECK(ContainsElement(worklist, successor));
successor->AddBackEdge(current);
} else if (!visited->IsBitSet(successor_id)) {
visited->SetBit(successor_id);
visiting.SetBit(successor_id);
worklist.push_back(successor);
}
}
}
}
// Remove the environment use records of the instruction for users.
void RemoveEnvironmentUses(HInstruction* instruction) {
for (HEnvironment* environment = instruction->GetEnvironment();
environment != nullptr;
environment = environment->GetParent()) {
for (size_t i = 0, e = environment->Size(); i < e; ++i) {
if (environment->GetInstructionAt(i) != nullptr) {
environment->RemoveAsUserOfInput(i);
}
}
}
}
// Return whether the instruction has an environment and it's used by others.
bool HasEnvironmentUsedByOthers(HInstruction* instruction) {
for (HEnvironment* environment = instruction->GetEnvironment();
environment != nullptr;
environment = environment->GetParent()) {
for (size_t i = 0, e = environment->Size(); i < e; ++i) {
HInstruction* user = environment->GetInstructionAt(i);
if (user != nullptr) {
return true;
}
}
}
return false;
}
// Reset environment records of the instruction itself.
void ResetEnvironmentInputRecords(HInstruction* instruction) {
for (HEnvironment* environment = instruction->GetEnvironment();
environment != nullptr;
environment = environment->GetParent()) {
for (size_t i = 0, e = environment->Size(); i < e; ++i) {
DCHECK(environment->GetHolder() == instruction);
if (environment->GetInstructionAt(i) != nullptr) {
environment->SetRawEnvAt(i, nullptr);
}
}
}
}
static void RemoveAsUser(HInstruction* instruction) {
instruction->RemoveAsUserOfAllInputs();
RemoveEnvironmentUses(instruction);
}
void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
for (size_t i = 0; i < blocks_.size(); ++i) {
if (!visited.IsBitSet(i)) {
HBasicBlock* block = blocks_[i];
if (block == nullptr) continue;
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
RemoveAsUser(it.Current());
}
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
RemoveAsUser(it.Current());
}
}
}
}
void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
for (size_t i = 0; i < blocks_.size(); ++i) {
if (!visited.IsBitSet(i)) {
HBasicBlock* block = blocks_[i];
if (block == nullptr) continue;
// We only need to update the successor, which might be live.
for (HBasicBlock* successor : block->GetSuccessors()) {
successor->RemovePredecessor(block);
}
// Remove the block from the list of blocks, so that further analyses
// never see it.
blocks_[i] = nullptr;
if (block->IsExitBlock()) {
SetExitBlock(nullptr);
}
// Mark the block as removed. This is used by the HGraphBuilder to discard
// the block as a branch target.
block->SetGraph(nullptr);
}
}
}
GraphAnalysisResult HGraph::BuildDominatorTree() {
// Allocate memory from local ScopedArenaAllocator.
ScopedArenaAllocator allocator(GetArenaStack());
ArenaBitVector visited(&allocator, blocks_.size(), false, kArenaAllocGraphBuilder);
visited.ClearAllBits();
// (1) Find the back edges in the graph doing a DFS traversal.
FindBackEdges(&visited);
// (2) Remove instructions and phis from blocks not visited during
// the initial DFS as users from other instructions, so that
// users can be safely removed before uses later.
RemoveInstructionsAsUsersFromDeadBlocks(visited);
// (3) Remove blocks not visited during the initial DFS.
// Step (5) requires dead blocks to be removed from the
// predecessors list of live blocks.
RemoveDeadBlocks(visited);
// (4) Simplify the CFG now, so that we don't need to recompute
// dominators and the reverse post order.
SimplifyCFG();
// (5) Compute the dominance information and the reverse post order.
ComputeDominanceInformation();
// (6) Analyze loops discovered through back edge analysis, and
// set the loop information on each block.
GraphAnalysisResult result = AnalyzeLoops();
if (result != kAnalysisSuccess) {
return result;
}
// (7) Precompute per-block try membership before entering the SSA builder,
// which needs the information to build catch block phis from values of
// locals at throwing instructions inside try blocks.
ComputeTryBlockInformation();
return kAnalysisSuccess;
}
void HGraph::ClearDominanceInformation() {
for (HBasicBlock* block : GetActiveBlocks()) {
block->ClearDominanceInformation();
}
reverse_post_order_.clear();
}
void HGraph::ClearLoopInformation() {
SetHasIrreducibleLoops(false);
for (HBasicBlock* block : GetActiveBlocks()) {
block->SetLoopInformation(nullptr);
}
}
void HBasicBlock::ClearDominanceInformation() {
dominated_blocks_.clear();
dominator_ = nullptr;
}
HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
HInstruction* instruction = GetFirstInstruction();
while (instruction->IsParallelMove()) {
instruction = instruction->GetNext();
}
return instruction;
}
static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
DCHECK(ContainsElement(block->GetSuccessors(), successor));
HBasicBlock* old_dominator = successor->GetDominator();
HBasicBlock* new_dominator =
(old_dominator == nullptr) ? block
: CommonDominator::ForPair(old_dominator, block);
if (old_dominator == new_dominator) {
return false;
} else {
successor->SetDominator(new_dominator);
return true;
}
}
// TODO Consider moving this entirely into LoadStoreAnalysis/Elimination.
bool HGraph::PathBetween(uint32_t source_idx, uint32_t dest_idx) const {
DCHECK_LT(source_idx, blocks_.size()) << "source not present in graph!";
DCHECK_LT(dest_idx, blocks_.size()) << "dest not present in graph!";
DCHECK(blocks_[source_idx] != nullptr);
DCHECK(blocks_[dest_idx] != nullptr);
return reachability_graph_.IsBitSet(source_idx, dest_idx);
}
bool HGraph::PathBetween(const HBasicBlock* source, const HBasicBlock* dest) const {
if (source == nullptr || dest == nullptr) {
return false;
}
size_t source_idx = source->GetBlockId();
size_t dest_idx = dest->GetBlockId();
return PathBetween(source_idx, dest_idx);
}
// This function/struct calculates the reachability of every node from every
// other node by iteratively using DFS to find reachability of each individual
// block.
//
// This is in practice faster then the simpler Floyd-Warshall since while that
// is O(N**3) this is O(N*(E + N)) where N is the number of blocks and E is the
// number of edges. Since in practice each block only has a few outgoing edges
// we can confidently say that E ~ B*N where B is a small number (~3). We also
// memoize the results as we go allowing us to (potentially) avoid walking the
// entire graph for every node. To make best use of this memoization we
// calculate the reachability of blocks in PostOrder. This means that
// (generally) blocks that are dominated by many other blocks and dominate few
// blocks themselves will be examined first. This makes it more likely we can
// use our memoized results.
class ReachabilityAnalysisHelper {
public:
ReachabilityAnalysisHelper(const HGraph* graph,
ArenaBitVectorArray* reachability_graph,
ArenaStack* arena_stack)
: graph_(graph),
reachability_graph_(reachability_graph),
arena_stack_(arena_stack),
temporaries_(arena_stack_),
block_size_(RoundUp(graph_->GetBlocks().size(), BitVector::kWordBits)),
all_visited_nodes_(
&temporaries_, graph_->GetBlocks().size(), false, kArenaAllocReachabilityGraph),
not_post_order_visited_(
&temporaries_, graph_->GetBlocks().size(), false, kArenaAllocReachabilityGraph) {
// We can't adjust the size of reachability graph any more without breaking
// our allocator invariants so it had better be large enough.
CHECK_GE(reachability_graph_->NumRows(), graph_->GetBlocks().size());
CHECK_GE(reachability_graph_->NumColumns(), graph_->GetBlocks().size());
not_post_order_visited_.SetInitialBits(graph_->GetBlocks().size());
}
void CalculateReachability() {
// Calculate what blocks connect using repeated DFS
//
// Going in PostOrder should generally give memoization a good shot of
// hitting.
for (const HBasicBlock* blk : graph_->GetPostOrder()) {
if (blk == nullptr) {
continue;
}
not_post_order_visited_.ClearBit(blk->GetBlockId());
CalculateConnectednessOn(blk);
all_visited_nodes_.SetBit(blk->GetBlockId());
}
// Get all other bits
for (auto idx : not_post_order_visited_.Indexes()) {
const HBasicBlock* blk = graph_->GetBlocks()[idx];
if (blk == nullptr) {
continue;
}
CalculateConnectednessOn(blk);
all_visited_nodes_.SetBit(blk->GetBlockId());
}
}
private:
void AddEdge(uint32_t source, const HBasicBlock* dest) {
reachability_graph_->SetBit(source, dest->GetBlockId());
}
// Union the reachability of 'idx' into 'update_block_idx'. This is done to
// implement memoization. In order to improve performance we do this in 4-byte
// blocks. Clang should be able to optimize this to larger blocks if possible.
void UnionBlock(size_t update_block_idx, size_t idx) {
reachability_graph_->UnionRows(update_block_idx, idx);
}
// Single DFS to get connectedness of a single block
void CalculateConnectednessOn(const HBasicBlock* const target_block) {
const uint32_t target_idx = target_block->GetBlockId();
ScopedArenaAllocator connectedness_temps(arena_stack_);
// What nodes we have already discovered and either have processed or are
// already on the queue.
ArenaBitVector discovered(
&connectedness_temps, graph_->GetBlocks().size(), false, kArenaAllocReachabilityGraph);
// The work stack. What blocks we still need to process.
ScopedArenaVector<const HBasicBlock*> work_stack(
connectedness_temps.Adapter(kArenaAllocReachabilityGraph));
// Known max size since otherwise we'd have blocks multiple times. Avoids
// re-allocation
work_stack.reserve(graph_->GetBlocks().size());
discovered.SetBit(target_idx);
work_stack.push_back(target_block);
// Main DFS Loop.
while (!work_stack.empty()) {
const HBasicBlock* cur = work_stack.back();
work_stack.pop_back();
// Memoization of previous runs.
if (all_visited_nodes_.IsBitSet(cur->GetBlockId())) {
DCHECK_NE(target_block, cur);
// Already explored from here. Just use that data.
UnionBlock(target_idx, cur->GetBlockId());
continue;
}
for (const HBasicBlock* succ : cur->GetSuccessors()) {
AddEdge(target_idx, succ);
if (!discovered.IsBitSet(succ->GetBlockId())) {
work_stack.push_back(succ);
discovered.SetBit(succ->GetBlockId());
}
}
}
}
const HGraph* graph_;
// The graph's reachability_graph_ on the main allocator.
ArenaBitVectorArray* reachability_graph_;
ArenaStack* arena_stack_;
// An allocator for temporary bit-vectors used by this algorithm. The
// 'SetBit,ClearBit' on reachability_graph_ prior to the construction of this
// object should be the only allocation on the main allocator so it's safe to
// make a sub-allocator here.
ScopedArenaAllocator temporaries_;
// number of columns
const size_t block_size_;
// Where we've already completely calculated connectedness.
ArenaBitVector all_visited_nodes_;
// What we never visited and need to do later
ArenaBitVector not_post_order_visited_;
DISALLOW_COPY_AND_ASSIGN(ReachabilityAnalysisHelper);
};
void HGraph::ComputeReachabilityInformation() {
DCHECK_EQ(reachability_graph_.GetRawData().NumSetBits(), 0u);
DCHECK(reachability_graph_.IsExpandable());
// Reserve all the bits we'll need. This is the only allocation on the
// standard allocator we do here, enabling us to create a new ScopedArena for
// use with temporaries.
//
// reachability_graph_ acts as |N| x |N| graph for PathBetween. Array is
// padded so each row starts on an BitVector::kWordBits-bit alignment for
// simplicity and performance, allowing us to union blocks together without
// going bit-by-bit.
reachability_graph_.Resize(blocks_.size(), blocks_.size(), /*clear=*/false);
ReachabilityAnalysisHelper helper(this, &reachability_graph_, GetArenaStack());
helper.CalculateReachability();
}
void HGraph::ClearReachabilityInformation() {
reachability_graph_.Clear();
}
void HGraph::ComputeDominanceInformation() {
DCHECK(reverse_post_order_.empty());
reverse_post_order_.reserve(blocks_.size());
reverse_post_order_.push_back(entry_block_);
// Allocate memory from local ScopedArenaAllocator.
ScopedArenaAllocator allocator(GetArenaStack());
// Number of visits of a given node, indexed by block id.
ScopedArenaVector<size_t> visits(blocks_.size(), 0u, allocator.Adapter(kArenaAllocGraphBuilder));
// Number of successors visited from a given node, indexed by block id.
ScopedArenaVector<size_t> successors_visited(blocks_.size(),
0u,
allocator.Adapter(kArenaAllocGraphBuilder));
// Nodes for which we need to visit successors.
ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
constexpr size_t kDefaultWorklistSize = 8;
worklist.reserve(kDefaultWorklistSize);
worklist.push_back(entry_block_);
while (!worklist.empty()) {
HBasicBlock* current = worklist.back();
uint32_t current_id = current->GetBlockId();
if (successors_visited[current_id] == current->GetSuccessors().size()) {
worklist.pop_back();
} else {
HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
UpdateDominatorOfSuccessor(current, successor);
// Once all the forward edges have been visited, we know the immediate
// dominator of the block. We can then start visiting its successors.
if (++visits[successor->GetBlockId()] ==
successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
reverse_post_order_.push_back(successor);
worklist.push_back(successor);
}
}
}
// Check if the graph has back edges not dominated by their respective headers.
// If so, we need to update the dominators of those headers and recursively of
// their successors. We do that with a fix-point iteration over all blocks.
// The algorithm is guaranteed to terminate because it loops only if the sum
// of all dominator chains has decreased in the current iteration.
bool must_run_fix_point = false;
for (HBasicBlock* block : blocks_) {
if (block != nullptr &&
block->IsLoopHeader() &&
block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
must_run_fix_point = true;
break;
}
}
if (must_run_fix_point) {
bool update_occurred = true;
while (update_occurred) {
update_occurred = false;
for (HBasicBlock* block : GetReversePostOrder()) {
for (HBasicBlock* successor : block->GetSuccessors()) {
update_occurred |= UpdateDominatorOfSuccessor(block, successor);
}
}
}
}
// Make sure that there are no remaining blocks whose dominator information
// needs to be updated.
if (kIsDebugBuild) {
for (HBasicBlock* block : GetReversePostOrder()) {
for (HBasicBlock* successor : block->GetSuccessors()) {
DCHECK(!UpdateDominatorOfSuccessor(block, successor));
}
}
}
// Populate `dominated_blocks_` information after computing all dominators.
// The potential presence of irreducible loops requires to do it after.
for (HBasicBlock* block : GetReversePostOrder()) {
if (!block->IsEntryBlock()) {
block->GetDominator()->AddDominatedBlock(block);
}
}
}
HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
HBasicBlock* new_block = new (allocator_) HBasicBlock(this, successor->GetDexPc());
AddBlock(new_block);
// Use `InsertBetween` to ensure the predecessor index and successor index of
// `block` and `successor` are preserved.
new_block->InsertBetween(block, successor);
return new_block;
}
void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
// Insert a new node between `block` and `successor` to split the
// critical edge.
HBasicBlock* new_block = SplitEdge(block, successor);
new_block->AddInstruction(new (allocator_) HGoto(successor->GetDexPc()));
if (successor->IsLoopHeader()) {
// If we split at a back edge boundary, make the new block the back edge.
HLoopInformation* info = successor->GetLoopInformation();
if (info->IsBackEdge(*block)) {
info->RemoveBackEdge(block);
info->AddBackEdge(new_block);
}
}
}
// Reorder phi inputs to match reordering of the block's predecessors.
static void FixPhisAfterPredecessorsReodering(HBasicBlock* block, size_t first, size_t second) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
HInstruction* first_instr = phi->InputAt(first);
HInstruction* second_instr = phi->InputAt(second);
phi->ReplaceInput(first_instr, second);
phi->ReplaceInput(second_instr, first);
}
}
// Make sure that the first predecessor of a loop header is the incoming block.
void HGraph::OrderLoopHeaderPredecessors(HBasicBlock* header) {
DCHECK(header->IsLoopHeader());
HLoopInformation* info = header->GetLoopInformation();
if (info->IsBackEdge(*header->GetPredecessors()[0])) {
HBasicBlock* to_swap = header->GetPredecessors()[0];
for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
HBasicBlock* predecessor = header->GetPredecessors()[pred];
if (!info->IsBackEdge(*predecessor)) {
header->predecessors_[pred] = to_swap;
header->predecessors_[0] = predecessor;
FixPhisAfterPredecessorsReodering(header, 0, pred);
break;
}
}
}
}
// Transform control flow of the loop to a single preheader format (don't touch the data flow).
// New_preheader can be already among the header predecessors - this situation will be correctly
// processed.
static void FixControlForNewSinglePreheader(HBasicBlock* header, HBasicBlock* new_preheader) {
HLoopInformation* loop_info = header->GetLoopInformation();
for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
HBasicBlock* predecessor = header->GetPredecessors()[pred];
if (!loop_info->IsBackEdge(*predecessor) && predecessor != new_preheader) {
predecessor->ReplaceSuccessor(header, new_preheader);
pred--;
}
}
}
// == Before == == After ==
// _________ _________ _________ _________
// | B0 | | B1 | (old preheaders) | B0 | | B1 |
// |=========| |=========| |=========| |=========|
// | i0 = .. | | i1 = .. | | i0 = .. | | i1 = .. |
// |_________| |_________| |_________| |_________|
// \ / \ /
// \ / ___v____________v___
// \ / (new preheader) | B20 <- B0, B1 |
// | | |====================|
// | | | i20 = phi(i0, i1) |
// | | |____________________|
// | | |
// /\ | | /\ /\ | /\
// / v_______v_________v_______v \ / v___________v_____________v \
// | | B10 <- B0, B1, B2, B3 | | | | B10 <- B20, B2, B3 | |
// | |===========================| | (header) | |===========================| |
// | | i10 = phi(i0, i1, i2, i3) | | | | i10 = phi(i20, i2, i3) | |
// | |___________________________| | | |___________________________| |
// | / \ | | / \ |
// | ... ... | | ... ... |
// | _________ _________ | | _________ _________ |
// | | B2 | | B3 | | | | B2 | | B3 | |
// | |=========| |=========| | (back edges) | |=========| |=========| |
// | | i2 = .. | | i3 = .. | | | | i2 = .. | | i3 = .. | |
// | |_________| |_________| | | |_________| |_________| |
// \ / \ / \ / \ /
// \___/ \___/ \___/ \___/
//
void HGraph::TransformLoopToSinglePreheaderFormat(HBasicBlock* header) {
HLoopInformation* loop_info = header->GetLoopInformation();
HBasicBlock* preheader = new (allocator_) HBasicBlock(this, header->GetDexPc());
AddBlock(preheader);
preheader->AddInstruction(new (allocator_) HGoto(header->GetDexPc()));
// If the old header has no Phis then we only need to fix the control flow.
if (header->GetPhis().IsEmpty()) {
FixControlForNewSinglePreheader(header, preheader);
preheader->AddSuccessor(header);
return;
}
// Find the first non-back edge block in the header's predecessors list.
size_t first_nonbackedge_pred_pos = 0;
bool found = false;
for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
HBasicBlock* predecessor = header->GetPredecessors()[pred];
if (!loop_info->IsBackEdge(*predecessor)) {
first_nonbackedge_pred_pos = pred;
found = true;
break;
}
}
DCHECK(found);
// Fix the data-flow.
for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
HPhi* header_phi = it.Current()->AsPhi();
HPhi* preheader_phi = new (GetAllocator()) HPhi(GetAllocator(),
header_phi->GetRegNumber(),
0,
header_phi->GetType());
if (header_phi->GetType() == DataType::Type::kReference) {
preheader_phi->SetReferenceTypeInfo(header_phi->GetReferenceTypeInfo());
}
preheader->AddPhi(preheader_phi);
HInstruction* orig_input = header_phi->InputAt(first_nonbackedge_pred_pos);
header_phi->ReplaceInput(preheader_phi, first_nonbackedge_pred_pos);
preheader_phi->AddInput(orig_input);
for (size_t input_pos = first_nonbackedge_pred_pos + 1;
input_pos < header_phi->InputCount();
input_pos++) {
HInstruction* input = header_phi->InputAt(input_pos);
HBasicBlock* pred_block = header->GetPredecessors()[input_pos];
if (loop_info->Contains(*pred_block)) {
DCHECK(loop_info->IsBackEdge(*pred_block));
} else {
preheader_phi->AddInput(input);
header_phi->RemoveInputAt(input_pos);
input_pos--;
}
}
}
// Fix the control-flow.
HBasicBlock* first_pred = header->GetPredecessors()[first_nonbackedge_pred_pos];
preheader->InsertBetween(first_pred, header);
FixControlForNewSinglePreheader(header, preheader);
}
void HGraph::SimplifyLoop(HBasicBlock* header) {
HLoopInformation* info = header->GetLoopInformation();
// Make sure the loop has only one pre header. This simplifies SSA building by having
// to just look at the pre header to know which locals are initialized at entry of the
// loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
// this graph.
size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
TransformLoopToSinglePreheaderFormat(header);
}
OrderLoopHeaderPredecessors(header);
HInstruction* first_instruction = header->GetFirstInstruction();
if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
// Called from DeadBlockElimination. Update SuspendCheck pointer.
info->SetSuspendCheck(first_instruction->AsSuspendCheck());
}
}
void HGraph::ComputeTryBlockInformation() {
// Iterate in reverse post order to propagate try membership information from
// predecessors to their successors.
for (HBasicBlock* block : GetReversePostOrder()) {
if (block->IsEntryBlock() || block->IsCatchBlock()) {
// Catch blocks after simplification have only exceptional predecessors
// and hence are never in tries.
continue;
}
// Infer try membership from the first predecessor. Having simplified loops,
// the first predecessor can never be a back edge and therefore it must have
// been visited already and had its try membership set.
HBasicBlock* first_predecessor = block->GetPredecessors()[0];
DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
if (try_entry != nullptr &&
(block->GetTryCatchInformation() == nullptr ||
try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
// We are either setting try block membership for the first time or it
// has changed.
block->SetTryCatchInformation(new (allocator_) TryCatchInformation(*try_entry));
}
}
}
void HGraph::SimplifyCFG() {
// Simplify the CFG for future analysis, and code generation:
// (1): Split critical edges.
// (2): Simplify loops by having only one preheader.
// NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
// can be invalidated. We remember the initial size to avoid iterating over the new blocks.
for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
HBasicBlock* block = blocks_[block_id];
if (block == nullptr) continue;
if (block->GetSuccessors().size() > 1) {
// Only split normal-flow edges. We cannot split exceptional edges as they
// are synthesized (approximate real control flow), and we do not need to
// anyway. Moves that would be inserted there are performed by the runtime.
ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
HBasicBlock* successor = normal_successors[j];
DCHECK(!successor->IsCatchBlock());
if (successor == exit_block_) {
// (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
// do not want to split because Goto->Exit is not allowed.
DCHECK(block->IsSingleTryBoundary());
} else if (successor->GetPredecessors().size() > 1) {
SplitCriticalEdge(block, successor);
// SplitCriticalEdge could have invalidated the `normal_successors`
// ArrayRef. We must re-acquire it.
normal_successors = block->GetNormalSuccessors();
DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
DCHECK_EQ(e, normal_successors.size());
}
}
}
if (block->IsLoopHeader()) {
SimplifyLoop(block);
} else if (!block->IsEntryBlock() &&
block->GetFirstInstruction() != nullptr &&
block->GetFirstInstruction()->IsSuspendCheck()) {
// We are being called by the dead code elimiation pass, and what used to be
// a loop got dismantled. Just remove the suspend check.
block->RemoveInstruction(block->GetFirstInstruction());
}
}
}
GraphAnalysisResult HGraph::AnalyzeLoops() const {
// We iterate post order to ensure we visit inner loops before outer loops.
// `PopulateRecursive` needs this guarantee to know whether a natural loop
// contains an irreducible loop.
for (HBasicBlock* block : GetPostOrder()) {
if (block->IsLoopHeader()) {
if (block->IsCatchBlock()) {
// TODO: Dealing with exceptional back edges could be tricky because
// they only approximate the real control flow. Bail out for now.
VLOG(compiler) << "Not compiled: Exceptional back edges";
return kAnalysisFailThrowCatchLoop;
}
block->GetLoopInformation()->Populate();
}
}
return kAnalysisSuccess;
}
void HLoopInformation::Dump(std::ostream& os) {
os << "header: " << header_->GetBlockId() << std::endl;
os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
for (HBasicBlock* block : back_edges_) {
os << "back edge: " << block->GetBlockId() << std::endl;
}
for (HBasicBlock* block : header_->GetPredecessors()) {
os << "predecessor: " << block->GetBlockId() << std::endl;
}
for (uint32_t idx : blocks_.Indexes()) {
os << " in loop: " << idx << std::endl;
}
}
void HGraph::InsertConstant(HConstant* constant) {
// New constants are inserted before the SuspendCheck at the bottom of the
// entry block. Note that this method can be called from the graph builder and
// the entry block therefore may not end with SuspendCheck->Goto yet.
HInstruction* insert_before = nullptr;
HInstruction* gota = entry_block_->GetLastInstruction();
if (gota != nullptr && gota->IsGoto()) {
HInstruction* suspend_check = gota->GetPrevious();
if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
insert_before = suspend_check;
} else {
insert_before = gota;
}
}
if (insert_before == nullptr) {
entry_block_->AddInstruction(constant);
} else {
entry_block_->InsertInstructionBefore(constant, insert_before);
}
}
HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
// For simplicity, don't bother reviving the cached null constant if it is
// not null and not in a block. Otherwise, we need to clear the instruction
// id and/or any invariants the graph is assuming when adding new instructions.
if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
cached_null_constant_ = new (allocator_) HNullConstant(dex_pc);
cached_null_constant_->SetReferenceTypeInfo(GetInexactObjectRti());
InsertConstant(cached_null_constant_);
}
if (kIsDebugBuild) {
ScopedObjectAccess soa(Thread::Current());
DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
}
return cached_null_constant_;
}
HCurrentMethod* HGraph::GetCurrentMethod() {
// For simplicity, don't bother reviving the cached current method if it is
// not null and not in a block. Otherwise, we need to clear the instruction
// id and/or any invariants the graph is assuming when adding new instructions.
if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
cached_current_method_ = new (allocator_) HCurrentMethod(
Is64BitInstructionSet(instruction_set_) ? DataType::Type::kInt64 : DataType::Type::kInt32,
entry_block_->GetDexPc());
if (entry_block_->GetFirstInstruction() == nullptr) {
entry_block_->AddInstruction(cached_current_method_);
} else {
entry_block_->InsertInstructionBefore(
cached_current_method_, entry_block_->GetFirstInstruction());
}
}
return cached_current_method_;
}
const char* HGraph::GetMethodName() const {
const dex::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
return dex_file_.GetMethodName(method_id);
}
std::string HGraph::PrettyMethod(bool with_signature) const {
return dex_file_.PrettyMethod(method_idx_, with_signature);
}
HConstant* HGraph::GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc) {
switch (type) {
case DataType::Type::kBool:
DCHECK(IsUint<1>(value));
FALLTHROUGH_INTENDED;
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
DCHECK(IsInt(DataType::Size(type) * kBitsPerByte, value));
return GetIntConstant(static_cast<int32_t>(value), dex_pc);
case DataType::Type::kInt64:
return GetLongConstant(value, dex_pc);
default:
LOG(FATAL) << "Unsupported constant type";
UNREACHABLE();
}
}
void HGraph::CacheFloatConstant(HFloatConstant* constant) {
int32_t value = bit_cast<int32_t, float>(constant->GetValue());
DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
cached_float_constants_.Overwrite(value, constant);
}
void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
int64_t value = bit_cast<int64_t, double>(constant->GetValue());
DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
cached_double_constants_.Overwrite(value, constant);
}
void HLoopInformation::Add(HBasicBlock* block) {
blocks_.SetBit(block->GetBlockId());
}
void HLoopInformation::Remove(HBasicBlock* block) {
blocks_.ClearBit(block->GetBlockId());
}
void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
if (blocks_.IsBitSet(block->GetBlockId())) {
return;
}
blocks_.SetBit(block->GetBlockId());
block->SetInLoop(this);
if (block->IsLoopHeader()) {
// We're visiting loops in post-order, so inner loops must have been
// populated already.
DCHECK(block->GetLoopInformation()->IsPopulated());
if (block->GetLoopInformation()->IsIrreducible()) {
contains_irreducible_loop_ = true;
}
}
for (HBasicBlock* predecessor : block->GetPredecessors()) {
PopulateRecursive(predecessor);
}
}
void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
size_t block_id = block->GetBlockId();
// If `block` is in `finalized`, we know its membership in the loop has been
// decided and it does not need to be revisited.
if (finalized->IsBitSet(block_id)) {
return;
}
bool is_finalized = false;
if (block->IsLoopHeader()) {
// If we hit a loop header in an irreducible loop, we first check if the
// pre header of that loop belongs to the currently analyzed loop. If it does,
// then we visit the back edges.
// Note that we cannot use GetPreHeader, as the loop may have not been populated
// yet.
HBasicBlock* pre_header = block->GetPredecessors()[0];
PopulateIrreducibleRecursive(pre_header, finalized);
if (blocks_.IsBitSet(pre_header->GetBlockId())) {
block->SetInLoop(this);
blocks_.SetBit(block_id);
finalized->SetBit(block_id);
is_finalized = true;
HLoopInformation* info = block->GetLoopInformation();
for (HBasicBlock* back_edge : info->GetBackEdges()) {
PopulateIrreducibleRecursive(back_edge, finalized);
}
}
} else {
// Visit all predecessors. If one predecessor is part of the loop, this
// block is also part of this loop.
for (HBasicBlock* predecessor : block->GetPredecessors()) {
PopulateIrreducibleRecursive(predecessor, finalized);
if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
block->SetInLoop(this);
blocks_.SetBit(block_id);
finalized->SetBit(block_id);
is_finalized = true;
}
}
}
// All predecessors have been recursively visited. Mark finalized if not marked yet.
if (!is_finalized) {
finalized->SetBit(block_id);
}
}
void HLoopInformation::Populate() {
DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
// Populate this loop: starting with the back edge, recursively add predecessors
// that are not already part of that loop. Set the header as part of the loop
// to end the recursion.
// This is a recursive implementation of the algorithm described in
// "Advanced Compiler Design & Implementation" (Muchnick) p192.
HGraph* graph = header_->GetGraph();
blocks_.SetBit(header_->GetBlockId());
header_->SetInLoop(this);
bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
if (is_irreducible_loop) {
// Allocate memory from local ScopedArenaAllocator.
ScopedArenaAllocator allocator(graph->GetArenaStack());
ArenaBitVector visited(&allocator,
graph->GetBlocks().size(),
/* expandable= */ false,
kArenaAllocGraphBuilder);
visited.ClearAllBits();
// Stop marking blocks at the loop header.
visited.SetBit(header_->GetBlockId());
for (HBasicBlock* back_edge : GetBackEdges()) {
PopulateIrreducibleRecursive(back_edge, &visited);
}
} else {
for (HBasicBlock* back_edge : GetBackEdges()) {
PopulateRecursive(back_edge);
}
}
if (!is_irreducible_loop && graph->IsCompilingOsr()) {
// When compiling in OSR mode, all loops in the compiled method may be entered
// from the interpreter. We treat this OSR entry point just like an extra entry
// to an irreducible loop, so we need to mark the method's loops as irreducible.
// This does not apply to inlined loops which do not act as OSR entry points.
if (suspend_check_ == nullptr) {
// Just building the graph in OSR mode, this loop is not inlined. We never build an
// inner graph in OSR mode as we can do OSR transition only from the outer method.
is_irreducible_loop = true;
} else {
// Look at the suspend check's environment to determine if the loop was inlined.
DCHECK(suspend_check_->HasEnvironment());
if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
is_irreducible_loop = true;
}
}
}
if (is_irreducible_loop) {
irreducible_ = true;
contains_irreducible_loop_ = true;
graph->SetHasIrreducibleLoops(true);
}
graph->SetHasLoops(true);
}
void HLoopInformation::PopulateInnerLoopUpwards(HLoopInformation* inner_loop) {
DCHECK(inner_loop->GetPreHeader()->GetLoopInformation() == this);
blocks_.Union(&inner_loop->blocks_);
HLoopInformation* outer_loop = GetPreHeader()->GetLoopInformation();
if (outer_loop != nullptr) {
outer_loop->PopulateInnerLoopUpwards(this);
}
}
HBasicBlock* HLoopInformation::GetPreHeader() const {
HBasicBlock* block = header_->GetPredecessors()[0];
DCHECK(irreducible_ || (block == header_->GetDominator()));
return block;
}
bool HLoopInformation::Contains(const HBasicBlock& block) const {
return blocks_.IsBitSet(block.GetBlockId());
}
bool HLoopInformation::IsIn(const HLoopInformation& other) const {
return other.blocks_.IsBitSet(header_->GetBlockId());
}
bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
}
size_t HLoopInformation::GetLifetimeEnd() const {
size_t last_position = 0;
for (HBasicBlock* back_edge : GetBackEdges()) {
last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
}
return last_position;
}
bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
for (HBasicBlock* back_edge : GetBackEdges()) {
DCHECK(back_edge->GetDominator() != nullptr);
if (!header_->Dominates(back_edge)) {
return true;
}
}
return false;
}
bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
for (HBasicBlock* back_edge : GetBackEdges()) {
if (!block->Dominates(back_edge)) {
return false;
}
}
return true;
}
bool HLoopInformation::HasExitEdge() const {
// Determine if this loop has at least one exit edge.
HBlocksInLoopReversePostOrderIterator it_loop(*this);
for (; !it_loop.Done(); it_loop.Advance()) {
for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
if (!Contains(*successor)) {
return true;
}
}
}
return false;
}
bool HBasicBlock::Dominates(HBasicBlock* other) const {
// Walk up the dominator tree from `other`, to find out if `this`
// is an ancestor.
HBasicBlock* current = other;
while (current != nullptr) {
if (current == this) {
return true;
}
current = current->GetDominator();
}
return false;
}
static void UpdateInputsUsers(HInstruction* instruction) {
HInputsRef inputs = instruction->GetInputs();
for (size_t i = 0; i < inputs.size(); ++i) {
inputs[i]->AddUseAt(instruction, i);
}
// Environment should be created later.
DCHECK(!instruction->HasEnvironment());
}
void HBasicBlock::ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement) {
DCHECK(initial->GetBlock() == this);
InsertPhiAfter(replacement, initial);
initial->ReplaceWith(replacement);
RemovePhi(initial);
}
void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
HInstruction* replacement) {
DCHECK(initial->GetBlock() == this);
if (initial->IsControlFlow()) {
// We can only replace a control flow instruction with another control flow instruction.
DCHECK(replacement->IsControlFlow());
DCHECK_EQ(replacement->GetId(), -1);
DCHECK_EQ(replacement->GetType(), DataType::Type::kVoid);
DCHECK_EQ(initial->GetBlock(), this);
DCHECK_EQ(initial->GetType(), DataType::Type::kVoid);
DCHECK(initial->GetUses().empty());
DCHECK(initial->GetEnvUses().empty());
replacement->SetBlock(this);
replacement->SetId(GetGraph()->GetNextInstructionId());
instructions_.InsertInstructionBefore(replacement, initial);
UpdateInputsUsers(replacement);
} else {
InsertInstructionBefore(replacement, initial);
initial->ReplaceWith(replacement);
}
RemoveInstruction(initial);
}
static void Add(HInstructionList* instruction_list,
HBasicBlock* block,
HInstruction* instruction) {
DCHECK(instruction->GetBlock() == nullptr);
DCHECK_EQ(instruction->GetId(), -1);
instruction->SetBlock(block);
instruction->SetId(block->GetGraph()->GetNextInstructionId());
UpdateInputsUsers(instruction);
instruction_list->AddInstruction(instruction);
}
void HBasicBlock::AddInstruction(HInstruction* instruction) {
Add(&instructions_, this, instruction);
}
void HBasicBlock::AddPhi(HPhi* phi) {
Add(&phis_, this, phi);
}
void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
DCHECK(!cursor->IsPhi());
DCHECK(!instruction->IsPhi());
DCHECK_EQ(instruction->GetId(), -1);
DCHECK_NE(cursor->GetId(), -1);
DCHECK_EQ(cursor->GetBlock(), this);
DCHECK(!instruction->IsControlFlow());
instruction->SetBlock(this);
instruction->SetId(GetGraph()->GetNextInstructionId());
UpdateInputsUsers(instruction);
instructions_.InsertInstructionBefore(instruction, cursor);
}
void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
DCHECK(!cursor->IsPhi());
DCHECK(!instruction->IsPhi());
DCHECK_EQ(instruction->GetId(), -1);
DCHECK_NE(cursor->GetId(), -1);
DCHECK_EQ(cursor->GetBlock(), this);
DCHECK(!instruction->IsControlFlow());
DCHECK(!cursor->IsControlFlow());
instruction->SetBlock(this);
instruction->SetId(GetGraph()->GetNextInstructionId());
UpdateInputsUsers(instruction);
instructions_.InsertInstructionAfter(instruction, cursor);
}
void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
DCHECK_EQ(phi->GetId(), -1);
DCHECK_NE(cursor->GetId(), -1);
DCHECK_EQ(cursor->GetBlock(), this);
phi->SetBlock(this);
phi->SetId(GetGraph()->GetNextInstructionId());
UpdateInputsUsers(phi);
phis_.InsertInstructionAfter(phi, cursor);
}
static void Remove(HInstructionList* instruction_list,
HBasicBlock* block,
HInstruction* instruction,
bool ensure_safety) {
DCHECK_EQ(block, instruction->GetBlock());
instruction->SetBlock(nullptr);
instruction_list->RemoveInstruction(instruction);
if (ensure_safety) {
DCHECK(instruction->GetUses().empty());
DCHECK(instruction->GetEnvUses().empty());
RemoveAsUser(instruction);
}
}
void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
DCHECK(!instruction->IsPhi());
Remove(&instructions_, this, instruction, ensure_safety);
}
void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
Remove(&phis_, this, phi, ensure_safety);
}
void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
if (instruction->IsPhi()) {
RemovePhi(instruction->AsPhi(), ensure_safety);
} else {
RemoveInstruction(instruction, ensure_safety);
}
}
void HEnvironment::CopyFrom(ArrayRef<HInstruction* const> locals) {
for (size_t i = 0; i < locals.size(); i++) {
HInstruction* instruction = locals[i];
SetRawEnvAt(i, instruction);
if (instruction != nullptr) {
instruction->AddEnvUseAt(this, i);
}
}
}
void HEnvironment::CopyFrom(HEnvironment* env) {
for (size_t i = 0; i < env->Size(); i++) {
HInstruction* instruction = env->GetInstructionAt(i);
SetRawEnvAt(i, instruction);
if (instruction != nullptr) {
instruction->AddEnvUseAt(this, i);
}
}
}
void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
HBasicBlock* loop_header) {
DCHECK(loop_header->IsLoopHeader());
for (size_t i = 0; i < env->Size(); i++) {
HInstruction* instruction = env->GetInstructionAt(i);
SetRawEnvAt(i, instruction);
if (instruction == nullptr) {
continue;
}
if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
// At the end of the loop pre-header, the corresponding value for instruction
// is the first input of the phi.
HInstruction* initial = instruction->AsPhi()->InputAt(0);
SetRawEnvAt(i, initial);
initial->AddEnvUseAt(this, i);
} else {
instruction->AddEnvUseAt(this, i);
}
}
}
void HEnvironment::RemoveAsUserOfInput(size_t index) const {
const HUserRecord<HEnvironment*>& env_use = vregs_[index];
HInstruction* user = env_use.GetInstruction();
auto before_env_use_node = env_use.GetBeforeUseNode();
user->env_uses_.erase_after(before_env_use_node);
user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
}
void HEnvironment::ReplaceInput(HInstruction* replacement, size_t index) {
const HUserRecord<HEnvironment*>& env_use_record = vregs_[index];
HInstruction* orig_instr = env_use_record.GetInstruction();
DCHECK(orig_instr != replacement);
HUseList<HEnvironment*>::iterator before_use_node = env_use_record.GetBeforeUseNode();
// Note: fixup_end remains valid across splice_after().
auto fixup_end = replacement->env_uses_.empty() ? replacement->env_uses_.begin()
: ++replacement->env_uses_.begin();
replacement->env_uses_.splice_after(replacement->env_uses_.before_begin(),
env_use_record.GetInstruction()->env_uses_,
before_use_node);
replacement->FixUpUserRecordsAfterEnvUseInsertion(fixup_end);
orig_instr->FixUpUserRecordsAfterEnvUseRemoval(before_use_node);
}
std::ostream& HInstruction::Dump(std::ostream& os, bool dump_args) {
HGraph* graph = GetBlock()->GetGraph();
HGraphVisualizer::DumpInstruction(&os, graph, this);
if (dump_args) {
// Allocate memory from local ScopedArenaAllocator.
ScopedArenaAllocator allocator(graph->GetArenaStack());
// Instructions that we already visited. We print each instruction only once.
ArenaBitVector visited(
&allocator, graph->GetCurrentInstructionId(), /* expandable= */ false, kArenaAllocMisc);
visited.ClearAllBits();
visited.SetBit(GetId());
// Keep a queue of instructions with their indentations.
ScopedArenaDeque<std::pair<HInstruction*, size_t>> queue(allocator.Adapter(kArenaAllocMisc));
auto add_args = [&queue](HInstruction* instruction, size_t indentation) {
for (HInstruction* arg : ReverseRange(instruction->GetInputs())) {
queue.emplace_front(arg, indentation);
}
};
add_args(this, /*indentation=*/ 1u);
while (!queue.empty()) {
HInstruction* instruction;
size_t indentation;
std::tie(instruction, indentation) = queue.front();
queue.pop_front();
if (!visited.IsBitSet(instruction->GetId())) {
visited.SetBit(instruction->GetId());
os << '\n';
for (size_t i = 0; i != indentation; ++i) {
os << " ";
}
HGraphVisualizer::DumpInstruction(&os, graph, instruction);
add_args(instruction, indentation + 1u);
}
}
}
return os;
}
HInstruction* HInstruction::GetNextDisregardingMoves() const {
HInstruction* next = GetNext();
while (next != nullptr && next->IsParallelMove()) {
next = next->GetNext();
}
return next;
}
HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
HInstruction* previous = GetPrevious();
while (previous != nullptr && previous->IsParallelMove()) {
previous = previous->GetPrevious();
}
return previous;
}
void HInstructionList::AddInstruction(HInstruction* instruction) {
if (first_instruction_ == nullptr) {
DCHECK(last_instruction_ == nullptr);
first_instruction_ = last_instruction_ = instruction;
} else {
DCHECK(last_instruction_ != nullptr);
last_instruction_->next_ = instruction;
instruction->previous_ = last_instruction_;
last_instruction_ = instruction;
}
}
void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
DCHECK(Contains(cursor));
if (cursor == first_instruction_) {
cursor->previous_ = instruction;
instruction->next_ = cursor;
first_instruction_ = instruction;
} else {
instruction->previous_ = cursor->previous_;
instruction->next_ = cursor;
cursor->previous_ = instruction;
instruction->previous_->next_ = instruction;
}
}
void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
DCHECK(Contains(cursor));
if (cursor == last_instruction_) {
cursor->next_ = instruction;
instruction->previous_ = cursor;
last_instruction_ = instruction;
} else {
instruction->next_ = cursor->next_;
instruction->previous_ = cursor;
cursor->next_ = instruction;
instruction->next_->previous_ = instruction;
}
}
void HInstructionList::RemoveInstruction(HInstruction* instruction) {
if (instruction->previous_ != nullptr) {
instruction->previous_->next_ = instruction->next_;
}
if (instruction->next_ != nullptr) {
instruction->next_->previous_ = instruction->previous_;
}
if (instruction == first_instruction_) {
first_instruction_ = instruction->next_;
}
if (instruction == last_instruction_) {
last_instruction_ = instruction->previous_;
}
}
bool HInstructionList::Contains(HInstruction* instruction) const {
for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
if (it.Current() == instruction) {
return true;
}
}
return false;
}
bool HInstructionList::FoundBefore(const HInstruction* instruction1,
const HInstruction* instruction2) const {
DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
if (it.Current() == instruction1) {
return true;
}
if (it.Current() == instruction2) {
return false;
}
}
LOG(FATAL) << "Did not find an order between two instructions of the same block.";
UNREACHABLE();
}
bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
if (other_instruction == this) {
// An instruction does not strictly dominate itself.
return false;
}
HBasicBlock* block = GetBlock();
HBasicBlock* other_block = other_instruction->GetBlock();
if (block != other_block) {
return GetBlock()->Dominates(other_instruction->GetBlock());
} else {
// If both instructions are in the same block, ensure this
// instruction comes before `other_instruction`.
if (IsPhi()) {
if (!other_instruction->IsPhi()) {
// Phis appear before non phi-instructions so this instruction
// dominates `other_instruction`.
return true;
} else {
// There is no order among phis.
LOG(FATAL) << "There is no dominance between phis of a same block.";
UNREACHABLE();
}
} else {
// `this` is not a phi.
if (other_instruction->IsPhi()) {
// Phis appear before non phi-instructions so this instruction
// does not dominate `other_instruction`.
return false;
} else {
// Check whether this instruction comes before
// `other_instruction` in the instruction list.
return block->GetInstructions().FoundBefore(this, other_instruction);
}
}
}
}
void HInstruction::RemoveEnvironment() {
RemoveEnvironmentUses(this);
environment_ = nullptr;
}
void HInstruction::ReplaceWith(HInstruction* other) {
DCHECK(other != nullptr);
// Note: fixup_end remains valid across splice_after().
auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
other->uses_.splice_after(other->uses_.before_begin(), uses_);
other->FixUpUserRecordsAfterUseInsertion(fixup_end);
// Note: env_fixup_end remains valid across splice_after().
auto env_fixup_end =
other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
DCHECK(uses_.empty());
DCHECK(env_uses_.empty());
}
void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
const HUseList<HInstruction*>& uses = GetUses();
for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
HInstruction* user = it->GetUser();
size_t index = it->GetIndex();
// Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
++it;
if (dominator->StrictlyDominates(user)) {
user->ReplaceInput(replacement, index);
} else if (user->IsPhi() && !user->AsPhi()->IsCatchPhi()) {
// If the input flows from a block dominated by `dominator`, we can replace it.
// We do not perform this for catch phis as we don't have control flow support
// for their inputs.
const ArenaVector<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
HBasicBlock* predecessor = predecessors[index];
if (dominator->GetBlock()->Dominates(predecessor)) {
user->ReplaceInput(replacement, index);
}
}
}
}
void HInstruction::ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
const HUseList<HEnvironment*>& uses = GetEnvUses();
for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
HEnvironment* user = it->GetUser();
size_t index = it->GetIndex();
// Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
++it;
if (dominator->StrictlyDominates(user->GetHolder())) {
user->ReplaceInput(replacement, index);
}
}
}
void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
HUserRecord<HInstruction*> input_use = InputRecordAt(index);
if (input_use.GetInstruction() == replacement) {
// Nothing to do.
return;
}
HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
// Note: fixup_end remains valid across splice_after().
auto fixup_end =
replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
replacement->uses_.splice_after(replacement->uses_.before_begin(),
input_use.GetInstruction()->uses_,
before_use_node);
replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
}
size_t HInstruction::EnvironmentSize() const {
return HasEnvironment() ? environment_->Size() : 0;
}
void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
DCHECK(input->GetBlock() != nullptr);
inputs_.push_back(HUserRecord<HInstruction*>(input));
input->AddUseAt(this, inputs_.size() - 1);
}
void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
input->AddUseAt(this, index);
// Update indexes in use nodes of inputs that have been pushed further back by the insert().
for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
inputs_[i].GetUseNode()->SetIndex(i);
}
}
void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
RemoveAsUserOfInput(index);
inputs_.erase(inputs_.begin() + index);
// Update indexes in use nodes of inputs that have been pulled forward by the erase().
for (size_t i = index, e = inputs_.size(); i < e; ++i) {
DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
inputs_[i].GetUseNode()->SetIndex(i);
}
}
void HVariableInputSizeInstruction::RemoveAllInputs() {
RemoveAsUserOfAllInputs();
DCHECK(!HasNonEnvironmentUses());
inputs_.clear();
DCHECK_EQ(0u, InputCount());
}
size_t HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
DCHECK(instruction->GetBlock() != nullptr);
// Removing constructor fences only makes sense for instructions with an object return type.
DCHECK_EQ(DataType::Type::kReference, instruction->GetType());
// Return how many instructions were removed for statistic purposes.
size_t remove_count = 0;
// Efficient implementation that simultaneously (in one pass):
// * Scans the uses list for all constructor fences.
// * Deletes that constructor fence from the uses list of `instruction`.
// * Deletes `instruction` from the constructor fence's inputs.
// * Deletes the constructor fence if it now has 0 inputs.
const HUseList<HInstruction*>& uses = instruction->GetUses();
// Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
for (auto it = uses.begin(), end = uses.end(); it != end; ) {
const HUseListNode<HInstruction*>& use_node = *it;
HInstruction* const use_instruction = use_node.GetUser();
// Advance the iterator immediately once we fetch the use_node.
// Warning: If the input is removed, the current iterator becomes invalid.
++it;
if (use_instruction->IsConstructorFence()) {
HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
size_t input_index = use_node.GetIndex();
// Process the candidate instruction for removal
// from the graph.
// Constructor fence instructions are never
// used by other instructions.
//
// If we wanted to make this more generic, it
// could be a runtime if statement.
DCHECK(!ctor_fence->HasUses());
// A constructor fence's return type is "kPrimVoid"
// and therefore it can't have any environment uses.
DCHECK(!ctor_fence->HasEnvironmentUses());
// Remove the inputs first, otherwise removing the instruction
// will try to remove its uses while we are already removing uses
// and this operation will fail.
DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
// Removing the input will also remove the `use_node`.
// (Do not look at `use_node` after this, it will be a dangling reference).
ctor_fence->RemoveInputAt(input_index);
// Once all inputs are removed, the fence is considered dead and
// is removed.
if (ctor_fence->InputCount() == 0u) {
ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
++remove_count;
}
}
}
if (kIsDebugBuild) {
// Post-condition checks:
// * None of the uses of `instruction` are a constructor fence.
// * The `instruction` itself did not get removed from a block.
for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
CHECK(!use_node.GetUser()->IsConstructorFence());
}
CHECK(instruction->GetBlock() != nullptr);
}
return remove_count;
}
void HConstructorFence::Merge(HConstructorFence* other) {
// Do not delete yourself from the graph.
DCHECK(this != other);
// Don't try to merge with an instruction not associated with a block.
DCHECK(other->GetBlock() != nullptr);
// A constructor fence's return type is "kPrimVoid"
// and therefore it cannot have any environment uses.
DCHECK(!other->HasEnvironmentUses());
auto has_input = [](HInstruction* haystack, HInstruction* needle) {
// Check if `haystack` has `needle` as any of its inputs.
for (size_t input_count = 0; input_count < haystack->InputCount(); ++input_count) {
if (haystack->InputAt(input_count) == needle) {
return true;
}
}
return false;
};
// Add any inputs from `other` into `this` if it wasn't already an input.
for (size_t input_count = 0; input_count < other->InputCount(); ++input_count) {
HInstruction* other_input = other->InputAt(input_count);
if (!has_input(this, other_input)) {
AddInput(other_input);
}
}
other->GetBlock()->RemoveInstruction(other);
}
HInstruction* HConstructorFence::GetAssociatedAllocation(bool ignore_inputs) {
HInstruction* new_instance_inst = GetPrevious();
// Check if the immediately preceding instruction is a new-instance/new-array.
// Otherwise this fence is for protecting final fields.
if (new_instance_inst != nullptr &&
(new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
if (ignore_inputs) {
// If inputs are ignored, simply check if the predecessor is
// *any* HNewInstance/HNewArray.
//
// Inputs are normally only ignored for prepare_for_register_allocation,
// at which point *any* prior HNewInstance/Array can be considered
// associated.
return new_instance_inst;
} else {
// Normal case: There must be exactly 1 input and the previous instruction
// must be that input.
if (InputCount() == 1u && InputAt(0) == new_instance_inst) {
return new_instance_inst;
}
}
}
return nullptr;
}
#define DEFINE_ACCEPT(name, super) \
void H##name::Accept(HGraphVisitor* visitor) { \
visitor->Visit##name(this); \
}
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
#undef DEFINE_ACCEPT
void HGraphVisitor::VisitInsertionOrder() {
for (HBasicBlock* block : graph_->GetActiveBlocks()) {
VisitBasicBlock(block);
}
}
void HGraphVisitor::VisitReversePostOrder() {
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
VisitBasicBlock(block);
}
}
void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
it.Current()->Accept(this);
}
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
it.Current()->Accept(this);
}
}
HConstant* HTypeConversion::TryStaticEvaluation() const {
HGraph* graph = GetBlock()->GetGraph();
if (GetInput()->IsIntConstant()) {
int32_t value = GetInput()->AsIntConstant()->GetValue();
switch (GetResultType()) {
case DataType::Type::kInt8:
return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
case DataType::Type::kUint8:
return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
case DataType::Type::kInt16:
return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
case DataType::Type::kUint16:
return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
case DataType::Type::kInt64:
return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
case DataType::Type::kFloat32:
return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
case DataType::Type::kFloat64:
return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
default:
return nullptr;
}
} else if (GetInput()->IsLongConstant()) {
int64_t value = GetInput()->AsLongConstant()->GetValue();
switch (GetResultType()) {
case DataType::Type::kInt8:
return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
case DataType::Type::kUint8:
return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
case DataType::Type::kInt16:
return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
case DataType::Type::kUint16:
return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
case DataType::Type::kInt32:
return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
case DataType::Type::kFloat32:
return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
case DataType::Type::kFloat64:
return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
default:
return nullptr;
}
} else if (GetInput()->IsFloatConstant()) {
float value = GetInput()->AsFloatConstant()->GetValue();
switch (GetResultType()) {
case DataType::Type::kInt32:
if (std::isnan(value))
return graph->GetIntConstant(0, GetDexPc());
if (value >= static_cast<float>(kPrimIntMax))
return graph->GetIntConstant(kPrimIntMax, GetDexPc());
if (value <= kPrimIntMin)
return graph->GetIntConstant(kPrimIntMin, GetDexPc());
return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
case DataType::Type::kInt64:
if (std::isnan(value))
return graph->GetLongConstant(0, GetDexPc());
if (value >= static_cast<float>(kPrimLongMax))
return graph->GetLongConstant(kPrimLongMax, GetDexPc());
if (value <= kPrimLongMin)
return graph->GetLongConstant(kPrimLongMin, GetDexPc());
return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
case DataType::Type::kFloat64:
return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
default:
return nullptr;
}
} else if (GetInput()->IsDoubleConstant()) {
double value = GetInput()->AsDoubleConstant()->GetValue();
switch (GetResultType()) {
case DataType::Type::kInt32:
if (std::isnan(value))
return graph->GetIntConstant(0, GetDexPc());
if (value >= kPrimIntMax)
return graph->GetIntConstant(kPrimIntMax, GetDexPc());
if (value <= kPrimLongMin)
return graph->GetIntConstant(kPrimIntMin, GetDexPc());
return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
case DataType::Type::kInt64:
if (std::isnan(value))
return graph->GetLongConstant(0, GetDexPc());
if (value >= static_cast<double>(kPrimLongMax))
return graph->GetLongConstant(kPrimLongMax, GetDexPc());
if (value <= kPrimLongMin)
return graph->GetLongConstant(kPrimLongMin, GetDexPc());
return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
case DataType::Type::kFloat32:
return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
default:
return nullptr;
}
}
return nullptr;
}
HConstant* HUnaryOperation::TryStaticEvaluation() const {
if (GetInput()->IsIntConstant()) {
return Evaluate(GetInput()->AsIntConstant());
} else if (GetInput()->IsLongConstant()) {
return Evaluate(GetInput()->AsLongConstant());
} else if (kEnableFloatingPointStaticEvaluation) {
if (GetInput()->IsFloatConstant()) {
return Evaluate(GetInput()->AsFloatConstant());
} else if (GetInput()->IsDoubleConstant()) {
return Evaluate(GetInput()->AsDoubleConstant());
}
}
return nullptr;
}
HConstant* HBinaryOperation::TryStaticEvaluation() const {
if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
} else if (GetLeft()->IsLongConstant()) {
if (GetRight()->IsIntConstant()) {
// The binop(long, int) case is only valid for shifts and rotations.
DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
} else if (GetRight()->IsLongConstant()) {
return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
}
} else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
// The binop(null, null) case is only valid for equal and not-equal conditions.
DCHECK(IsEqual() || IsNotEqual()) << DebugName();
return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
} else if (kEnableFloatingPointStaticEvaluation) {
if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
} else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
}
}
return nullptr;
}
HConstant* HBinaryOperation::GetConstantRight() const {
if (GetRight()->IsConstant()) {
return GetRight()->AsConstant();
} else if (IsCommutative() && GetLeft()->IsConstant()) {
return GetLeft()->AsConstant();
} else {
return nullptr;
}
}
// If `GetConstantRight()` returns one of the input, this returns the other
// one. Otherwise it returns null.
HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
HInstruction* most_constant_right = GetConstantRight();
if (most_constant_right == nullptr) {
return nullptr;
} else if (most_constant_right == GetLeft()) {
return GetRight();
} else {
return GetLeft();
}
}
std::ostream& operator<<(std::ostream& os, ComparisonBias rhs) {
// TODO: Replace with auto-generated operator<<.
switch (rhs) {
case ComparisonBias::kNoBias:
return os << "none";
case ComparisonBias::kGtBias:
return os << "gt";
case ComparisonBias::kLtBias:
return os << "lt";
default:
LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
UNREACHABLE();
}
}
bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
return this == instruction->GetPreviousDisregardingMoves();
}
bool HInstruction::Equals(const HInstruction* other) const {
if (GetKind() != other->GetKind()) return false;
if (GetType() != other->GetType()) return false;
if (!InstructionDataEquals(other)) return false;
HConstInputsRef inputs = GetInputs();
HConstInputsRef other_inputs = other->GetInputs();
if (inputs.size() != other_inputs.size()) return false;
for (size_t i = 0; i != inputs.size(); ++i) {
if (inputs[i] != other_inputs[i]) return false;
}
DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
return true;
}
std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs) {
#define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
switch (rhs) {
FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_CASE)
default:
os << "Unknown instruction kind " << static_cast<int>(rhs);
break;
}
#undef DECLARE_CASE
return os;
}
std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs) {
// TODO Really this should be const but that would require const-ifying
// graph-visualizer and HGraphVisitor which are tangled up everywhere.
return const_cast<HInstruction*>(rhs.ins)->Dump(os, /* dump_args= */ false);
}
std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs) {
// TODO Really this should be const but that would require const-ifying
// graph-visualizer and HGraphVisitor which are tangled up everywhere.
return const_cast<HInstruction*>(rhs.ins)->Dump(os, /* dump_args= */ true);
}
std::ostream& operator<<(std::ostream& os, const HInstruction& rhs) {
return os << rhs.DumpWithoutArgs();
}
std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst) {
os << "Instructions[";
bool first = true;
for (const auto& hi : lst) {
if (!first) {
os << ", ";
}
first = false;
os << hi.GetUser()->DebugName() << "[id: " << hi.GetUser()->GetId()
<< ", blk: " << hi.GetUser()->GetBlock()->GetBlockId() << "]@" << hi.GetIndex();
}
os << "]";
return os;
}
std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst) {
os << "Environments[";
bool first = true;
for (const auto& hi : lst) {
if (!first) {
os << ", ";
}
first = false;
os << *hi.GetUser()->GetHolder() << "@" << hi.GetIndex();
}
os << "]";
return os;
}
std::ostream& HGraph::Dump(std::ostream& os,
std::optional<std::reference_wrapper<const BlockNamer>> namer) {
HGraphVisualizer vis(&os, this, nullptr, namer);
vis.DumpGraphDebug();
return os;
}
void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
if (do_checks) {
DCHECK(!IsPhi());
DCHECK(!IsControlFlow());
DCHECK(CanBeMoved() ||
// HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
IsShouldDeoptimizeFlag());
DCHECK(!cursor->IsPhi());
}
next_->previous_ = previous_;
if (previous_ != nullptr) {
previous_->next_ = next_;
}
if (block_->instructions_.first_instruction_ == this) {
block_->instructions_.first_instruction_ = next_;
}
DCHECK_NE(block_->instructions_.last_instruction_, this);
previous_ = cursor->previous_;
if (previous_ != nullptr) {
previous_->next_ = this;
}
next_ = cursor;
cursor->previous_ = this;
block_ = cursor->block_;
if (block_->instructions_.first_instruction_ == cursor) {
block_->instructions_.first_instruction_ = this;
}
}
void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
DCHECK(!CanThrow());
DCHECK(!HasSideEffects());
DCHECK(!HasEnvironmentUses());
DCHECK(HasNonEnvironmentUses());
DCHECK(!IsPhi()); // Makes no sense for Phi.
DCHECK_EQ(InputCount(), 0u);
// Find the target block.
auto uses_it = GetUses().begin();
auto uses_end = GetUses().end();
HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
++uses_it;
while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
++uses_it;
}
if (uses_it != uses_end) {
// This instruction has uses in two or more blocks. Find the common dominator.
CommonDominator finder(target_block);
for (; uses_it != uses_end; ++uses_it) {
finder.Update(uses_it->GetUser()->GetBlock());
}
target_block = finder.Get();
DCHECK(target_block != nullptr);
}
// Move to the first dominator not in a loop.
while (target_block->IsInLoop()) {
target_block = target_block->GetDominator();
DCHECK(target_block != nullptr);
}
// Find insertion position.
HInstruction* insert_pos = nullptr;
for (const HUseListNode<HInstruction*>& use : GetUses()) {
if (use.GetUser()->GetBlock() == target_block &&
(insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
insert_pos = use.GetUser();
}
}
if (insert_pos == nullptr) {
// No user in `target_block`, insert before the control flow instruction.
insert_pos = target_block->GetLastInstruction();
DCHECK(insert_pos->IsControlFlow());
// Avoid splitting HCondition from HIf to prevent unnecessary materialization.
if (insert_pos->IsIf()) {
HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
if (if_input == insert_pos->GetPrevious()) {
insert_pos = if_input;
}
}
}
MoveBefore(insert_pos);
}
HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
DCHECK_EQ(cursor->GetBlock(), this);
HBasicBlock* new_block =
new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
new_block->instructions_.first_instruction_ = cursor;
new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
instructions_.last_instruction_ = cursor->previous_;
if (cursor->previous_ == nullptr) {
instructions_.first_instruction_ = nullptr;
} else {
cursor->previous_->next_ = nullptr;
cursor->previous_ = nullptr;
}
new_block->instructions_.SetBlockOfInstructions(new_block);
AddInstruction(new (GetGraph()->GetAllocator()) HGoto(new_block->GetDexPc()));
for (HBasicBlock* successor : GetSuccessors()) {
successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
}
new_block->successors_.swap(successors_);
DCHECK(successors_.empty());
AddSuccessor(new_block);
GetGraph()->AddBlock(new_block);
return new_block;
}
HBasicBlock* HBasicBlock::CreateImmediateDominator() {
DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
for (HBasicBlock* predecessor : GetPredecessors()) {
predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
}
new_block->predecessors_.swap(predecessors_);
DCHECK(predecessors_.empty());
AddPredecessor(new_block);
GetGraph()->AddBlock(new_block);
return new_block;
}
HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
DCHECK_EQ(cursor->GetBlock(), this);
HBasicBlock* new_block =
new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
new_block->instructions_.first_instruction_ = cursor;
new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
instructions_.last_instruction_ = cursor->previous_;
if (cursor->previous_ == nullptr) {
instructions_.first_instruction_ = nullptr;
} else {
cursor->previous_->next_ = nullptr;
cursor->previous_ = nullptr;
}
new_block->instructions_.SetBlockOfInstructions(new_block);
for (HBasicBlock* successor : GetSuccessors()) {
successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
}
new_block->successors_.swap(successors_);
DCHECK(successors_.empty());
for (HBasicBlock* dominated : GetDominatedBlocks()) {
dominated->dominator_ = new_block;
}
new_block->dominated_blocks_.swap(dominated_blocks_);
DCHECK(dominated_blocks_.empty());
return new_block;
}
HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
DCHECK(!cursor->IsControlFlow());
DCHECK_NE(instructions_.last_instruction_, cursor);
DCHECK_EQ(cursor->GetBlock(), this);
HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
new_block->instructions_.first_instruction_ = cursor->GetNext();
new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
cursor->next_->previous_ = nullptr;
cursor->next_ = nullptr;
instructions_.last_instruction_ = cursor;
new_block->instructions_.SetBlockOfInstructions(new_block);
for (HBasicBlock* successor : GetSuccessors()) {
successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
}
new_block->successors_.swap(successors_);
DCHECK(successors_.empty());
for (HBasicBlock* dominated : GetDominatedBlocks()) {
dominated->dominator_ = new_block;
}
new_block->dominated_blocks_.swap(dominated_blocks_);
DCHECK(dominated_blocks_.empty());
return new_block;
}
const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
if (EndsWithTryBoundary()) {
HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
if (try_boundary->IsEntry()) {
DCHECK(!IsTryBlock());
return try_boundary;
} else {
DCHECK(IsTryBlock());
DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
return nullptr;
}
} else if (IsTryBlock()) {
return &try_catch_information_->GetTryEntry();
} else {
return nullptr;
}
}
bool HBasicBlock::HasThrowingInstructions() const {
for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
if (it.Current()->CanThrow()) {
return true;
}
}
return false;
}
static bool HasOnlyOneInstruction(const HBasicBlock& block) {
return block.GetPhis().IsEmpty()
&& !block.GetInstructions().IsEmpty()
&& block.GetFirstInstruction() == block.GetLastInstruction();
}
bool HBasicBlock::IsSingleGoto() const {
return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
}
bool HBasicBlock::IsSingleReturn() const {
return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsReturn();
}
bool HBasicBlock::IsSingleReturnOrReturnVoidAllowingPhis() const {
return (GetFirstInstruction() == GetLastInstruction()) &&
(GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
}
bool HBasicBlock::IsSingleTryBoundary() const {
return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
}
bool HBasicBlock::EndsWithControlFlowInstruction() const {
return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
}
bool HBasicBlock::EndsWithReturn() const {
return !GetInstructions().IsEmpty() &&
(GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
}
bool HBasicBlock::EndsWithIf() const {
return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
}
bool HBasicBlock::EndsWithTryBoundary() const {
return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
}
bool HBasicBlock::HasSinglePhi() const {
return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
}
ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
if (EndsWithTryBoundary()) {
// The normal-flow successor of HTryBoundary is always stored at index zero.
DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
} else {
// All successors of blocks not ending with TryBoundary are normal.
return ArrayRef<HBasicBlock* const>(successors_);
}
}
ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
if (EndsWithTryBoundary()) {
return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
} else {
// Blocks not ending with TryBoundary do not have exceptional successors.
return ArrayRef<HBasicBlock* const>();
}
}
bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
size_t length = handlers1.size();
if (length != handlers2.size()) {
return false;
}
// Exception handlers need to be stored in the same order.
for (size_t i = 0; i < length; ++i) {
if (handlers1[i] != handlers2[i]) {
return false;
}
}
return true;
}
size_t HInstructionList::CountSize() const {
size_t size = 0;
HInstruction* current = first_instruction_;
for (; current != nullptr; current = current->GetNext()) {
size++;
}
return size;
}
void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
for (HInstruction* current = first_instruction_;
current != nullptr;
current = current->GetNext()) {
current->SetBlock(block);
}
}
void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
DCHECK(Contains(cursor));
if (!instruction_list.IsEmpty()) {
if (cursor == last_instruction_) {
last_instruction_ = instruction_list.last_instruction_;
} else {
cursor->next_->previous_ = instruction_list.last_instruction_;
}
instruction_list.last_instruction_->next_ = cursor->next_;
cursor->next_ = instruction_list.first_instruction_;
instruction_list.first_instruction_->previous_ = cursor;
}
}
void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
DCHECK(Contains(cursor));
if (!instruction_list.IsEmpty()) {
if (cursor == first_instruction_) {
first_instruction_ = instruction_list.first_instruction_;
} else {
cursor->previous_->next_ = instruction_list.first_instruction_;
}
instruction_list.last_instruction_->next_ = cursor;
instruction_list.first_instruction_->previous_ = cursor->previous_;
cursor->previous_ = instruction_list.last_instruction_;
}
}
void HInstructionList::Add(const HInstructionList& instruction_list) {
if (IsEmpty()) {
first_instruction_ = instruction_list.first_instruction_;
last_instruction_ = instruction_list.last_instruction_;
} else {
AddAfter(last_instruction_, instruction_list);
}
}
// Should be called on instructions in a dead block in post order. This method
// assumes `insn` has been removed from all users with the exception of catch
// phis because of missing exceptional edges in the graph. It removes the
// instruction from catch phi uses, together with inputs of other catch phis in
// the catch block at the same index, as these must be dead too.
static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
DCHECK(!insn->HasEnvironmentUses());
while (insn->HasNonEnvironmentUses()) {
const HUseListNode<HInstruction*>& use = insn->GetUses().front();
size_t use_index = use.GetIndex();
HBasicBlock* user_block = use.GetUser()->GetBlock();
DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
}
}
}
void HBasicBlock::DisconnectAndDelete() {
// Dominators must be removed after all the blocks they dominate. This way
// a loop header is removed last, a requirement for correct loop information
// iteration.
DCHECK(dominated_blocks_.empty());
// The following steps gradually remove the block from all its dependants in
// post order (b/27683071).
// (1) Store a basic block that we'll use in step (5) to find loops to be updated.
// We need to do this before step (4) which destroys the predecessor list.
HBasicBlock* loop_update_start = this;
if (IsLoopHeader()) {
HLoopInformation* loop_info = GetLoopInformation();
// All other blocks in this loop should have been removed because the header
// was their dominator.
// Note that we do not remove `this` from `loop_info` as it is unreachable.
DCHECK(!loop_info->IsIrreducible());
DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
loop_update_start = loop_info->GetPreHeader();
}
// (2) Disconnect the block from its successors and update their phis.
for (HBasicBlock* successor : successors_) {
// Delete this block from the list of predecessors.
size_t this_index = successor->GetPredecessorIndexOf(this);
successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
// Check that `successor` has other predecessors, otherwise `this` is the
// dominator of `successor` which violates the order DCHECKed at the top.
DCHECK(!successor->predecessors_.empty());
// Remove this block's entries in the successor's phis. Skip exceptional
// successors because catch phi inputs do not correspond to predecessor
// blocks but throwing instructions. The inputs of the catch phis will be
// updated in step (3).
if (!successor->IsCatchBlock()) {
if (successor->predecessors_.size() == 1u) {
// The successor has just one predecessor left. Replace phis with the only
// remaining input.
for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
HPhi* phi = phi_it.Current()->AsPhi();
phi->ReplaceWith(phi->InputAt(1 - this_index));
successor->RemovePhi(phi);
}
} else {
for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
}
}
}
}
successors_.clear();
// (3) Remove instructions and phis. Instructions should have no remaining uses
// except in catch phis. If an instruction is used by a catch phi at `index`,
// remove `index`-th input of all phis in the catch block since they are
// guaranteed dead. Note that we may miss dead inputs this way but the
// graph will always remain consistent.
for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* insn = it.Current();
RemoveUsesOfDeadInstruction(insn);
RemoveInstruction(insn);
}
for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
HPhi* insn = it.Current()->AsPhi();
RemoveUsesOfDeadInstruction(insn);
RemovePhi(insn);
}
// (4) Disconnect the block from its predecessors and update their
// control-flow instructions.
for (HBasicBlock* predecessor : predecessors_) {
// We should not see any back edges as they would have been removed by step (3).
DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
HInstruction* last_instruction = predecessor->GetLastInstruction();
if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
// This block is the only normal-flow successor of the TryBoundary which
// makes `predecessor` dead. Since DCE removes blocks in post order,
// exception handlers of this TryBoundary were already visited and any
// remaining handlers therefore must be live. We remove `predecessor` from
// their list of predecessors.
DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
while (predecessor->GetSuccessors().size() > 1) {
HBasicBlock* handler = predecessor->GetSuccessors()[1];
DCHECK(handler->IsCatchBlock());
predecessor->RemoveSuccessor(handler);
handler->RemovePredecessor(predecessor);
}
}
predecessor->RemoveSuccessor(this);
uint32_t num_pred_successors = predecessor->GetSuccessors().size();
if (num_pred_successors == 1u) {
// If we have one successor after removing one, then we must have
// had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
// successor. Replace those with a HGoto.
DCHECK(last_instruction->IsIf() ||
last_instruction->IsPackedSwitch() ||
(last_instruction->IsTryBoundary() && IsCatchBlock()));
predecessor->RemoveInstruction(last_instruction);
predecessor->AddInstruction(new (graph_->GetAllocator()) HGoto(last_instruction->GetDexPc()));
} else if (num_pred_successors == 0u) {
// The predecessor has no remaining successors and therefore must be dead.
// We deliberately leave it without a control-flow instruction so that the
// GraphChecker fails unless it is not removed during the pass too.
predecessor->RemoveInstruction(last_instruction);
} else {
// There are multiple successors left. The removed block might be a successor
// of a PackedSwitch which will be completely removed (perhaps replaced with
// a Goto), or we are deleting a catch block from a TryBoundary. In either
// case, leave `last_instruction` as is for now.
DCHECK(last_instruction->IsPackedSwitch() ||
(last_instruction->IsTryBoundary() && IsCatchBlock()));
}
}
predecessors_.clear();
// (5) Remove the block from all loops it is included in. Skip the inner-most
// loop if this is the loop header (see definition of `loop_update_start`)
// because the loop header's predecessor list has been destroyed in step (4).
for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
HLoopInformation* loop_info = it.Current();
loop_info->Remove(this);
if (loop_info->IsBackEdge(*this)) {
// If this was the last back edge of the loop, we deliberately leave the
// loop in an inconsistent state and will fail GraphChecker unless the
// entire loop is removed during the pass.
loop_info->RemoveBackEdge(this);
}
}
// (6) Disconnect from the dominator.
dominator_->RemoveDominatedBlock(this);
SetDominator(nullptr);
// (7) Delete from the graph, update reverse post order.
graph_->DeleteDeadEmptyBlock(this);
SetGraph(nullptr);
}
void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
DCHECK(EndsWithControlFlowInstruction());
RemoveInstruction(GetLastInstruction());
instructions_.Add(other->GetInstructions());
other->instructions_.SetBlockOfInstructions(this);
other->instructions_.Clear();
}
void HBasicBlock::MergeWith(HBasicBlock* other) {
DCHECK_EQ(GetGraph(), other->GetGraph());
DCHECK(ContainsElement(dominated_blocks_, other));
DCHECK_EQ(GetSingleSuccessor(), other);
DCHECK_EQ(other->GetSinglePredecessor(), this);
DCHECK(other->GetPhis().IsEmpty());
// Move instructions from `other` to `this`.
MergeInstructionsWith(other);
// Remove `other` from the loops it is included in.
for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
HLoopInformation* loop_info = it.Current();
loop_info->Remove(other);
if (loop_info->IsBackEdge(*other)) {
loop_info->ReplaceBackEdge(other, this);
}
}
// Update links to the successors of `other`.
successors_.clear();
for (HBasicBlock* successor : other->GetSuccessors()) {
successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
}
successors_.swap(other->successors_);
DCHECK(other->successors_.empty());
// Update the dominator tree.
RemoveDominatedBlock(other);
for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
dominated->SetDominator(this);
}
dominated_blocks_.insert(
dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
other->dominated_blocks_.clear();
other->dominator_ = nullptr;
// Clear the list of predecessors of `other` in preparation of deleting it.
other->predecessors_.clear();
// Delete `other` from the graph. The function updates reverse post order.
graph_->DeleteDeadEmptyBlock(other);
other->SetGraph(nullptr);
}
void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
DCHECK_NE(GetGraph(), other->GetGraph());
DCHECK(GetDominatedBlocks().empty());
DCHECK(GetSuccessors().empty());
DCHECK(!EndsWithControlFlowInstruction());
DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
DCHECK(other->GetPhis().IsEmpty());
DCHECK(!other->IsInLoop());
// Move instructions from `other` to `this`.
instructions_.Add(other->GetInstructions());
other->instructions_.SetBlockOfInstructions(this);
// Update links to the successors of `other`.
successors_.clear();
for (HBasicBlock* successor : other->GetSuccessors()) {
successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
}
successors_.swap(other->successors_);
DCHECK(other->successors_.empty());
// Update the dominator tree.
for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
dominated->SetDominator(this);
}
dominated_blocks_.insert(
dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
other->dominated_blocks_.clear();
other->dominator_ = nullptr;
other->graph_ = nullptr;
}
void HBasicBlock::ReplaceWith(HBasicBlock* other) {
while (!GetPredecessors().empty()) {
HBasicBlock* predecessor = GetPredecessors()[0];
predecessor->ReplaceSuccessor(this, other);
}
while (!GetSuccessors().empty()) {
HBasicBlock* successor = GetSuccessors()[0];
successor->ReplacePredecessor(this, other);
}
for (HBasicBlock* dominated : GetDominatedBlocks()) {
other->AddDominatedBlock(dominated);
}
GetDominator()->ReplaceDominatedBlock(this, other);
other->SetDominator(GetDominator());
dominator_ = nullptr;
graph_ = nullptr;
}
void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
DCHECK_EQ(block->GetGraph(), this);
DCHECK(block->GetSuccessors().empty());
DCHECK(block->GetPredecessors().empty());
DCHECK(block->GetDominatedBlocks().empty());
DCHECK(block->GetDominator() == nullptr);
DCHECK(block->GetInstructions().IsEmpty());
DCHECK(block->GetPhis().IsEmpty());
if (block->IsExitBlock()) {
SetExitBlock(nullptr);
}
RemoveElement(reverse_post_order_, block);
blocks_[block->GetBlockId()] = nullptr;
block->SetGraph(nullptr);
}
void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
HBasicBlock* reference,
bool replace_if_back_edge) {
if (block->IsLoopHeader()) {
// Clear the information of which blocks are contained in that loop. Since the
// information is stored as a bit vector based on block ids, we have to update
// it, as those block ids were specific to the callee graph and we are now adding
// these blocks to the caller graph.
block->GetLoopInformation()->ClearAllBlocks();
}
// If not already in a loop, update the loop information.
if (!block->IsInLoop()) {
block->SetLoopInformation(reference->GetLoopInformation());
}
// If the block is in a loop, update all its outward loops.
HLoopInformation* loop_info = block->GetLoopInformation();
if (loop_info != nullptr) {
for (HLoopInformationOutwardIterator loop_it(*block);
!loop_it.Done();
loop_it.Advance()) {
loop_it.Current()->Add(block);
}
if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
loop_info->ReplaceBackEdge(reference, block);
}
}
// Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
TryCatchInformation* try_catch_info = reference->IsTryBlock()
? reference->GetTryCatchInformation()
: nullptr;
block->SetTryCatchInformation(try_catch_info);
}
HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
DCHECK(HasExitBlock()) << "Unimplemented scenario";
// Update the environments in this graph to have the invoke's environment
// as parent.
{
// Skip the entry block, we do not need to update the entry's suspend check.
for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
for (HInstructionIterator instr_it(block->GetInstructions());
!instr_it.Done();
instr_it.Advance()) {
HInstruction* current = instr_it.Current();
if (current->NeedsEnvironment()) {
DCHECK(current->HasEnvironment());
current->GetEnvironment()->SetAndCopyParentChain(
outer_graph->GetAllocator(), invoke->GetEnvironment());
}
}
}
}
outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
if (HasBoundsChecks()) {
outer_graph->SetHasBoundsChecks(true);
}
if (HasLoops()) {
outer_graph->SetHasLoops(true);
}
if (HasIrreducibleLoops()) {
outer_graph->SetHasIrreducibleLoops(true);
}
if (HasDirectCriticalNativeCall()) {
outer_graph->SetHasDirectCriticalNativeCall(true);
}
if (HasTryCatch()) {
outer_graph->SetHasTryCatch(true);
}
if (HasSIMD()) {
outer_graph->SetHasSIMD(true);
}
HInstruction* return_value = nullptr;
if (GetBlocks().size() == 3) {
// Inliner already made sure we don't inline methods that always throw.
DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
// Simple case of an entry block, a body block, and an exit block.
// Put the body block's instruction into `invoke`'s block.
HBasicBlock* body = GetBlocks()[1];
DCHECK(GetBlocks()[0]->IsEntryBlock());
DCHECK(GetBlocks()[2]->IsExitBlock());
DCHECK(!body->IsExitBlock());
DCHECK(!body->IsInLoop());
HInstruction* last = body->GetLastInstruction();
// Note that we add instructions before the invoke only to simplify polymorphic inlining.
invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
// Replace the invoke with the return value of the inlined graph.
if (last->IsReturn()) {
return_value = last->InputAt(0);
} else {
DCHECK(last->IsReturnVoid());
}
invoke->GetBlock()->RemoveInstruction(last);
} else {
// Need to inline multiple blocks. We split `invoke`'s block
// into two blocks, merge the first block of the inlined graph into
// the first half, and replace the exit block of the inlined graph
// with the second half.
ArenaAllocator* allocator = outer_graph->GetAllocator();
HBasicBlock* at = invoke->GetBlock();
// Note that we split before the invoke only to simplify polymorphic inlining.
HBasicBlock* to = at->SplitBeforeForInlining(invoke);
HBasicBlock* first = entry_block_->GetSuccessors()[0];
DCHECK(!first->IsInLoop());
at->MergeWithInlined(first);
exit_block_->ReplaceWith(to);
// Update the meta information surrounding blocks:
// (1) the graph they are now in,
// (2) the reverse post order of that graph,
// (3) their potential loop information, inner and outer,
// (4) try block membership.
// Note that we do not need to update catch phi inputs because they
// correspond to the register file of the outer method which the inlinee
// cannot modify.
// We don't add the entry block, the exit block, and the first block, which
// has been merged with `at`.
static constexpr int kNumberOfSkippedBlocksInCallee = 3;
// We add the `to` block.
static constexpr int kNumberOfNewBlocksInCaller = 1;
size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
+ kNumberOfNewBlocksInCaller;
// Find the location of `at` in the outer graph's reverse post order. The new
// blocks will be added after it.
size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
// Do a reverse post order of the blocks in the callee and do (1), (2), (3)
// and (4) to the blocks that apply.
for (HBasicBlock* current : GetReversePostOrder()) {
if (current != exit_block_ && current != entry_block_ && current != first) {
DCHECK(current->GetTryCatchInformation() == nullptr);
DCHECK(current->GetGraph() == this);
current->SetGraph(outer_graph);
outer_graph->AddBlock(current);
outer_graph->reverse_post_order_[++index_of_at] = current;
UpdateLoopAndTryInformationOfNewBlock(current, at, /* replace_if_back_edge= */ false);
}
}
// Do (1), (2), (3) and (4) to `to`.
to->SetGraph(outer_graph);
outer_graph->AddBlock(to);
outer_graph->reverse_post_order_[++index_of_at] = to;
// Only `to` can become a back edge, as the inlined blocks
// are predecessors of `to`.
UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge= */ true);
// Update all predecessors of the exit block (now the `to` block)
// to not `HReturn` but `HGoto` instead. Special case throwing blocks
// to now get the outer graph exit block as successor. Note that the inliner
// currently doesn't support inlining methods with try/catch.
HPhi* return_value_phi = nullptr;
bool rerun_dominance = false;
bool rerun_loop_analysis = false;
for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
HBasicBlock* predecessor = to->GetPredecessors()[pred];
HInstruction* last = predecessor->GetLastInstruction();
if (last->IsThrow()) {
DCHECK(!at->IsTryBlock());
predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
--pred;
// We need to re-run dominance information, as the exit block now has
// a new dominator.
rerun_dominance = true;
if (predecessor->GetLoopInformation() != nullptr) {
// The exit block and blocks post dominated by the exit block do not belong
// to any loop. Because we do not compute the post dominators, we need to re-run
// loop analysis to get the loop information correct.
rerun_loop_analysis = true;
}
} else {
if (last->IsReturnVoid()) {
DCHECK(return_value == nullptr);
DCHECK(return_value_phi == nullptr);
} else {
DCHECK(last->IsReturn());
if (return_value_phi != nullptr) {
return_value_phi->AddInput(last->InputAt(0));
} else if (return_value == nullptr) {
return_value = last->InputAt(0);
} else {
// There will be multiple returns.
return_value_phi = new (allocator) HPhi(
allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
to->AddPhi(return_value_phi);
return_value_phi->AddInput(return_value);
return_value_phi->AddInput(last->InputAt(0));
return_value = return_value_phi;
}
}
predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
predecessor->RemoveInstruction(last);
}
}
if (rerun_loop_analysis) {
DCHECK(!outer_graph->HasIrreducibleLoops())
<< "Recomputing loop information in graphs with irreducible loops "
<< "is unsupported, as it could lead to loop header changes";
outer_graph->ClearLoopInformation();
outer_graph->ClearDominanceInformation();
outer_graph->BuildDominatorTree();
} else if (rerun_dominance) {
outer_graph->ClearDominanceInformation();
outer_graph->ComputeDominanceInformation();
}
}
// Walk over the entry block and:
// - Move constants from the entry block to the outer_graph's entry block,
// - Replace HParameterValue instructions with their real value.
// - Remove suspend checks, that hold an environment.
// We must do this after the other blocks have been inlined, otherwise ids of
// constants could overlap with the inner graph.
size_t parameter_index = 0;
for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
HInstruction* replacement = nullptr;
if (current->IsNullConstant()) {
replacement = outer_graph->GetNullConstant(current->GetDexPc());
} else if (current->IsIntConstant()) {
replacement = outer_graph->GetIntConstant(
current->AsIntConstant()->GetValue(), current->GetDexPc());
} else if (current->IsLongConstant()) {
replacement = outer_graph->GetLongConstant(
current->AsLongConstant()->GetValue(), current->GetDexPc());
} else if (current->IsFloatConstant()) {
replacement = outer_graph->GetFloatConstant(
current->AsFloatConstant()->GetValue(), current->GetDexPc());
} else if (current->IsDoubleConstant()) {
replacement = outer_graph->GetDoubleConstant(
current->AsDoubleConstant()->GetValue(), current->GetDexPc());
} else if (current->IsParameterValue()) {
if (kIsDebugBuild
&& invoke->IsInvokeStaticOrDirect()
&& invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
// Ensure we do not use the last input of `invoke`, as it
// contains a clinit check which is not an actual argument.
size_t last_input_index = invoke->InputCount() - 1;
DCHECK(parameter_index != last_input_index);
}
replacement = invoke->InputAt(parameter_index++);
} else if (current->IsCurrentMethod()) {
replacement = outer_graph->GetCurrentMethod();
} else {
DCHECK(current->IsGoto() || current->IsSuspendCheck());
entry_block_->RemoveInstruction(current);
}
if (replacement != nullptr) {
current->ReplaceWith(replacement);
// If the current is the return value then we need to update the latter.
if (current == return_value) {
DCHECK_EQ(entry_block_, return_value->GetBlock());
return_value = replacement;
}
}
}
return return_value;
}
/*
* Loop will be transformed to:
* old_pre_header
* |
* if_block
* / \
* true_block false_block
* \ /
* new_pre_header
* |
* header
*/
void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
DCHECK(header->IsLoopHeader());
HBasicBlock* old_pre_header = header->GetDominator();
// Need extra block to avoid critical edge.
HBasicBlock* if_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
HBasicBlock* true_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
HBasicBlock* false_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
AddBlock(if_block);
AddBlock(true_block);
AddBlock(false_block);
AddBlock(new_pre_header);
header->ReplacePredecessor(old_pre_header, new_pre_header);
old_pre_header->successors_.clear();
old_pre_header->dominated_blocks_.clear();
old_pre_header->AddSuccessor(if_block);
if_block->AddSuccessor(true_block); // True successor
if_block->AddSuccessor(false_block); // False successor
true_block->AddSuccessor(new_pre_header);
false_block->AddSuccessor(new_pre_header);
old_pre_header->dominated_blocks_.push_back(if_block);
if_block->SetDominator(old_pre_header);
if_block->dominated_blocks_.push_back(true_block);
true_block->SetDominator(if_block);
if_block->dominated_blocks_.push_back(false_block);
false_block->SetDominator(if_block);
if_block->dominated_blocks_.push_back(new_pre_header);
new_pre_header->SetDominator(if_block);
new_pre_header->dominated_blocks_.push_back(header);
header->SetDominator(new_pre_header);
// Fix reverse post order.
size_t index_of_header = IndexOfElement(reverse_post_order_, header);
MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
reverse_post_order_[index_of_header++] = if_block;
reverse_post_order_[index_of_header++] = true_block;
reverse_post_order_[index_of_header++] = false_block;
reverse_post_order_[index_of_header++] = new_pre_header;
// The pre_header can never be a back edge of a loop.
DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
!old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
UpdateLoopAndTryInformationOfNewBlock(
if_block, old_pre_header, /* replace_if_back_edge= */ false);
UpdateLoopAndTryInformationOfNewBlock(
true_block, old_pre_header, /* replace_if_back_edge= */ false);
UpdateLoopAndTryInformationOfNewBlock(
false_block, old_pre_header, /* replace_if_back_edge= */ false);
UpdateLoopAndTryInformationOfNewBlock(
new_pre_header, old_pre_header, /* replace_if_back_edge= */ false);
}
HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
HBasicBlock* body,
HBasicBlock* exit) {
DCHECK(header->IsLoopHeader());
HLoopInformation* loop = header->GetLoopInformation();
// Add new loop blocks.
HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
HBasicBlock* new_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
HBasicBlock* new_body = new (allocator_) HBasicBlock(this, header->GetDexPc());
AddBlock(new_pre_header);
AddBlock(new_header);
AddBlock(new_body);
// Set up control flow.
header->ReplaceSuccessor(exit, new_pre_header);
new_pre_header->AddSuccessor(new_header);
new_header->AddSuccessor(exit);
new_header->AddSuccessor(new_body);
new_body->AddSuccessor(new_header);
// Set up dominators.
header->ReplaceDominatedBlock(exit, new_pre_header);
new_pre_header->SetDominator(header);
new_pre_header->dominated_blocks_.push_back(new_header);
new_header->SetDominator(new_pre_header);
new_header->dominated_blocks_.push_back(new_body);
new_body->SetDominator(new_header);
new_header->dominated_blocks_.push_back(exit);
exit->SetDominator(new_header);
// Fix reverse post order.
size_t index_of_header = IndexOfElement(reverse_post_order_, header);
MakeRoomFor(&reverse_post_order_, 2, index_of_header);
reverse_post_order_[++index_of_header] = new_pre_header;
reverse_post_order_[++index_of_header] = new_header;
size_t index_of_body = IndexOfElement(reverse_post_order_, body);
MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
reverse_post_order_[index_of_body] = new_body;
// Add gotos and suspend check (client must add conditional in header).
new_pre_header->AddInstruction(new (allocator_) HGoto());
HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(header->GetDexPc());
new_header->AddInstruction(suspend_check);
new_body->AddInstruction(new (allocator_) HGoto());
suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
loop->GetSuspendCheck()->GetEnvironment(), header);
// Update loop information.
new_header->AddBackEdge(new_body);
new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
new_header->GetLoopInformation()->Populate();
new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation()); // outward
HLoopInformationOutwardIterator it(*new_header);
for (it.Advance(); !it.Done(); it.Advance()) {
it.Current()->Add(new_pre_header);
it.Current()->Add(new_header);
it.Current()->Add(new_body);
}
return new_pre_header;
}
static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (rti.IsValid()) {
DCHECK(upper_bound_rti.IsSupertypeOf(rti))
<< " upper_bound_rti: " << upper_bound_rti
<< " rti: " << rti;
DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
<< " upper_bound_rti: " << upper_bound_rti
<< " rti: " << rti;
}
}
void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
if (kIsDebugBuild) {
DCHECK_EQ(GetType(), DataType::Type::kReference);
ScopedObjectAccess soa(Thread::Current());
DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
if (IsBoundType()) {
// Having the test here spares us from making the method virtual just for
// the sake of a DCHECK.
CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
}
}
reference_type_handle_ = rti.GetTypeHandle();
SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
}
bool HBoundType::InstructionDataEquals(const HInstruction* other) const {
const HBoundType* other_bt = other->AsBoundType();
ScopedObjectAccess soa(Thread::Current());
return GetUpperBound().IsEqual(other_bt->GetUpperBound()) &&
GetUpperCanBeNull() == other_bt->GetUpperCanBeNull() &&
CanBeNull() == other_bt->CanBeNull();
}
void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
if (kIsDebugBuild) {
ScopedObjectAccess soa(Thread::Current());
DCHECK(upper_bound.IsValid());
DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
}
upper_bound_ = upper_bound;
SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
}
ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
if (kIsDebugBuild) {
ScopedObjectAccess soa(Thread::Current());
DCHECK(IsValidHandle(type_handle));
if (!is_exact) {
DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
<< "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
}
}
return ReferenceTypeInfo(type_handle, is_exact);
}
std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
ScopedObjectAccess soa(Thread::Current());
os << "["
<< " is_valid=" << rhs.IsValid()
<< " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
<< " is_exact=" << rhs.IsExact()
<< " ]";
return os;
}
bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
// For now, assume that instructions in different blocks may use the
// environment.
// TODO: Use the control flow to decide if this is true.
if (GetBlock() != other->GetBlock()) {
return true;
}
// We know that we are in the same block. Walk from 'this' to 'other',
// checking to see if there is any instruction with an environment.
HInstruction* current = this;
for (; current != other && current != nullptr; current = current->GetNext()) {
// This is a conservative check, as the instruction result may not be in
// the referenced environment.
if (current->HasEnvironment()) {
return true;
}
}
// We should have been called with 'this' before 'other' in the block.
// Just confirm this.
DCHECK(current != nullptr);
return false;
}
void HInvoke::SetIntrinsic(Intrinsics intrinsic,
IntrinsicNeedsEnvironment needs_env,
IntrinsicSideEffects side_effects,
IntrinsicExceptions exceptions) {
intrinsic_ = intrinsic;
IntrinsicOptimizations opt(this);
// Adjust method's side effects from intrinsic table.
switch (side_effects) {
case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
}
if (needs_env == kNoEnvironment) {
opt.SetDoesNotNeedEnvironment();
} else {
// If we need an environment, that means there will be a call, which can trigger GC.
SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
}
// Adjust method's exception status from intrinsic table.
SetCanThrow(exceptions == kCanThrow);
}
bool HNewInstance::IsStringAlloc() const {
return GetEntrypoint() == kQuickAllocStringObject;
}
bool HInvoke::NeedsEnvironment() const {
if (!IsIntrinsic()) {
return true;
}
IntrinsicOptimizations opt(*this);
return !opt.GetDoesNotNeedEnvironment();
}
const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
ArtMethod* caller = GetEnvironment()->GetMethod();
ScopedObjectAccess soa(Thread::Current());
// `caller` is null for a top-level graph representing a method whose declaring
// class was not resolved.
return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
}
std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
switch (rhs) {
case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
return os << "explicit";
case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
return os << "implicit";
case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
return os << "none";
default:
LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
UNREACHABLE();
}
}
bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
const HLoadClass* other_load_class = other->AsLoadClass();
// TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
// names rather than type indexes. However, we shall also have to re-think the hash code.
if (type_index_ != other_load_class->type_index_ ||
GetPackedFields() != other_load_class->GetPackedFields()) {
return false;
}
switch (GetLoadKind()) {
case LoadKind::kBootImageRelRo:
case LoadKind::kJitBootImageAddress:
case LoadKind::kJitTableAddress: {
ScopedObjectAccess soa(Thread::Current());
return GetClass().Get() == other_load_class->GetClass().Get();
}
default:
DCHECK(HasTypeReference(GetLoadKind()));
return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
}
}
bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
const HLoadString* other_load_string = other->AsLoadString();
// TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
// rather than their indexes. However, we shall also have to re-think the hash code.
if (string_index_ != other_load_string->string_index_ ||
GetPackedFields() != other_load_string->GetPackedFields()) {
return false;
}
switch (GetLoadKind()) {
case LoadKind::kBootImageRelRo:
case LoadKind::kJitBootImageAddress:
case LoadKind::kJitTableAddress: {
ScopedObjectAccess soa(Thread::Current());
return GetString().Get() == other_load_string->GetString().Get();
}
default:
return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
}
}
void HInstruction::RemoveEnvironmentUsers() {
for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
HEnvironment* user = use.GetUser();
user->SetRawEnvAt(use.GetIndex(), nullptr);
}
env_uses_.clear();
}
HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr) {
HInstruction* clone = instr->Clone(instr->GetBlock()->GetGraph()->GetAllocator());
HBasicBlock* block = instr->GetBlock();
if (instr->IsPhi()) {
HPhi* phi = instr->AsPhi();
DCHECK(!phi->HasEnvironment());
HPhi* phi_clone = clone->AsPhi();
block->ReplaceAndRemovePhiWith(phi, phi_clone);
} else {
block->ReplaceAndRemoveInstructionWith(instr, clone);
if (instr->HasEnvironment()) {
clone->CopyEnvironmentFrom(instr->GetEnvironment());
HLoopInformation* loop_info = block->GetLoopInformation();
if (instr->IsSuspendCheck() && loop_info != nullptr) {
loop_info->SetSuspendCheck(clone->AsSuspendCheck());
}
}
}
return clone;
}
// Returns an instruction with the opposite Boolean value from 'cond'.
HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
ArenaAllocator* allocator = GetAllocator();
if (cond->IsCondition() &&
!DataType::IsFloatingPointType(cond->InputAt(0)->GetType())) {
// Can't reverse floating point conditions. We have to use HBooleanNot in that case.
HInstruction* lhs = cond->InputAt(0);
HInstruction* rhs = cond->InputAt(1);
HInstruction* replacement = nullptr;
switch (cond->AsCondition()->GetOppositeCondition()) { // get *opposite*
case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
case kCondB: replacement = new (allocator) HBelow(lhs, rhs); break;
case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
case kCondA: replacement = new (allocator) HAbove(lhs, rhs); break;
case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
default:
LOG(FATAL) << "Unexpected condition";
UNREACHABLE();
}
cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
return replacement;
} else if (cond->IsIntConstant()) {
HIntConstant* int_const = cond->AsIntConstant();
if (int_const->IsFalse()) {
return GetIntConstant(1);
} else {
DCHECK(int_const->IsTrue()) << int_const->GetValue();
return GetIntConstant(0);
}
} else {
HInstruction* replacement = new (allocator) HBooleanNot(cond);
cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
return replacement;
}
}
std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
os << "["
<< " source=" << rhs.GetSource()
<< " destination=" << rhs.GetDestination()
<< " type=" << rhs.GetType()
<< " instruction=";
if (rhs.GetInstruction() != nullptr) {
os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
} else {
os << "null";
}
os << " ]";
return os;
}
std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
switch (rhs) {
case TypeCheckKind::kUnresolvedCheck:
return os << "unresolved_check";
case TypeCheckKind::kExactCheck:
return os << "exact_check";
case TypeCheckKind::kClassHierarchyCheck:
return os << "class_hierarchy_check";
case TypeCheckKind::kAbstractClassCheck:
return os << "abstract_class_check";
case TypeCheckKind::kInterfaceCheck:
return os << "interface_check";
case TypeCheckKind::kArrayObjectCheck:
return os << "array_object_check";
case TypeCheckKind::kArrayCheck:
return os << "array_check";
case TypeCheckKind::kBitstringCheck:
return os << "bitstring_check";
default:
LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
UNREACHABLE();
}
}
// Check that intrinsic enum values fit within space set aside in ArtMethod modifier flags.
#define CHECK_INTRINSICS_ENUM_VALUES(Name, InvokeType, _, SideEffects, Exceptions, ...) \
static_assert( \
static_cast<uint32_t>(Intrinsics::k ## Name) <= (kAccIntrinsicBits >> CTZ(kAccIntrinsicBits)), \
"Instrinsics enumeration space overflow.");
#include "intrinsics_list.h"
INTRINSICS_LIST(CHECK_INTRINSICS_ENUM_VALUES)
#undef INTRINSICS_LIST
#undef CHECK_INTRINSICS_ENUM_VALUES
// Function that returns whether an intrinsic needs an environment or not.
static inline IntrinsicNeedsEnvironment NeedsEnvironmentIntrinsic(Intrinsics i) {
switch (i) {
case Intrinsics::kNone:
return kNeedsEnvironment; // Non-sensical for intrinsic.
#define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
case Intrinsics::k ## Name: \
return NeedsEnv;
#include "intrinsics_list.h"
INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
#undef INTRINSICS_LIST
#undef OPTIMIZING_INTRINSICS
}
return kNeedsEnvironment;
}
// Function that returns whether an intrinsic has side effects.
static inline IntrinsicSideEffects GetSideEffectsIntrinsic(Intrinsics i) {
switch (i) {
case Intrinsics::kNone:
return kAllSideEffects;
#define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
case Intrinsics::k ## Name: \
return SideEffects;
#include "intrinsics_list.h"
INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
#undef INTRINSICS_LIST
#undef OPTIMIZING_INTRINSICS
}
return kAllSideEffects;
}
// Function that returns whether an intrinsic can throw exceptions.
static inline IntrinsicExceptions GetExceptionsIntrinsic(Intrinsics i) {
switch (i) {
case Intrinsics::kNone:
return kCanThrow;
#define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
case Intrinsics::k ## Name: \
return Exceptions;
#include "intrinsics_list.h"
INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
#undef INTRINSICS_LIST
#undef OPTIMIZING_INTRINSICS
}
return kCanThrow;
}
void HInvoke::SetResolvedMethod(ArtMethod* method) {
if (method != nullptr && method->IsIntrinsic()) {
Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic());
SetIntrinsic(intrinsic,
NeedsEnvironmentIntrinsic(intrinsic),
GetSideEffectsIntrinsic(intrinsic),
GetExceptionsIntrinsic(intrinsic));
}
resolved_method_ = method;
}
bool IsGEZero(HInstruction* instruction) {
DCHECK(instruction != nullptr);
if (instruction->IsArrayLength()) {
return true;
} else if (instruction->IsMin()) {
// Instruction MIN(>=0, >=0) is >= 0.
return IsGEZero(instruction->InputAt(0)) &&
IsGEZero(instruction->InputAt(1));
} else if (instruction->IsAbs()) {
// Instruction ABS(>=0) is >= 0.
// NOTE: ABS(minint) = minint prevents assuming
// >= 0 without looking at the argument.
return IsGEZero(instruction->InputAt(0));
}
int64_t value = -1;
return IsInt64AndGet(instruction, &value) && value >= 0;
}
} // namespace art